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Preface

The guiding principle in this book is to use differential forms as an aid in
exploring some of the less digestible aspects of algebraic topology. Accord-
ingly, we move primarily in the realm of smooth manifolds and use the
de Rham theory as a prototype of all of cohomology. For applications to
homotopy theory we also discuss by way of analogy cohomology with
arbitrary coefficients.

Although we have in mind an audience with prior exposure to algebraic
or differential topology, for the mast part a good knowledge of linear
algebra, advanced calculus, and point-set topology should suffice. Some
acquaintance with manifolds, simplicial complexes, singular homology and
cohomology, and homotopy groups is helpful, but not really necessary.
Within the text itself we have stated with care the more advanced results
that are needed, so that a mathematically mature reader who accepts these
background materials on faith should be able to read the entire book with
the minimal prerequisites.

There are more materials here than can be reasonably covered in a
one-semester course. Certain sections may be omitted at first reading with-
out loss of continuity. We have mdlcated these in the schematic diagram
that follows.

This book is not intended to be foundational; rather, it is only meant to
open some of the doors to the formidable edifice of modern algebraic
topology. We offer it in the hope that such an informal account of the
subject at a semi-introductory level fills a gap in the literature.

It would be impdssible to mention all the friends, colleagues, and
students whose ideas have contributed to this book. But the senior
author would like on this occasion to express his deep gratitude, first
of all to his primary topology teachers E. Specker, N. Steenrod, and

vii
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K. Reidemeister of thirty years ago, and secondly to H. Samelson, A. Shapiro,
I. Singer, J.-P. Serre, F. Hirzebruch, A. Borel, J. Milnor, M. Atiyah, S.-s.
Chern, J. Mather, P. Baum, D. Sullivan, A. Haefliger, and Graeme Segal,
who, mostly in collaboration, have continued this word of mouth education
to the present; the junior author is indebted to Allen Hatcher for having
initiated him into algebraic topology. The reader will find their influence if
not in all, then certainly in the more laudable aspects of this book. We also
owe thanks to the many other people who have helped with our project: to
Ron Donagi, Zbig Fiedorowicz, Dan Freed, Nancy Hingston, and Deane
Yang for their reading of various portions of the manuscript and for their
critical comments, to Ruby Aguirre, Lu Ann Custer, Barbara Moody, and
Caroline Underwood for typing services, and to the staff of Springer-Verlag
for its patience, dedication, and skill.

For the Revised Third Printing

While keeping the text essentially the same as in previous printings, we have
made numerous local changes throughout. The more significant revisions
concern the computation of the Euler class in Example 6.44.1 (pp. 75-76), the
proof of Proposition 7.5 (p. 85), the treatment of constant and locally con-
stant presheaves (p. 109 and p. 143), the proof of Proposition 11.2 (p. 115), a
local finite hypothesis on the generalized Mayer—Vietoris sequence for com-
pact supports (p. 139), transgressive elements (Prop. 18.13, p. 248), and the
discussion of classifying spaces for vector bundles (pp. 297-300).

We would like to thank Robert Lyons, Jonathan Dorfman, Peter Law,
Peter Landweber, and Michael Maltenfort, whose lists of corrections have
been incorporated into the second and third printings.

RaouL Bott
LoriNG Tu
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Introduction

The most intuitively evident topological invariant of a space is the number
of connected pieces into which it falls. Over the past one hundred years or
so we have come to realize that this primitive notion admits in some sense
two higher-dimensional analogues. These are the homotopy and cohomology
groups of the space in question.

The evolution of the higher homotopy groups from the component con-
cept is deceptively simple and essentially unique. To describe it, let my(X)
denote the set of path components of X and if p is a point of X, let ny(X, p)
denote the set mo(X) with the path component of p singled out. Also, corre-
sponding to such a point p, let Q, X denote the space of maps (continuous
functions) of the unit circle {z € C : | z| = 1} which send 1 to p, made into a
topological space via the compact open topology. The path components of
this so-called loop space Q, X are now taken to be the elements of (X, p):

nl(x9 P) = ﬂo(QpX, ﬁ)

The composition of loops induces a group structure on ny(X, p) in which
the constant map p of the circle to p plays the role of the identity; so
endowed, m,(X, p) is called the fundamental group or the first homotopy
group of X at p. It is in general not Abelian. For instance, for a Riemann
surface of genus 3, as indicated in the figure below:
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n,(X, p) is generated by six elements {x,, x,, X3, y;, 2, y3} subject to the
single relation

3
~1;11[x“ yl=1

where [x;, ;] denotes the commutator x,y,x; !y,”! and 1 the identity. The
fundamental group is in fact sufficient to classify the closed oriented
2-dimensional surfaces, but is insufficient in higher dimensions.

To return to the general case, all the higher homotopy groups m(X, p)
for k > 2 can now be defined through the inductive formula:

e+ (X, p) = m(Q, X, p).

By the way, if p and p’ are two points in X in the same path component,
then

nk(xv p) = nk(X’ p,)y

but the correspondence is not necessarily unique. For the Riemann surfaces
such as discussed above, the higher n,’s for k > 2 are all trivial, and it is in
part for this reason that =, is sufficient to classify them. The groups =, for
k > 2 turn out to be Abelian and therefore do not seem to have been taken
seriously until the 1930’s when W. Hurewicz defined them (in the manner
above, among others) and showed that, far from being trivial, they consti-
tuted the basic ingredients needed to describe the homotopy-theoretic
properties of a space.

The great drawback of these easily defined invariants of a space is that
they are very difficult to compute. To this day not all the homotopy groups
of say the 2-sphere, ie., the space x* + y* + z* = 1 in R, have been com-

-puted! Nonetheless, by now much is known concerning the general proper-
ties of the homotopy groups, largely due to the formidable algebraic tech-
niques to which the “cohomological extension” of the component concept
lends itself, and the relations between homotopy and cohomology which
have been discovered over the years.

This cohomological extension starts with the dual point of view in which
a component is characterized by the property that on it every locally con-
stant function is globally constant. Such a component is sometimes called a
connected component, to distinguish it from a path component. Thus, if we
define H°(X) to be the vector space of real-valued locally constant functions
on X, then dim H°(X) tells us the number of connected components of X.
Note that on reasonable spaces where path components and ¢onnected
components agree, we therefore have the formula

cardinality ny(X) = dim H°(X).

Still the two concepts are dual to each other, the first using maps of the unit
interval into X to test for connectedness and the second using maps of X
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into R for the same purpose. One further difference is that the cohomology
group H°(X) has, by fiat, a natural R-module structure.

Now what should the proper higher-dimensional analogue of H°(X) be?
Unfortunately there is no decisive answer here. Many plausible definitions
of H(X) for k > 0 have been proposed, all with slightly different properties
but all isomorphic on “reasonable spaces”. Furthermore, in the realm of
differentiable manifolds, all these theories coincide with the de Rham
theory which makes its appearance there and constitutes in some sense the
most perfect example of a cohomology theory. The de Rham theory is also
unique in that it stands at the crossroads of topology, analysis, and physics,
enriching all three disciplines.

The gist of the “de Rham extension” is comprehended most easily when
M is assumed to be an open set in some Euclidean space R, with coordi-
nates x,, ... ,X,. Then amongst the C® functions on M the locally constant
ones are precisely those whose gradient

if=y :—i dx;

vanishes identically. Thus here H°(M) appears as the space of solutions of
the differential equation df =0. This suggests that H'(M) should also
appear as the space of solutions of some natural differential equations on
the manifold M. Now consider a 1-form on M:

9=Za; dxi,

where the a;’s are C* functions on M. Such an expression can be integrated
along a smooth path y, so that we may think of 8 as a function on paths y:

ijB.
Y

It then suggests itself to seek those 6 which give rise to locally constant
functions of , i.e., for which the integral j, 0 is left unaltered under small
variations of y—but keeping the endpoints fixed! (Otherwise, only the zero
1-form would be locally constant.) Stokes’ theorem teaches us that these
line integrals are characterized by the differential equations:

a; _da; _ 0  (written d6 = 0).
5x_,- axi

On the other hand, the fundamental theorem of calculus implies that
f, & =f(Q) — f(P), where P and Q are the endpoints of y, so that the
gradients are trivally locally constant.

One is here irresistibly led to the definition of H'(M) as the vector space
of locally constant line integrals modulo the trivially constant ones. Similarly
the higher cohomology groups H¥(M) are defined by simply replacing line
integrals with their higher-dimensional analogues, the k-volume integrals.
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The Grassmann calculus of exterior differential forms facilitates these exten-
sions quite magically. Moreover, the differential equations characterizing
the locally constant k-integrals are seen to be C* invariants and so extend
naturally to the class of C* manifolds.

Chapter I starts with a rapid account of this whole development, as-
suming little more than the standard notions of advanced calculus, linear
algebra and general topology. A nodding acquaintance with singular hom-
ology or cohomology helps, but is not necessary. No real familiarity with
differential geometry or manifold theory is required. After all, the concept of
a manifold is really a very natural and simple extension of the calculus of
several variables, as our fathers well knew. Thus for us a manifold is essen-
tially a space constructed from open sets in R" by patching them together in
a smooth way. This point of view goes hand in hand with the “com-
putability” of the de Rham theory. Indeed, the decisive difference between
the m,’s and the H®s in this regard is that if a manifold X is the union of
-two open submanifolds U and V':

X=UuY,

then the cohomology groups of U, V, U n V, and X are linked by a much
stronger relation than the homotopy groups are. The linkage is expressed
by the exactness of the following sequence of linear maps, the Mayer-
Vietoris sequence:

k+1 —
- H*Y(X) -

HYX)— HYU)@® HYV) — HU n V)-)
C -

— H*"Y(U n V)j
0— HY(X)— -

starting with k = 0 and extending up indefinitely. In this sequence every
arrow stands for a linear map of the vector spaces and exactness asserts
that the kernel of each map is precisely the image of the preceding one. The
horizontal arrows in our diagram are the more or less obvious ones induced
by restriction of functions, but the coboundary operator d* is more subtle
and uses the existence of a partition of unity subordinate to the cover
{U, V} of X, that is, smooth functions py and p, such that the first has
support in U, the second has support in ¥, and py + py =1 on X. The
simplest relation imaginable between the H*s of U, V,and U u V would of
course be that H* behaves additively; the Mayer-Vietoris sequence teaches
“us that this is indeed the case if U and V are disjoint. Otherwise, there is a
geometric feedback from HXU n V) described by d*, and one of the hall-
marks of a topologist is a sound intuition for this d*.

The exactness of the Mayer—Vietoris sequence is our first goal once the
basics of the de Rham theory are developed. Thereafter we establish the
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second essential property for the computability of the theory, namely that
for a smoothly contractible manifold M,

R for k=0,
0 for k>0
This homotopy invariance of the de Rham theory can again be thought of as

having evolved from the fundamental theorem of calculus. Indeed, the for-
mula

HYM) = {

f(x) dx=dJ.xf(u) du
)

shows that every line integral (I-form) on R! is a gradient, whence
H'(R') = 0. The homotopy invariance is thus established for the real line.
This argument also paves the way for the general case.

The two properties that we have just described constitute a verification
of the Eilenberg—Steenrod axioms for the de Rham theory in the present
context. Combined with a little geometry, they can be used in a standard
manner to compute the cohomology of simple manifolds. Thus, for spheres
one finds ’

R for k=0 or n
0 otherwise,

HYS") = {

while for a Riemann surface X, with g holes,

R for k=0 or 2
HYX )= R for k=1
0 otherwise.

A more systematic treatment in Chapter II leads to the computability’
proper of the de Rham theory in the following sense. By a finite good cover
of M we mean a covering U = {U,}Y_, of M by a finite number of open sets
such that all intersections U,, n --- n U,, are either vacuous or contract-
ible. The purely combinatorial data that specify for each subset
{ay, ..., 0} of {1, ..., N} which of these two alternatives holds are called
the incidence data of the cover. The computability of the theory is the
assertion that it can be computed purely from such incidence data. Along
lines established in a remarkable paper by Andre Weil [1], we show this to
be the case for the de Rham theory. Weil’s point of view constitutes an
alternate approach to the sheaf theory of Leray and was influential in
Cartan’s theorie des carapaces. The beauty of his argument is that it can be
read both ways: either to prove the computability of de Rham or to prove
the topological invariance of the combinatorial prescription.

To digress for a moment, it is difficult not to speculate about what kept
Poincaré from discovering this argument forty years earlier. One has the
feeling that he already knew every step along the way. After all, the homo-
topy invariance of the de Rham theory for R" is known as the Poincaré
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lemma! Nevertheless, he veered sharply from this point of view, thinking
predominantly in terms of triangulations, and so he in fact was never able
to prove either the computability of de Rham or the invariance of the
combinatorial definition. Quite possibly the explanation is that the whole
C* point of view and, in particular, the partitions of unity were alien to him
and his contemporaries, steeped as they were in real or complex analytic
questions.

De Rham was of course the first to prove the topological invariance of
the theory that now bears his name. He showed that it was isomorphic to
the singular cohomology, which is trivially—i.e., by definition—topologically
invariant. On the other hand, André Weil’s approach relates the de Rham
theory to the Cech theory, which is again topologically invariant.

But to return to the plan of our book, the bulk of Chapter I is actually
devoted to explaining the fundamental symmetry in the cohomology of a
compact oriented manifold. In its most primitive form this symmetry asserts
that

dim HY(M) = dim H"*~9(M).

Poincaré seems to have immediately realized this consequence of the locally
Euclidean nature of a manifold. He saw it in terms of dual subdivisions,
which turn the incidence relations upside down. In the de Rham theory the
duality derives from the intrinsic pairing between differential forms of arbi-
trary and compact support. Indeed consider the de Rham theory of R' with
compactly supported forms. Clearly the only locally constant function with
compact support on R! is the zero function. As for 1-forms, not every
1-form gdx is now a gradient of a compactly supported function f; this
happens if and only if [®_gdx=0. Thus we see that the compactly
supported de Rham theory of R! is given by

0 fork=0
R fork=1,

and is just the de Rham theory “upside down.” This phenomenbn now
extends inductively to R” and is finally propagated via the Mayer-Vietoris
sequence to the cohomology of any compact oriented manifold.

One virtue of the d@ Rham theory is that the essential mechanism of this
duality is via the familiar operation of integration, coupled with the natural
ring structure of the theory: a p-form 6 can be multiplied by a g-form ¢ to
produce a (p + g)-form 6 A ¢. This multiplication is “commutative in the
graded sense”: :

H R = {

OAG = (—1)MpAb.

(By the way, the commutativity of the de Rham theory is another reason
why it is more “perfect” than its other more general brethren, which
become commutative only on the cohomology level.) In particular, if ¢ has
compact support and is of dimension n — p, where n = dim M, then inte-
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gration over M gives rise to a pairing
©, ¢)— J OA ¢,
M

which descends to cohomology and induces a pairing
H?(M) ® H:"°(M)— R.

A more sophisticated version of Poincaré duality is then simply that the
pairing above is dual; that is, it establishes the two spaces as duals of each
other.

Although we return to Poincaré duality over and over again throughout
the book, we have not attempted to give an exhaustive treatment. (There is,
for instance, no mention of Alexander duality or other phenomena dealing
with relative, rather than absolute, theory.) Instead, we chose to spend
much time bringing Poincaré duality to life by explicitly constructing the
Poincaré dual of a submanifold N in M. The problem is the following.
Suppose dim N =k and dim M = n, both being compact oriented. Inte-
gration of a k-form w on M over N then defines a linear functional from
HYM) to R, and so, by Poincaré duality, must be represented by a coho-
mology class in H" %(M). The question is now: how is one to construct a
representative of this Poincaré dual for N, and can such a representative be
made to have support arbitrarily close to N?

When N reduces to a point p in M, this question is easily answered. The
dual of p is represented by any n-form  with supportin the component M,
of p and with total mass 1, that is, with

j =1
MP

Note also that such an w can be found with support in an arbitrarily small
neighborhood of p, by simply choosing coordinates on M -centered at p, say
Xy, ..., X,, and setting

o = Ax)dx, ... dx

with 1 a bump function of mass 1. (In the limit, thinking of Dirac’s é-func-
tion as the Poincaré dual of p leads us to de Rham’s theory of currents.)

When the point p is replaced by a more general submanifold N, it is easy
to extend this argument, provided N has a product neighborhood D(N) in M
in the sense that D(N) is diffeomorphic to the product N x D"~* where
D" * is a disk of the dimension igdicated. However, this need not be the
case! Just think of the center circle in a MGbius band. Its neighborhoods
are at best smaller M6bius bands.

In the process of constructing the Poincaré dual we are thus confronted
by the preliminary question of how to measure the possible twistings of
neighborhoods of N in M and to correct for the twist. This is a subject in its
own right nowadays, but was initiated by H. Whitney and H. Hopf in just
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the present context during the Thirties and Forties. Its trade name is fiber
bundle theory and the cohomological measurements of the global twist in
such “local products” as D(N) are referred to as characteristic classes. In the
last forty years the theory of characteristic classes has grown to such an
extent that we cannot do it justice in our book. Still, we hope to have
covered it sufficiently so that the reader will be able to see its ramifications
in both differential geometry and topology. We also hope that our account
could serve as a good introduction to the connection between characteristic
classes and the global aspects of the gauge theories of modern physics.

That a connection between the equations of mathematical physics and
topology might exist is not too surprising in view of the classical theory of
electncnty Indeed, in a vacuum the electromagnetic field is represented by a
2-form in the (x, y, z, t)-space:

=(E,dx+E,dy+E,dz)dt + H.dydz — H,dx dz + H, dx dy,

and the form w is locally constant in our sense, i.e., do = 0. Relative to the
Lorentz metric in R* the star of w is defined to be

*w=—(H,dx + H,dy + H, dz)dt + E, dy dz — E, dx dz + E, dx dz,

and Maxwell’s equations simply assert that both w and its star are closed:
dw =0 and dsw = 0. In particular, the cohomology class of sw is a well
defined object and is often of physical interest.

To take the simplest example, consider the Coulomb potential of a point
charge g at rest in the origin of our coordinate system. The field w gener-
ated by this charge then has the description

=—qd(}-dt)

with r = (x2 + y? + z2)"2 #£ 0. Thus w is defined on R* — R,, where R,
denotes the t-axis. The de Rham cohomology of this set is easily computed
to be

R fork=0,2

k(mé R =
HR ) {0 otherwise.

The form w is manifestly cohomologically uninteresting, since it is d of a
1-form and so is trivially “closed”, i.e., locally constant. On the other hand
the = of w is given by

_ 9 xdydz—ydxdz+zdxdy
“an r

which turns out to generate H2. The cohomology class of *w can thus be
interpreted as the charge of our source.

In seeking differential equations for more sophisticated phenomena than
electricity, the modern physicists were led to equations (the Yang-Mills)
which fit perfectly into the framework of characteristic classes as developed
by such masters as Pontrjagin and Chern during the Forties.
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Having sung the praises of the de Rham theory, it is now time to admit
its limitations. The trouble with it, is that it only tells part of the cohomol-
ogy story and from the point of view of the homotopy theorists, only the
simplest part. The de Rham theory ignores torsion phenomena. To explain
this in a little more detail, recall that the homotopy groups do not behave
well under the union operation. However, they behave very well under
Cartesian products. Indeed, as is quite easily shown,

7(X x ¥) = 1(X) ® ().

More generally, consider the situation of a fiber bundle (twisted product).
Here we are dealing with a space E mapped onto ‘a space X with the
fibers—i.e., the inverse images of points —all homeomorphic in some uni-
form sense to a fixed space Y. For fiber bundles, the additivity of =, is
stretched into an infinite exact sequence of Mayer-Vietoris type, however
now going in the opposite direction:

i ”q(Y)-" nq(E)_' nq(x)_' nq—l(Y)—’ T

This phenomenon is of course fundamental in studying the twist we talked
about earlier, but it also led the homotopy theorists to the conjecture that
in their much more flexible homotopy category, where objects are con-
sidered equal if they can be deformed into each other, every space factors
into a twisted product of irreducible prime factors. This turns out to be true
and is called the Postnikov decomposition of the space. Furthermore, the
“prime spaces” in this context all have nontrivial homotopy groups in only
one dimension. Now in the homotopy category such a prime space, say with
nontrivial homotopy group = in dimension n, is determined uniquely by =
and n and is denoted K(r, n). These K(n, n)-spaces of Eilenberg and Mac-
Lane therefore play an absolutely fundamental role in homotopy theory.
They behave well under the standard group operations. In particular, corre-
sponding to the usual decomposition of a finitely generated Abelian group:

n= (@n(p)) &) y i
> .

into p-primary parts and a free part (said to correspond to the prime at
infinity), the K(=, n) will factor into a product

K(r, n) = (n K(x®, n)) - K(Z, ny.
P

It follows that in homotopy theory, just as in many questions of number
theory, one can work one prime at a time. In this framework it is now quite
easy to explain the shortcomings of the de Rham theory: the theory is
sensitive only to the prime at infinity!

After having encountered the Cech theory in Chapter II, we make in
Chapter III the now hopefully easy transition to cohomology with coeffi-
cients in an arbitrary Abelian group. This theory, say with coefficients in the



10 Introduction

integers, is then sensitive to all the p-primary phenomena in homotopy
theory.

The development sketched here is discussed in greater detail in Chapter
III, where we also apply the ideas to the computation of some relatively
simple homotopy groups. All these computations in the final analysis derive
from Serre’s brilliant idea of applying the spectral sequence of Leray to
homotopy problems and from his coining of a sufficiently general definition
of a twisted product, so that, as the reader will see, the Postnikov decompo-
sition in the form we described it, is a relatively simple matter. It remains
therefore only to say a few words to the uninitiated about what this “spec-
tral sequence” is.

We remarked earlier that homotopy behaves additively under products.
On the other hand, cohomology does not. In fact, neglecting matters of
torsion, i.e., reverting to the de Rham theory, one has the Kiinneth formula:

HX xY)= Y H?X) @ HY(Y).
p+a=k

The next question is of course how cohomology behaves for twisted prod-
ucts. It is here that Leray discovered some a priori bounds on the extent
and manner in which the Kiinneth formula can fail due to a twist. For
instance, one of the corollaries of his spectral sequence is that if X and Y
have vanishing cohomology in positive dimensions less than p and g re-
spectively, then however one twists X with Y, the Kiinneth formula will
hold up to dimension d < min(p, q).

Armed with this sort of information, one can first of all compute the
early part of the cohomology of the K(r, n) inductively, and then deduce
which K(r, n) must occur in a Postnikov decomposition of X by comparing
the cohomology on both sides. This procedure is of course at best ad hoc,
and therefore gives us only fragmentary results. Still, the method points in
the right direction and can be codified to prove the computability (in the
“logical sense) of any particular homotopy group, of a sphere, say. This
theorem is due to E. Brown in full generality. Unfortunately, however, it is
not directly applicable to explicit calculations—even ‘with large computing
machines. .

So far this introduction has been written with a lay audience in mind.
We hope that what they have read has made sense and has whetted their
appetites. For the more expert, the following summary of the plan of our
book might be helpful.

In Chapter I we bring out from scratch Poincaré duality and its various
extensions, such as the Thom isomorphism, all in the de Rham category.
Along the way all the axioms of a cohomology theory are encountered, but
at first treated only in our restricted context.

In Chapter II we introduce the techniques of spectral sequences as an
extension of the Mayer—Vietoris principle and so are led to A. Weil’s
Cech—-de Rham theory. This theory is later used as a bridge to cohomology
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in general and to integer cohomology in particular. We spend considerable
time patching together the Euler class of a sphere bundle and exploring its
relation to Poincaré duality. We also very briefly present the sheaf-theoretic
proof of this duality.

In Chapter III we come to grips with spectral sequences in a more
formal manner and describe some of their applications to homotopy theory,
for example, to the computation of n5(S). This chapter is less self-contained
than the others and is meant essentially as an introduction to homotopy
theory proper. In the same spirit we close with a short account of Sullivan’s
rational homotopy theory.

Finally, in Chapter IV we use the Grothendieck approach towards char-
acteristic classes to give a more or less self-contained treatment of Chern
and Pontrjagin classes. We then relate them to the cohomology of the
infinite Grassmannian. '

Unfortunately there was no time left within the scope of our book to
explain the functorial approach to classifying spaces in general and to make
the connection with the Eilenberg-MacLane spaces. We had to relegate this
material, which is most naturally explained in the framework of semi-
simplicial theory, to a mythical second volume. The novice should also be
warned that there-are all too many other topics which we have not men-
tioned. These include generalized cohomology theories, cohomology oper-
ations, and the Adams and Eilenberg-Moore spectral sequences. Alas, there
is also no mention of the truly geometric achievements of modern topology,
that is, handlebody theory, surgery theory, and the structure theory of
differentiable and piecewise linear manifolds. Still, we hope that our volume
serves as an introduction to all this as well as to such topics in analysis as
Hodge theory and the Atiyah—Singer index theorems for elliptic differenital
operators.






CHAPTER I
de Rham Theory

§1 The de Rham Complex on R"

To start things off we define in this section the de Rham cohomology and
compute a few examples. This will turn out to be the most important
diffeomorphism invariant of a manifold. So let x,, ..., x, be the linear
coordinates on R". We define Q* to be the algebra over R generated by
dx,, ..., dx, with the relations

{(dxi)z =0
dx,- dx, = —dxj dxi, i #j.
As a vector space over R, Q* has basis

1,dx;, dx;dx;, dx;dx;dx, ..., dx, ... dx,.
i<j i<j<k

The C* differential forms on R" are elements of
Q*[R") = {C™ functions on R"} ® Q*.
< R

Thus, if w is such a form, then w can be uniquely written as ) f;, ... i
dx,, ... dx, where the coefficients f;, ..., are C* functions. We also write
o =Y f;dx,. The algebra Q*R") = @ )., QYR" is naturally graded,
where Q%R" consists of the C* g-forms on R". There is a differential
operator

d: QR") — Q** (R,
defined as follows:

i) if f € Q%R"), then df = z 0f]0x; dx;
ii)if o = Y f; dx;, thendw = Y df; dx;.

13
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ExampLE 1.1. If o = x dy, then dw = dx dy.

This d, called the exterior diﬁ'erentiaiion, is the ultimate abstract exten-
sion of the usual gradient, curl, and divergence of vector calculus on R?, as
the example below partially illustrates.

ExAMPLE 1.2. On R?, Q°(R?) and Q3(R?) are each 1-dimensional and Q!(R?)
and Q%(R3) are each 3-dimensional over the C* functions, so the following
identifications are possible:

{functions} =~ {0-forms} =~ {3-forms}
- f e« fdxdyd:z
and

{vector fields} ~ {1-forms} ~ {2-forms}

X=(ufi.)eofidx+f,dy+fidzes f, dy dz — f, dx dz + f; dx dy.
On functions,

o

afd +6f
0z

Ix 3 dz.

df = dy + =

On 1-forms,
d(fy dx + f, dy + f3 d2)

ofy 3!:) _
( ay o dy dz

d(fldydz—fzdxdz+f3dxdy) (af‘ af; aafz’)d dy dz.

oy Ofs ofy of
(az 6>d d+(a y)dxdy.

On 2-forms,

In summary,
d(0-forms) = gradient,
d(1-forms) = curl,
d(2-forms) = divergence.

The wedge product of two differential forms, written tAw or 7 - o, is
defined as follows: if 7 = Y. f; dx; and w = Y g, dx;, then

tAw =Y fig,dx; dx;.
Note that T A = (—1)!st 489 A 7.

Proposition 1.3. d is an antiderivation, i.e.,
dit - @) = (dt) - @ +(—=1)*" 1 - do.
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PRroOF. By linearity it suffices to check on monomials
T =frdx;, o =g, dx;.
d(t - w) = d(f19,) dx; dx; = (df))g; dx; dx; + f; dg; dx; dx,
=(d7): o+ (—1)*¥ 1 - do.
On the level of functions d(fg) = (df)g + f(dg) is simply the ordinary prod-
uct rule. O
Proposition 1.4. d2 = 0.

Proor. This is basically a corvl'sequence of the fact that the mixed partials
are equal. On functions,

d*f = d(z i dx,-> =y il dx; dx;.

i axi i j an 3x,-

Here the factors 0%f/0x;0x; are symmetric in i, j while dx; dx; are skew-
symmetric in i, j; hence df = 0. On forms w = f; dx,,

d*w = d*(f; dx;) = d(df; dx;)) = 0

by the previous computation and the antiderivation property of d. ]

The complex Q*(R") together with the differential operator d is called the
de Rham complex on R". The kernel of d are the closed forms and the image
of d, the exact forms. The de Rham complex may be viewed as a God-given
set of differential equations, whose solutions are the closed forms. For
instance, finding a closed 1-form fdx + g dy on R? is tantamount to solving
the differential equation dg/dx — df/dy = 0. By Proposition 1.4 the exact
forms are automatically closed; these are the trivial or “uninteresting”
solutions. A measure of the size of the space of “interesting” solutions is the
definition of the de Rham cohomology.

Definition. The g-th de Rham cohomology of R"is the vector space
H3x(R") = {closed g-forms}/{exact g-forms}.

We sometimes suppress the subscript DR and write H(R"). If there is a need
to distinguish between a form w and its cohomology class, we denote the
latter by [w].

Note that all the definitions so far work equally well for any open subset
U of R*; for instance,

Q*U) = {C* functions on U} ® Q*.
R

So we may also speak of the de Rham cohomology H3,(U) of U.
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EXAMPLES 1.5.
@n=0
R g=0
1=
H {0 q>0.
bn=1
Since (ker d) N Q°(R?) are the constant functions,
HR') =R.

On Q!(R!), ker d are all the 1-forms.
If = g(x)dx is a 1-form, then by taking

f= f o) du,
0,

we find that
df = g(x) dx.
Therefore every 1-form oh R! is exact and
H'RY) =0.
(c) Let U be a disjoint union of m open intervals on R'.
Then
H(U)=R"
and
H'(U)=0.
(d) In general
R in dimension 0,
H®) = {0 otherwise.

This result is called the Poincaré lemma and will be proved in Section 4.

The de Rham complex is an example of a differential complex. For the
convenience of the reader we recall here some basic definitions and results
on differential complexes. A direct sum of vector spaces C = @ ;7 C? in-
dexed by the integers is called a differential complex if there are homomor-
phisms g

d d

cit ol citt —,...

such that d = 0. d is the differential operator of the complex C. The coho-
mology of C is the direct sum of vector spaces H(C) = @ ,.; HYC), where

HY(C) = (ker d A CY/(im d n C9).
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A map f: A— B between two differential complexes is a chain map if it
commutes with the differential operatorsof A and B : fd, = dp f.
A sequence of vector spaces

Ji-1 Ji
Vi Vitr

»Viea
is said to be exact if for all i the kernel of f; is equal to the image of its
predecessor f;_,. An exact sequence of the form

0 A B o 0

is called a short exact sequence. Given a short exact sequence of differential
complexes

0—Ad-L.p"*

C 0

in which the maps f and g are chain maps, there is a long exact sequence of
cohomology groups

C H"“(A)—»"'

d*

C H(4) —Z HY(B) —<— HY(C) D)

In this sequence f* and g* are the naturally induced maps and d*[c],
¢ € C1, is obtained as follows:

0 — A9*1 J, Bi+! 4 oLkt 0

; 4 d

00— AT —_ B:' —_ ct —0

|

By the surjectivity of g there is an element b in B? such that g(b) = c.
Because g(db) = d(gb) = dc =0, db = f(a) for some a in A***. This a is
easily checked to be closed. d*[c] is defined to be the cohomology class [a]
in H**'(4). A simple diagram-chasing shows that this definition of d* is
independent of the choices made.

Exercise. Show that the long exact sequencé of cohomology groups exists
and is exact. (See, for instance, Munkres [2, §24].)

Compact Supports

N\

A slight modificatiorr of the construction of the preceding section will give
us another diffeomorphism invariant of a ‘manifold. For now we again
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restrict our attention to R”. Recall that the support of a continuous
function f on a topological space X is the closure of the set on which f is
not zero, i.e, Suppf={p€ X|f(p)+#0}. If in the definition of the
de Rham complex we use only the C* functions with compact support, the

resulting complex is called the de Rham complex Q*(R") with compact
supports:

Q*R") = {C> functions on R" with compact support} ® Q*.
R
The cohomology of this complex is denoted by H*(R").

EXAMPLE 1.6.

R  in dimension O
* i = '
(a) HZ(point) {0 elsewhere.

(b) The compact cohomology of R'. Again the closed O-forms are the
constant functions. Since there are no constant functions on R! with com-
pact support,

HRY) = 0.

To compute H:(R?), consider the integration map

'[ : Q(R") —R!.
Rl

This map is clearly surjective. It vanishes on the exact 1-forms df where f
has compact support, for if the support of flies in the interior of [a,b], then

LA _
J;l dxdx_J; dxdx-f(b)—f(a)—O.

If g(x) dx € Q}(R!) is in the kernel of the integration map, then the function

£l = j " () du

- ®

will have compact support and df = g(x) dx. Hence the kernel of [z, are
precisely the exact forms and

AR _ o

YRl — -
HIRY) = 25 =R

REMARK. If g(x) dx € Q}(R') does not have total integral 0, then

) = j " glu) du

- ®

will not have compact support and g(x) dx will not be exact.



§2 The Mayer-Vietoris Sequence 19

(c) More generally,

R in dimension n
0 otherwise.

HXR") = {

This result is the Poincaré lemma for cohomology with compact support and
will be proved in Section 4.

Exercise 1.7. Compute H%z(R? — P — Q) where P and Q are two points in
RZ. Find the closed forms that represent the cohomology classes.

§2 The Mayer-Vietoris Sequence

In this section we extend the definition of the de Rham cohomology from
R” to any differentiable manifold and introduce a basic technique for com-
puting the de Rham cohomology, the Mayer-Vietoris sequence. But first we
have to discuss the functorial nature of the de Rham complex.

The Functor Q*

Let x,, ..., x, and y,, ..., y, be the standard coordinates on R™ and R"
respectively. A smooth map f: R™ — R” induces a pullback map on C*
functions f* : Q°(R") — QR™) via

'@ =g-f
We would like to extend this pullback map to all forms f*: Q*R") —

Q*(R™) in such a way that it commutes with d. The commutativity with d
defines f* uniquely:

f‘(Z gr dy;, ... dy,) = Z(GI of) df, ... dfi.9

where f; = y; o f is the i-th component of the function f.

Proposition 2.1. With the above definition of the pullback map f* on forms, f*
commutes with d.

PRrOOF. The proof is essentially an application of the chain rule.
df*(g, d}’i, d,Vi,,) =d((gr° f) dﬁl dﬂ,) =d(g;o f) df;l dﬁ,-

% 0
frdlgrdy, ...dy) = £*( ¥ S dydy,, .. dy,
! =1 0y

» ((d
T & ((;y—:of) dﬁ) oy ‘

=d(g,of)d_fh...df,.. a
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Let x,,..., x, be the standard coordinate system and u,, ... u, a new
coordinate system on R" i.e., there is a diffeomorphism f : R* — R" such
that u; = x; o f = f*(x;). By the chain rule, if g is a smooth function on R",
then

dg

9 -5, v
;auidul—gau(ax‘,dx'l_;aXder

So dg is independent of the coordinate system.

Exercise 2.1.1. More generally show that if o =Y. g, du;, thendw =Y, dg,
du, .

Thus the exterior derivative d is independent of the coordinate system on
R"

Recall that a category consists of a class of objects and for any two
objects 4 and B, a set Hom(A4, B) of morphisms from A to B, satisfying the
following properties. If f is a morphism from A to B and g a morphism from
B to C, then the composite morphism g o f from A to C is defined; fur-
thermore, the composition operation is required to be associative and to
have an identity 1, in Hom(A4, A) for every object 4. The class of all groups
together with the group homomorphisms is an example of a category.

A covariant functor F from a category X to a category % associates to
every object 4 in X" an object F(A4) in £, and every morphism f: A — Bin
X" a morphism F(f): F(4) — F(B) in & such that F preserves composition
and the identity:

F(g - f) = F(g) ° F(f)
F(IA) = 1?(4)-

If F reverses the arrows, i.e., F(f) : F(B)— F(A), it is said to be a contra-
variant functor.

In this fancier language the discussion above may be summarized as
follows: Q* is a contravariant functor from the category of Euclidean spaces
{R"},ez and smooth maps: R™ — R" tb the category of commutative differ-
ential graded algebras and their homomorphisms. It is the unique such functor
that is the pullback of functions on Q%R"). Here the commutativity of the
graded algebra refers to the fact that

1w = (—1)tsrdese gpp,

The functor Q* may be extended to the category of differentiable mani-
folds. For the fundamentals of manifold theory we recommend de Rham
[1, Chap. I]. Recall that a differentiable structure on a manifold is given by
an atlas, ie., an open cover {U,},.4 of M in which each open set U, is
homeomorphic to R" via a homeomorphism ¢, : U, = R”, and on the
overlaps U, n U, the transition functions

Gap = Pa° 05 1 Pg(U, N Up) = ¢,(U, N Up)
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are diffeomorphisms of open subsets of R"; furthermore, the atlas is re-
quired to be maximal with respect to inclusions. All manifolds will be
assumed to be Hausdorff and to have a countable basis. The collection
{(U,, ¢}aca is called a coordinate open cover of M and ¢, is the triv-
ialization of U,. Let u,, ..., u, be the standard coordinates on R". We can
write ¢, = (xy, ..., X,), where x; = u; o ¢, are a coordinate system on U,. A
function f on U, is differentiable if fo ¢! is a differentiable function on
R". If f is a differentiable function on U,, the partial derivative df/dx; is
defined to be the i-th partial of the pullback function fo ¢; ' on R":

of 3(f ¢. g

0x;

) = (CX12)8

The tangent space to M at p, written ’I}M, is the vector space over R
spanned by the operators d/dx,(p), ..., d/dx,(p), and a smooth vector field
on U, is a linear combination X, =Y f; 8/0x, where the f’s are smooth
functions on U,. Relative to another coordinate system (y,, ..., y,), X, =
Y. g; 0/0y; where 9/0x, and 9/dy; satisfy the chain rule:

0 o9
ax; axi 6y1 ’

A C™ vector field on M may be viewed as a collection of vector fields X, on
U, which agree on the overlaps U, n U,.

A differential form w on M is a collection of forms wy for U in the atlas
defining M, which are compatible in the following sense: if i and j are the

inclusions ‘

UnV U

J
14

then i*wy = j*wy in Q%U N V). By the functoriality of Q*, the exterior
derivative and the wedge product extend to differential forms on a mani-
fold. Just as for R* a smooth map of differentiable manifolds f: M — N
induces in a natural way a pullback map on forms f* : Q*(N) — Q*(M). In
this way Q* becomes a contravariant functor on the category of differ-
entiable manifolds.

A partition of unity on a manifold M is a collection of non-negative C®
functions {p,}, < such that

(a) Every point has a neighborhood in which Zp, is a finite sum.

(b) Zp, = L.
The basic technical tool in the theory of differentiable manifolds is the
existence of a partition of unity. This result assumes two forms:

(1) Given an open cover {U,},; of M, there is a partition of unity {p,},¢;
such that the support of p, is contained in U,. We say in this case that
{p.} is a partition of unity subordinate to the open cover {U,}.
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(2) Given an open cover {U,},; of M, there is a partition of unity {p,},s s
with compact support, but possibly with an index set J different from I,
such that the support of p; is contained in some U,.

For a proof see Warner [1, p. 10] or de Rham [1, p. 3].

Note that in (1) the support of p, is not assumed to be compact and the
index set of {p,} is the same as that of {U,}, while in (2) the reverse is true.
We usually cannot demand simultaneously compact support and the same
index set on a noncompact manifold M. For example, consider the open
cover of R consisting of precisely one open set, namely R! itself. This open
cover clearly does not have a partition of unity with compact support
subordinate to it.

The Mayer-Vietoris Sequence

The Mayer-Vietoris sequence allows one to compute the cohomology of the
union of two open sets. Suppose M = U u V with U, V open. Then there is
a sequence of inclusions

%0
M—UllveUAnV
L
where ULV is the disjoint union of U and V and 8, and @, are the
inclusions of U n V in V and in U respectively. Applying the contravariant
functor Q*, we get a sequence of restrictions of forms

L
QM) - Q*U)@ Q% (V) 3 QXU n V),
of
where by the restriction of a form to a submanifold we mean its image
under the pullback map induced by the inclusion. By taking the difference

of the last two maps, we obtain the Mayer-Vietoris sequence

(2.2) 0—Q*M) - Q¥ U)d Q%(V) —= Q% (U n V)—0
(w0, 7) - T—

Proposition 2.3. The Mayer-Vietoris sequence is exact.

ProoF. The exactness is clear except at the last step. We first consider the
case of functions on M = R!. Let f be a C* function on U n V as shown in
Figure 2.1. We must write f as the difference of a function on U and a
function on V. Let {py, py} be a partition of unity subordinate to the open
cover {U, V}. Note that p, f is a function on U—to get a function on an
open set we must multiply by the partition function of the other open set.
Since

o f)—(=pv N=1,

~
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f
L \
X T
Py
N\
U 7
. Py

¢ A
\ v

Figure 2.1

we see that QO(U)@QO(V) —» Q°R!) is surjective. For a general mani-
fold M, if w € QYU n V), then (—p, w, pyw) in QYU) @ Q% V) maps onto
w. O

The Mayer-Vietoris sequence
0-Q*M) - Q* U)o Q*(V) - QU N V)—> 0

induces a long exact sequence in cohomology, also called a Mayer-Vietoris
sequence:

.

C_‘H‘HI(M)—’ H“'l(U)@H'*l(V)—» Hq+l(U A V)J

(2.4) - a )
C'H“(M) - HYWU)@H(Y) — HYUAV)

We recall again the definition of the coboundary operator d* in this explicit
instance. The short exact sequence gives rise to a diagram with exact rows

T i i
0— QUYM) - QY U)@QTHY) — QU U A V) — 0
d1 dt at
0> QM) — QUOAY) — QUAV) —0
w w
§ w dw =0

Let w € QU n V) be a closed form. By the exactness of the rows, there is
a & e QYU) @ QYV) which maps to w, namely, & = (—py w, pyw). By the
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commutativity of the diagram and the fact that dw =0, d¢ goes to O in
QYU A V), ie., —d(py w) and d(py w) agree on the overlap U N V. Hence
d¢ is the image of an element in Q% !(M). This element is easily seen to be
closed and represents d*[w]. As remarked earlier, it can be shown that
d*[w] is independent of the choices in this construction. Explicitly we see
that the coboundary operator is given by .

[—dlpyw)] on U
[d(pyw)] on V.

We define the support of a form w on a manifold M to be Supp w

={peM|w(p)+0)}. Note that in the Mayer—Vnetons sequence d*w €
H*(M) has supportin UN V.

ExaMPLE 2.6 (The cohomology of the circle). Cover the circle with two
open sets U and V as shown in Figure 2.2. The Mayer-Vietoris sequence
gives

2.9 d*[w] = {

St ullv UnV
H* 0 0 0
cH _ 0 — 0
d‘
H° — ROR — R@R—)

The difference map 6 sends (w,17) to (t1—w,T—w), so imJ is 1-
dimensional. It follows that ker J is also 1-dimensional. Therefore,

HSY) =ker6 =R
H'(S') = coker 6 = R.

We now find an explicit representative for the generator of H'(S'). If
a € Q%U n V)is a closed 0-form which is not the image under § of a closed
form in Q°(U) @ Q°(V), then d*a will represent a generator of H'(S'). As a
we may take the function which is 1 on the upper piece of U n V and 0 on

Figure 2.2
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Figure 2.3

the lower piece (see Figure 2.3). Now « is the image of (—py a, pya). Since
—d(py a). and dpya agree on U N V, they represent a global form on S*;
this form is d*a. It is a bump 1-form with supportin U n V.

The Functor Q* and the Mayer-Vietoris Sequence for Compact
Supports

Again, before taking up the Mayer-Vietoris sequence for compactly sup-
ported cohomology, we need to discuss the functorial properties of Q¥(M),
the algebra of forms with compact support on the manifold M. In general
the pullback by a smooth map of a form with compact support need not
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have compact support; for example, consider the pullback of functions
under the projection M x R— M. So Q¥ is not a functor on the category of
manifolds and smooth maps. However if we consider not all smooth maps,
but only an appropriate subset of smooth maps, then Q* can be made into
a functor. There are two ways in which this can be done.

(a) QF is a contravariant functor under proper maps. (A map is proper if the
inverse image of every compact set is compact.)
(b) QF is a covariant functor under inclusions of open sets.

If j : U— M is the inclusion of the open subset U in the manifold M, then
ju 1QNU)— Q¥M) is the map which extends a form on U by zero to a
form on M.

It is the covariant nature of Q* which we shall exploit to prove Poincaré
duality for noncompact manifolds. So from now on we assume that QF
refers to the covariant functor in (b). There is also a Mayer-Vietoris se-
quence for this functor. As before, let M be covered by two open sets U and
V. The sequence of inclusions

_ M«UIveEUnY
gives rise to a sequence of forms with compact support

QM) QHU) @ V) i QU N V)

signed
inclusion

sum
( "'j.w, ];w) « (4]

Proposition 2.7. The Mayer-Vietoris sequence of forms with compact support
0— Q¥M)— QXU) D QXV)+— QXU n V)«—0
is exact.

Proor. This time exactness is easy to check at every step. We do it for the
last step. Let w be a form in Q*(M). Then w is the image of (py , py w) in
QXU)PQXV). The form pjw has compact support because Supp pyw
< Supp py N Supp w and by a lemma. from general topology, a closed
subset of a compact set in a Hausdorff space is compact. This shows the
surjectivity of the map Q*(U)PQ*(V)— Q¥*(M). Note that whereas in the
previous Mayer-Vietoris sequence we multiply by p, to get a form on U,
here py w is a form on U. a

Again the Mayer-Vietoris sequence gives rise to a long exact sequence in
cohomology:

Chz (M) — HI* ') @ HI* (V) — HE (U A V)

(2.8) C d,
H{M) — H{U)®H(Y) — HIUNYV) o
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——
\
U \ unv

'

Figure 2.4

ExaMPLE 2.9 (The cohomology with compact support of the circle). Of
course since S' is compact, the cohomology with compact support H*(S")
should be the same as the ordinary de Rham cohomology H*(S'). Nonethe-
less, as an illustration we will compute H*(S') from the Mayer-Vietoris
sequence for compact supports:

St ullv Unv
H? 0 0 —
m C —— ROR —— ROR —
O  — o 0

Here the map & sends @ = (w;, w;) € H(U N V) to (—(jy)a@, (v )0) €
H!(U) ® HL(V), where jy and j, are the inclusions of U N V in U and in V
respectively. Since im 4 is 1-dimensional,

HYSY) =kers =R
H!(S') = coker 6 = R.

§3 Orientation and Integration

Orientation and the Integral of a Differential Form

Let x,, ..., x, be the standard coordinates on R". Recall that the Riemann
integral of a differentiable function f with compact support is

J fldx, ...dx,| = lim Y fAx, ... Ax,.

R Axi—~0

We define the integral of an n-form with compact support w = fdx; ... dx,
to be the Riemann integral [q.f|dx, ... dx,|. Note that contrary to the
usual calculus notation we put an absolute value sign in the Riemann
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integral; this is to emphasize the distinction between the Riemann integral
of a function and the integral of a differential form. While the order of
Xi, ..., X, matters in a differential form, it does not in a Riemann integral; if
n is a permutation of {1, ..., n}, then

dexx(l) oo dX ) = (sgN 7) Jfldxx oo dx, |,

but

Jfldxn(l) v Xy | = Jf|dx1 coe dxy|.

In a situation where there is no possibility of confusion, we may revert to
the usual calculus notation.

So defined, the integral of an n-form on R" depends on the coordinates
Xy, ..., X,. From our point of view a change of coordinates is given by a
diffeomorphism T : R"— R” with coordinates y,, ..., y, and x, ..., x, re-
spectively:

X=X 0 TW1, ooy Vo) = Td¥1s oovs Ya)-

We now study how the integral o transforms under such diffeomor-
phisms.

Exercise 3.1. Show that dT,...dT,=J(T)dy,...dy,, where J(T)=
det(dx; /dy;) is the Jacobian determinant of T.

Hence,

J T‘w=J (foT)dTl...dn=J (f o TY(T)\dy, ... dy,|
R" R" R

relative to the coordinate system y,, ..., y,. On the other hand, by the
change of variables formula,

I w=J‘ f(xl,'...,x,,)ldxl...dx,,[=J (f o DI(D)l|dy;, ... dy,l
R" R" R" .

[romso

depending on whether the Jacobian determinant is positive or negative. In
general if T is a diffeomorphism of open subsets of R* and if the Jacobian
determinant J(T) is everywhere positive, then T is said to be orientation-
preserving. The integral on R" is not invariant under the whole group of

Thus
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diffeomorphisms of R", but only under the subgroup of orientation-
preserving diffeomorphisms.

Let M be a differentiable manifold with atlas {(U,, ¢,)}. We say that the
atlas is oriented if all the transition functions g, = ¢, ;"' are
orientation-preserving, and that the manifold is orientable if it has an orien-
ted atlas.

Proposition 3.2. A manifold M of dimension n is orientable if and only if it has
a global nowhere vanishing n-form.

PRrROOF. Observe that T : R" — R" is orientation-preserving if and only if
T* dx, ... dx,is a positive multiple of dx, ... dx, at every point.

(<) Suppose M has a global nowhere-vanishing n-form w. Let ¢,: U, =
R” be a coordinate map. Then ¢? dx, ... dx, = f,w where f, is a nowhere-
vanishing real-valued function on U,. Thus f, is either everywhere positive
or everywhere negative. In the latter case replace ¢, by ¢, = T o ¢,, where
T:R"—>R" is the orientation-reversing diffeomorphism T(x,, x,,..., x,,)
=(—Xx, X3,...,X,). Since Y%dx,...dx,=¢T*dx,...dx,=
—¢dx,...dx,=(—f,)w, we may assume f, to be positive for all a.
Hence, any transition function ¢z¢; ! : @,(U, n Up) = ¢4(U, N Up) will pull
dx, ... dx, to a positive multiple of itself. So {(U,, ¢,)} is an oriented atlas.

_ (=) Conversely, suppose M has an oriented atlas {(U,, ¢,)}. Then
(pgds 1)* (dx, ... dx,) = A dx, ... dx,

for some positive function 1. Thus

¢3 dx, ... dx, = (% IN¢? dx, ... dx,).

Denoting ¢¥ dx, ... dx, by w,, we see that w, = fw, where f=¢* A =40
¢, is a positive functlon onU, n U,.

Let w = Z p. W, Where p, is a partition of unity subordinate to the open
cover {U,}. At each point p in M, all the forms w,, if defined, are positive
multiples of one another. Since p, > 0 and not all p¢ can vanish at a point,
w is nowhere vanishing. a

Any two global nowhere vanishing n-forms w and w’ on an orientable
manifold M of dimension n differ by a nowhere vanishing function: w = fw'.
If M is connected, then fis either everywhere positive or everywhere nega-
tive. We say that w and o’ are equivalent if f is positive. Thus on a connec-
ted orientable manifold M the nowhere vanishing n-forms fall into two
equivalence classes. Either class is called an orientation on M, written [M].
For example, the standard orientation on R" is given by dx, ... dx,.

Now choose an orientation [M] on M. Given a top form t in Q(M), we

define its integral by
j: t=) I Pat
M) a Ju,



30 I de Rham Theory

where [y p,t means [g.(ds ')*(p,7) for some orientation-preserving triv-
ialization ¢, : U, = R"; as in Proposition 2.7, p,t has compact support.
By the orientability assumption, the integral over a coordinate patch fy, @
is well defined. With a fixed orientation on M understood, we will often
write [y, 7 instead of j(M]r. Reversing the orientation results in the negative
of the integral.

Proposition 3.3. The definition of the integral [yt is independent of the
oriented atlas {(U,, ¢,)} and the partition of unity {p,}.

ProOF. Let {V};} be another oriented atlas of M, and {y,} a partition of
unity subordinate to {¥;}. Since Y 5 x5 = 1,

) f!p,r =3 f’pamf-

a a, B JU

Now p, xz7 has support in U, n Vj, so

J. PaXpT =j PaXpT-
U, Vs

ZJP:T=ZJPaXpT=ZJXbT- a
a JU, a. B JVy B JVs

A manifold M of dimension n with boundary is given by an atlas {(U,, ¢,)}
where U, is homeomorphic to either R" or the upper half space
H" = {(xy, ..., X,)| x, = 0}. The boundary oM of M is an (n— 1)
dimensional manifold. An oriented atlas for M induces in a natural way an
oriented atlas for M. This is a consequence of the following lemma.

Therefore

Lemma 34. Let T: H" — H" be a diffeomorphism of the upper half space
with everywhere positive Jacobian determinant. T induces a map T of the
boundary of H" to itself. The induced map T, as a diffeomorphism of R""*,
also has positive Jacobian determinant everywhere.

PROOF. By the inverse functibn theorem an interior point of H” must be the
image of an interior point. Hence T maps the boundary to the boundary.
We will check that T has posmve Jacobian determinant for n = 2; the
general case is similar. .
Let T be given by

xy = Tyi(y1, ¥2)

x2 = Tyyy, y2)-
Then T is given by

Xy = Tl(yla 0)
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Figure 3.1
By assumption
oT, oT,
— (1,0 —— (0, 0
ayl yl ayz (Yl )
aT, aT, >0
2 2
— (1,0 — (1, 0
E 1, 0) 3y, (y1, 0)

Since 0 = Ty (y,, 0) for all y,, 8Ty/dy, (y,, 0) = 0; since T maps the upper
half plane to itself,

0T,

—(y1,0)>0.

ayz (YI )
Therefore

oT,
—(y;,0>0.
F (1, 0) O

Let the upper half space H"={x,>0} in R" be given the standard
orientation dx, ... dx,. Then the induced orientation on its boundary dH" =
{x, =0} is by definition the equivalence class of (—1)"dx;...dx,_, for
n>2 and —1 for n=1; the sign (—1)” is needed to make Stokes’ theorem
sign-free. In general for M an oriented manifold with boundary, we define
the induced orientation [0M] on dM by the following requirement: if ¢ is
an orientation-preserving diffeomorphism of some open set U in M into
the upper half space H”, then

¢*[0H"] = [oM] |40,
where dU = (M) n U (see Figure 3.1).
Stokes’ Theorem

A basic result in the theory of integration is

Theorem 3.5 (Stokes’ Theorem). If w is an (n — 1)-form with compact support
on an oriented manifold M of dimension n and if M is given the induced
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jdw:_[ (")
M oM

We first examine two special cases.

orientation, then

SpecIAL Cask 1 (R"). By the linearity of the integrand we may take w to be
fdx, ...dx,_,. Thendw = + df/dx, dx, ... dx,. By Fubini’s theorem,

J. do = iJ-(J 2j;dx,,)dx,...dx,,_,.
R* ) axn

But {2 8f/0x, dx,=f(xy, ..., Xpo1, ©) = f(X1, ...y Xp—y, — ©) =0 be-
cause f has compact support. Since R" has no boundary, this proves Stokes’
theorem for R". '

SPECIAL CASE 2 (The upper half plane). In this case (see Figure 3.2)
o =f(x, y) dx + g(x, y) dy

(-9, %
dw-( ay+a>dxdy.

and

Note that

J X dx dy = '[(_[ ggdx)dy de y) — g(—o, y) dy =0,
H’ -

since g has compact support. Therefore,

_ f _ -] Qaf
'["zdw— Hiaydxdy— .[ <.[ a}’ )

- J_ (f(x, ) = f(x, 0)) dx

J.w f(x,0)dx = I q7)
- o H?

Figure 3.2
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where the last equality holds because the restriction of g(x, y)dy to dH? is 0.
So Stokes’ theorem holds for the upper half plane.
The case of the upper half space in R" is entirely analogous.

Exercise 3.6. Prove Stokes’ theorem for the upper half space.

We now consider the general case of a manifold of dimension n. Let {U,}
be an oriented atlas for M and {p,} a partition of unity subordinate to
{U,}. Write =Y p, . Since Stokes’ theorem [y dw = [y @ is linear in o,
we need to prove it only for p,, which has the virtue that its support is
contained entirely in U, . Furthermore, p, @ has compact support because

Supp p,w < Supp p, N Supp

is a closed subset of a compact set. Since U, is diffecomorphic to either R" or
the upper half space H", by the computations above Stokes’ theorem holds
for U,. Consequently

Idp.w=f dp.w=f p.w=f Pa®.
M U, U, M

This concludes the proof of Stokes’ theorem in general.

§4 Poincare Lemmas

The Poincaré Lemma for de Rham Cohomology

In this section we compute the ordinary cohomology and the compactly
supported cohomology of R". Let n: R" x R' — R" be the projection on
the first factor and s : R" — R" x R' the zero section.

R" x R! Q*R" x RY)
o n(x, t)=x

SH"‘ s'( | s(x) = (x, 0)
R" Q*(R")

We will show that these maps induce inverse isomorphisms in cohomology
and therefore H*(R"*!) ~ H*(R"). As a matter of convention all maps are
assumed to be C* unless otherwise specified.

Since n o s =1, we have trivially s* o n* = 1. However s o n # 1 and
correspondingly n* o s* # 1 on the level of forms. For example, n* o s*
sends the function f(x, t) to f(x, 0), a function which is constant along every
fiber. To show that n* o s* is the identity in cohomology, it is enough to
find a map K on Q*R" x R') such that

1—n*os* = +(dK + Kd),
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for dK + Kd maps closed forms to exact forms and therefore induces zero
in cohomology. Such a K is called a homotopy operator; if it exists, we say
that n* o s* is chain homotopic to the identity. Note that the homotopy
operator K decreases the degree by 1.

Every form on R” x R is uniquely a linear combination of the following
two types of forms:

D) (n*@)f(x, 1),
() (n*@)Sf(x, 1) dt,

where ¢ is a form on the base R*. We define K : QYR" x R)—
Q" Y(R" x R) by

M (=*$)f(x, ) — 0,
(D) (*¢)f(x, 1) dt > (x*9) [ f.

Let's check that K is indeed a homotopy operator. We will use the
simplified notation df/dx dx for Y 9f/dx, dx,, and g for fg(x, t) dt. On forms
of type (I),

=(n*¢) - f(x,t), degw=gq,
(1 —n*s*)w = (n*¢) : f(x, t) — n*¢ - f(x, 0),

(dK — Kd)o = —Kdw = —K((dn‘¢)f+ (—=1)n*¢ ( A dx + = g dt))

= (— 1y J Y 1yl f(x, 1) — f(x, O).
Thus,
1 -n*s*o = (- l)q-l(dK — Kd)w.
On forms of type (II),
©=(*)fd, degw=g,
= (2 dg)f dt + (~ 1"\ (x*9) 22 of Laxat.

(1 — n*s*)w = w because s*(dt) = d(s*t) = d(0) =

Kdo = (n* dqb)J} + (= 1) Y(n*9) de {,

dKo = (x* d¢)I} 4 (—1)'-*(n'¢)[dx(J" g’-’) +f d:].
(1] o 0X

Thus
(K — Kdw =(—-1y¥"'a.
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In either case,
1 —7n*os*=(—10"Y(dK - Kd) on (R" x R).
This proves

Proposition 4.1. The maps H*(R" x R!) 2:.; H*(R" are isomorphisms.

By induction, we obtain the cohomology of R".

Corollary 4.1.1 (Poincaré Lemma).

R in dimension O

H*[R") = H*(point) = {o elsewhere.

Consider more generally

M x R!

n”s.

M

If {U,} is an atlas for M, then {U, x R'} is an atlas for M x R'. Again
every form on M x R! is a linear combination of the two types of forms (I)
and (II). We can define the homotopy operator K as before and the proof
carries over word for word to show that H*M x R') ~ H*M) is an iso-
morphism via #* and s*.

Corollary 4.1.2 (Homotopy Axiom for de Rham Cohomology). Homotopic
maps induce the same map in cohomology.

ProOF. Recall that a homotopy between two maps fand g from M to N is a
map F: M x R! - N such that

{F(x, )=f(x) for t>1
F(x,t)=g(x) for t<O.

Equivalently if s, and s, : M — M x R! are the O-section and 1-section
respectively, i.e., s,(x) = (x, 1), then

f=F°s].)
g=Fosg.

Thus
f*=(Fos)®=stoF*,
g* = (F o s9)* = s§ o F*.
Since s¥ and s¥ both invert *, they are equal. Hence,

fr=g" ' a
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Two manifolds M and N are said to have the same homotopy type in the
C® sense if there are C* mapsf: M — N and g: N - M such that g o f
and f o g are C* homotopic to the identity on M and N respectively.* A
manifold having the homotopy type of a point is said to be contractible.

Corollary 4.1.2.1. Two manifolds with the same homotopy type have the same
de Rham cohomology.

If i: A= M is the inclusion and r: M — A is a map which restricts to
the identity on A, then r is called a retraction of M onto A. Equivalently,
roi:A— A is the identity. If in addition i o r: M — M is homotopic to
the identity on M, then r is said to be a deformation retraction of M onto A.
In this case A and M have the same homotopy type.

Corollary 4.1.2.2. If A is a deformation retract of M, then A and M have the
same de Rham cohomology.

Exercise 4.2. Show that r: R* — {0} — S! given by r(x) = x/ || x || is a defor-
mation retraction.

Exercise 4.3. The cohomology of the n-sphere S". Cover S"* by two open sets
U and V where U is slightly larger thah the northern hemisphere and V
slightly larger than the southern hemisphere (Figure 4.1). Then U n V is
diffeomorphic to §"~! x R' where $"~! is the equator. Using the Mayer-
Vietoris sequence, show that

R in dimensions O, n
0 otherwise.

H*(S") = {

We saw previously that a generator of H'(S") is a bump 1-form on S*
which gives the isomorphism H'(S') ~ R! under integration (see Figure

N

\4
Figure 4.1

* In fact two manifolds have the same homotopy type in the C* sense if and only if they have
the same homotopy type in the usual (continuous) sense. This is because every continuous
map between two manifolds is continuously homotopic to a C* map (see Proposition 17.8).
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_Figure 4.2

4.2). This bump 1-form propagates by the boundary map of the Mayer-
Vietoris sequence to a bump 2-form on S2, which represents a generator of
H?(5?). In general a generator of H"(S") can be taken to be a bump n-form
on S".

Exercise 4.3.1 V olume form on a sphere. Let S"(r) be the sphere of radius r
x%+ tte +x:+1 =rz
in R"*!, and let

at+l
z l)‘-l xidxl"'dx;“'dx”.l.

~||n---

(a) Write S" for the unit sphere S"(1). Compute the integral [, @ and
conclude that @ is not exact.

(b) Regarding r as a function on R**! — 0, show that (dr)- @ = dx, -
dx, .. Thus w is the Euclidean volume form on the sphere S*(r).

From (a) we obtain an explicit formula for the generator of the top
cohomology of S" (although not as a bump form). For example, the gener-
ator of H(S?) is represented by

o= 311; (xl dX2 dX3 — X3 dxl dX3 + X3 dxl dxl)'

The Poincaré Lemma for Compactly Supported Cohomology

The computation of the compactly supported cohomology H*(R") is again
by induction; we will show that there is an isomorphism

H**'(R" x R') ~ H¥R").

Note that here, unlike the previous case, the dimension is shifted by one.
More generally consider the projection 7 : M x R! — M. Since the pull-
back of a form on M to a form on M x R! necessarily has noncompact
support, the pullback’map n* does not send Q¥(M) to Q*(M x R'). How-
ever, there is a push-forward map 7, : Q*(M x R')— Q*~(M), called inte-
gration along the fiber, defined as follows. First note that a compactly
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supported form on M x R! is a linear combination of two types of forms:
(D) n*¢ - f(x, 1),
(1) n*¢ - f(x, 1) dt,

where ¢ is a form on the base (not necessarily with compact support), and
f(x, t).is a function with compact support. We define =, by

(M) n*¢ - f(x, ) =0,

4.4) @
() n*¢ - f(x, t) dt — ¢ j f(x, 1) dt.

Exercise 4.5. Show that dn, = n,d; in other words, n, : QM x R') —
QF - (M) is a chain map.

By this exercise n, induces a map in cohomology =, : H¥ — H?-!. To
produce a map in the reverse direction, let e = e(t) dt be a compactly sup-
ported 1-form on R' with total integral 1 and define.

. 1QNM) - QF (M x RY)
by
o (n*) Ae.

The map e, clearly commutes with d, so it also induces a map in cohomol-
ogy. It follows directly from the definition that =, - e, = 1 on QR"). Al-
though e, o m, # 1 on the level of forms, we shall produce a homotopy
operator K between 1 and e, o m, ; it will then follow thate, o 7, =1 in
cohomology.

To streamline the notation, write ¢ - f for n*¢ - f(x, t) and [f for

{f(x, t) dt. The homotopy operator K : Q¥M x R') - Q*-Y(M x R') is
defined by

M e fr0,
I ¢- fdt'—'tbj /- ¢A(t)j

t

[ where A(t) = j e.

@® - @

Proposition 4.6. 1 — e, n, = (—1)""(dK — Kd) on Q4(M x R')..
PRrOOF. On forms of type (I), aséuming deg ¢ = q, we have

(l—e,n,)¢-f—¢‘-f
dK - Kd)p - f= *K(d(ﬁ f+(‘1)q¢ d +(—l)q¢af )

= (—"'1)""(4» f Y g0 _[ /)

=(=1y""¢f. [Hefcj_ g =f(x, ©) - f(x,—°0)=0~]

o
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So
1 —e,m, =(—10"'(dK — Kd).

On forms of type (II), now assuming deg ¢ = g — 1, we have

(1 —e,rt,_)d)fdt=d}fdt—()b(jun f)/\e,

-

aerar=o | s+ oo [ Daxs-oroa

— ([d)A(t) j_m f—(=1"1¢ [e J‘_m [+ A(t)(J‘_ua %)dx]

(Kd)¢ f dt) = K((d¢) fdt+(—1)7"1¢ g—fdx dt)

pd

=) [ r-unmao " s

+(=t)y! |:¢(in gé) dx — ¢A(t)(J.j° %) dx].

(K — Kdpf dt = (—l)""[¢fdt - ¢(r f)e]

- ®

So

and the formula again holds. O

This concludes the proof of the following
Proposition 4.7. The maps

HEM x RY) Z2HE (M)
are isomorphisms.

Corollary 4.7.1 (Poincaré Lemma for Compact Supports).

R in dimension n
0 otherwise.

HX(R") = {

Here the isomorphism H}(R") = R is given by iterated =,, ie., by inte-
gration over R".

To determine a generator for HY(R"), we start with the constant function
1 on a point and iterate with e, . This gives e(x,) dx, e(x,) dx;, ... e(x,) dx,.
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So a generator for HX(R") is a bump n-form a(x) dx, ... dx, with

J a(x) dx, ...dx, = 1.
Re
The support of « can be made as small as we like.

ReEMARK. This Poincaré lemma shows that the compactly supported coho-
mology is not invariant under homotopy equivalence, although it is of
course invariant under diffecomorphisms.

Exercise 4.8. Compute the cohomology groups H*(M) and H¥(M) of the
open Mobius strip M, i.e.,, the Mobius strip without the bounding edge
(Figure 4.3). [Hint: Apply the Mayer-Vietoris sequences.]

The Degree of a Proper Map

As an application of the Poincaré lemma for compact supports we intro-
duce here a C* invariant of a proper map between two Euclidean spaces of
the same dimension. Later, after Poincaré duality, this will be generalized to
a proper map between any two oriented manifolds; for compact manifolds
the properness assumption is of course redundant.

Let f: R" —» R” be a proper map. Then the pullback f*: H}(R") —
HYR" is defined. It carries a generator of HYR"), i.e., a compactly sup-
ported closed form with total integral one, to some multiple of the gener-
ator. This multiple is defined to be the degree of f. If a is a generator of
H%(R"), then

deg f= j [*a.
-

A priori the degree of a proper map is a real number; surprisingly, it turns
out to be an integer. To see this, we need Sard’s theorem. Recall that a
critical point of a smooth map f: R™ — R™ is a point p where the differ-
ential (f,), : T,R" = T,,R" is not surjective, and a critical value is the
image of a critical point. A point of R" which is not a critical value is called
a regular value. According to this definition any point of R” which is not in
the image of f'is a regular value so that the inverse image of a regular value
may be empty.

Figure 4.3
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Theorem 4.9 (Sard’s Theorem for R"). The set of critical values of a smooth
map f : R™ — R" has measure zero in R" for any integers m and n.

This means that given any ¢ > 0, the set of critical values can be covered
by cubes with total volume less than e. Important special cases of this
theorem were first published by A. P. Morse [1]. Sard’s proof of the general
case may be found in Sard [1].

Proposition 4.10 Let f : R — R" be a proper map. If f is not surjective, then
it has degree 0.

PRrOOF. Since the image of a proper map is closed (why?), if f misses a point
g, it must miss some neighborhood U of g. Choose a bump n-form « whose
support lies in U. Then f*a = 0 so that deg f = 0. a

Exercise 4.10.1. Prove that the im: ze of a proper map is closed.

So to show that the degree is an integer we only need to look at surjec-
tive proper maps from R" to R". By Sard’s theorem, almost all points in the
image of such a map are regular values. Pick one regular value, say q. By
hypothesis the inverse image of g is nonempty. Since in our case the two
Euclidean spaces have the same dimension, the differential f, is surjective if
and only if it is an isomorphism. So by the inverse function theorem,
around any point in the pre-image of g, f is a local diffeomorphism. It
follows that f ~'(q) is a discrete set of points. Since f is proper, f ~!(q) is in
fact a finite set of points. Choose a generator a of HR") whose support is
localized near q. Then f*« is an n-form whose support is localized near the
points of f ~!(q) (see Figure 4.4). As noted earlier, a diffeomorphism pre-
serves an integral only up to sign, so the integral of f*a near each point of
fYq)is +1. Thus

Jf*a: Y o+l

S

This proves that the degree of a proper map between two Euclidean spaces of
the same dimension is an integer. More precisely, it shows that the number of

Figure 4.4
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points, counted with multiplicity + 1, in the inverse image of any regular value
is the same for all regular values and that this number is equal to the degree of
the map.

Sard’s theorem for R", a key ingredient of this discussion, has a natural
extension to manifolds. We take this opportunity to state Sard’s theorem in
general. A subset S of a manifold M is said to have measure zero if it can be
covered by countably many coordinate open sets U; such that ¢S n U))
has measure zero in R"; here ¢; is the trivialization on U;. A critical point of
a smooth map f : M. — N between two manifolds is a point p in M where
the differential (f,), : T, M — T;,N is not surjective, and a critical value is
the image of a critical pomt

Theorem 4.11 (Sard’s Theorem). The set of critical values of a smooth map
f: M — N has measure zero.

Exercise 4.11.1. Prove Theorem 4.11 from Sard’s theorem for R".

§5 The Mayer-Vietoris Argument

The Mayer-Vietoris sequence relates the cohomology of a union to those of
the subsets. Together with the Five Lemma, this gives a method of proof
which proceeds by induction on the cardinality of an open cover, called the
Mayer-Vietoris argument. As evidence of its power and versatility, we derive
from it the finite dimensionality of the de Rham cohomology, Poincaré
duality, the Kiinneth formula, the Leray-Hirsch theorem, and the Thom
isomorphism, all for manifolds with finite good covers.

Existence of a Good Cover’

Let M be a manifold of dimension n. An open cover U = {U } of M is
called a good cover if all nonempty finite intersections U, N -+ N U,, are
diffeomorphic to R”. A manifold which has a finite good cover is said fo be
of finite type.

Theorem 5.1. Every manifold has a good cover. If the manifold is compact,
then the cover may be chosen to be finite.

To prove this theorem we will need a little differential geometry. A
Riemannian structure on a manifold M is a smoothly varying metric { , )
on the tangent space of M at each point; it is smoothly varying in the
following sense: if X and Y are two smooth vector fields on M, then
{X,Y) is a smooth function on M. Every manifold can be given a
Riemannian structure by the following splicing procedure. Let {U,} be a
coordinate open cover of M, { , ), a Riemannian metric on U,, and {p,} a
partition of unity subordinate to {U,}. Then (, Y=Y p(, ), is
a Riemannian metric on M.
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PRrROOF OF THEOREM 5.1. Endow M with a Riemannian structure. Now we
quote the theorem in differential geometry that every point in a Riemannian
manifold has a geodesically convex neighborhood (Spivak [1, Ex. 32(f), p.
491]). The intersection of any two such neighborhoods is again geodesically
convex. Since a geodesically convex neighborhood in a Riemannian mani-
fold of dimension n is diffeomorphic to R", an open cover consisting of
geodesically convex neighborhoods will be a good cover. ]

Given two covers U = (U, },c; and B = {V3}5, if every V} is con-
tained in some U,, we say that B is a refinement of U and write U <8B. To
be more precise we specify a refinement by a map ¢:J — I such that
Vg C U,p)- By a slight modification of the above proof we can show that
every open cover on a manifold has a refinement which is a good cover: simply
take the geodesically convex neighborhoods around each point to be inside
some open set of the given cover.

A directed set is a set I with a relation < satisfying

(a) (reflexivity) a<a forall a€ I.

(b) (transitivity) if a<b and b <c, then a<ec.

(c) (upper bound) for any a, b € I, there is an element ¢ in I such that
a<cand b<ec.

The set of open covers on a manifold is a directed set, since any two open
covers always have a common refinement. A subset J of a directed set I is
cofinal in I if for every i in I there is a j in J such that i <j. It is clear
that J is also a directed set.

Corollary 5.2. The good covers are cofinal in the set of all covers of a
manifold M.

Finite Dimensionality of de Rham Cohomology

" Proposition 5.3.1. If the manifold M has a finite good cover, then its cohomol-
ogy is finite dimensional.

PRrooF. From the Mayer-Vietoris sequence

= H"YU n V)—d.»H'(U v V) S HY(U)@H(V)— -
we get
HY(U u V)~ ker r@im r >~ im d*@im r.
Thus,
(*) if HY(U), HY(V) and H*Y(UNYV) are finite-dimensional, then so is
H(UULYV).

For a manifold which is diffeomorphic to R", the finite dimensionality of
H*(M) follows from the Poincaré lemma (4.1.1). We now proceed by induc-
tion on the cardinality of a good cover. Suppose the cohomology of any
manifold having a good cover with at most p open sets is finite dimensional.
Consider a manifold having a“good cover {U,, ..., U,} with p + 1 open
sets. Now (Ugu...u U,_;) n U, has a good cover with p open sets,
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namely {Uo,, U,,, ..., U,_y,,}. By hypothesis, the qth cohomology of
Upv..vU,.,U,and Uy u ... v U,_,) n U, are finite dimensional;
from Remark (*), so is the gth cohomology of Ug U ... U U,. This com-
pletes the induction. a

Similarly,

Proposition 5.3.2. If the manifold M has a finite good cover, then its compact
cohomology is finite dimensional.

Poincaré Duality on an Orientable Manifold
A pairing between two finite-dimensional vector spaces

(,>: VW ->R
is said to be nondegenerate if (v,w) =0 for all we W implies v=0 and
(v,w) =0 for all v €V implies w=0; equivalently, the map v~ (v, )
should define an injection ¥ <= W * and the map w— ( ,w) also defines an
injection W V'*,
Lemma. Let V and W be finite-dimensional vector spaces. The pairing

{, ):¥V® W-R is nondegenerate if and only if the map v (v, ) defines
an isomorphism V > W *,

PROOF. (=) Since V= W* and W — V * are injective,
dimV <dimW*=dimW < dimV* =dimV;
hence, dim ¥V = dim W* and ¥V — W* must be an isomorphism.
(<) is left to the reader. a
Because the wedge product is an antiderivation, it descends to cohomol-

ogy; by Stokes’ theorem, integration also descends to cohomology. So for
an oriented manifold M there is a pairing

I : HY(M)® H" (M) — R
given by the integral of the wedge product of two forms. Our first version

of Poincaré duality asserts that this pairing is nondegenerate whenever M is
orientable and has a finite good cover; equivalently,

(5.4) HY(M) = (H"%(M))*.
Note that by (5.3.1) and (5.3.2) both HY(M) and H! 9 M) are finite-
dimensional. ’

A couple of lemmas will be needed in the proof of Poincaré duality.
Exercise 5.5. Prove the Five Lemma: given a commutative diagram of
Abelian groups and group homomorphisms

AIlBIzC!JDIaE

| oo ol

A =B = C oD —E
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in which the rows are exact, if the maps «, §, 6 and ¢ are isomorphisms, then
so is the middle one y.

Lemma 5.6. The two Mayer-Vietoris sequences (2.4) and (2.8) may be paired
together to form a sign-commutative diagram

restriction difference g

+—HYU u V) —— HY(U)® H(V) —— H({U n V) H*' WU U V)—---

® ® ® ®
ci— HY U U V)2 H(U) @ HY (V) ———H" (U A V)—— H*™ "YU U V)
I R I
[/NVE 4 v v UnvV vuyY
R R R R

Here sign-commutativity means, for instance, that

J- wAd Tt = ij (d*w)AT,
UnVvV [/XVE 4

for we HU N V), 1€ H"" YU u V). This lemma is equjvalent to
saying that the pairing induces a map from the upper exact sequence to the
dual of the lower exact sequence such that the following diagram is sign-
commutative:

- HY(UUV) - HY(U)® HY(V) - HY(Un V) -
! ! !
~ HIP(UUV) > HT(U) e HT(V)" » HIT(UNY)® .

PRrOOF. The first two squares are in fact commutative as is straightforward
to check. We will show the sign-commutativity of the third square.
Recall from (2.5) and (2.7) that d*w is a form in H**}(U U V) such that

oy = —dlpy ©)
d‘wlv = d(py ),
and d, tis a form in H? "YU n V) such that
(—(extension by 0 of d, T to U), (extension by 0 of d, 7 to V))

= (d(py 1), d(py 7).
Note that d(p, 1) = (dpy)r because 7 is closed; similarly, d(py w) = (dpy)w.

J. w/\d,t=I w/\(dpy)‘r=(—l)“'"’J. (dpy)w At
Unv Unv Unv

Since d*w has supportin U n V,

J. d‘wAr=—j (dpy)w At
vuv UnV
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Therefore,
J. w/\d,,r=(—1)‘°""“j d*oAt. 0
UnvV VeV

By the Five Lemma if Poincaré duality holds for U, V,and U n V, then
it holds for U u V. We now proceed by induction on the cardinality of a
good cover. For M diffeomorphic to R", Poincaré duality follows from the
two Poincaré lemmas

R in dimension 0
0 elsewhere

H*[R") = {
and

R in dimension n
0 elsewhere.

HXR") = {
Next suppose Poincaré duality holds for any manifold having a good cover
with at most p open sets, and consider a manifold having a good cover
{Uo, ..., U,} with p + 1 open sets. Now (Ugu -*- v U,_y) n U, has a
good cover with p open sets, namely {U,,, U,,, ..., U,_,, ,}. By hypothesis
Poincaré duality holds for Uy u ... 0 U,_,, U,,and(Ugu ...u U, )
N U,, so it holds for Uy U ... U U,_; U U, as well. This induction argu-
ment proves Poincaré duality for any orientable manifold having a finite
good cover. d

REMARK 5.7. The finiteness assumption on the good cover is in fact not
necessary. By a closer analysis of the topology of a manifold, the Mayer-
Vietoris argument above can be extended to any orientable manifold
(Greub, Halperin, and Vanstone [1, p. 198 and p. 14]). The statement is as
follows: if M is an orientable manifold of dimension n, whose cohomology is
not necessarily finite dimensional, then

HYM) ~ (H:"YM))* , for any integer q.

However, the reverse implication Hi(M) ~ (H*"YM))* is not always true.
The asymmetry comes from the fact that the dual of a direct sum is a direct
product, but the dual of a direct product is not a direct sum. For example,
consider the infinite disjoint union

M= ]_IM,*,

i=1

where the M;'s are all manifolds of finite type of the same dimension n.
Then the de Rham cohomology is a direct product

3

(5.7.1) HA(M) = [T H(M)),
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but the compact cohomology is a direct sum
(5.7.2) HYM) =@ HYM).

Taking the dual of the compact ’cohomology HYM) gives a direct product
(57.3) (H(M)* =[] H(M,).

i
So by (5.7.1) and (5.7.3), it follows from Poincaré duality for the manifolds
of finite type M,, that

HY(M) = (H;"(M))*.

Corollary 5.8. If M is a connected oriented manifold of dimension n, then

HXM)~R. In particular if M is compact oriented and connected,
H'M)~R.

Let f : M — N be a map between two compact oriented manifolds of
dimension n. Then there is an induced map in cohomology

f*: HY(N) — H(M).

The degree of f is defined to be [, f*w, where w is the generator of HY(N).
By the same argument as for the degree of a proper map between two
Euclidean spaces, the degree of a map between two compact oriented mani-
folds is an integer and is equal to the number of points, counted with
multiplicity %1, in the inverse image of any regular point in N.

The Kiinneth Formula and the Leray-Hirsch Theorem

The Kiinneth formula states that the cohomology of the product of two
manifolds M and F is the tensor product

(59) H*(M x F) = H*M) ® H*(F).

This means
+

H"(MXxF)= @ HP(M)®HIF) forevery nonnegative integer n.
p+q=n
More generally we are interested in the cohomology of a fiber bundle.
Definition. Let G be a topological group which acts effectively on a space F
on the left. A surjection 7: E — B between topological spaces is a fiber

bundle with fiber F and structure group G if B has an open cover {U,} such
that there are fiber-preserving homeomorphisms

¢u:EIU, QU‘XF
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and the transitions functions are continuous functions with values in G:

9us(X) = ¢ b5 ! I(x)xp €G.

Sometimes the total space E is referred to as the fiber bundle. A fiber bundle
with structure group G is also called a G-bundle. If x € B, the set
E, = n~!(x) is called the fiber at x.

Since we are working with de Rham theory, the spaces E, B, and F will
be assumed to be C* manifolds and the maps C* maps. We may also speak
of a fiber bundle without mentioning its structure group; in that case, the

group is understood to be the group of diffcomorphisms of F, denoted
Diff(F).

ReMARK. The action of a group G on a space F is said to be effective if the
only element of G which acts trivially on F is the identity, ie,if g-y=y
for all y in F, then g =1 € G. In the C* case, this is equivalent to saying
that the kernel of the natural map G — Diff(F) is the identity or that Gis a
subgroup of Diff(F), the group of diffeomorphisms of F. In the definition of
a fiber bundle the action of G on F is required to be effective in order that
the diffeomorphism

¢u ¢ﬁ—l |(x) xF

of F can be identified unambiguously with an element of G.

The transition functions g,5 : U, n Uy — G satisfy the cocycle condi-
tion:
9ap * 98y = YGay-

Given a cocycle {g,5} with values in G we can construct a fiber bundle E
having {g,,} as its transition functions by setting '

(5.10) E=(LIU,xF)/(x, )~ (x, 9u(x)y)
for (x, y)in Ug x F and (x, g,4(x)y) in'U, x F.

The following proof of the Kiinneth formula assumes that M has a finite
good cover. This assumption is necessary for the induction argument.
The two natural projections
MxF—2—F

n

M
give rise to a map on forms

0® ¢ t*wAp*d
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which induces a map in cohomology (exercise)
Y : HY(M)® H*(F) - H*M x F).

We will show that ¢ is an isomorphism.

If M=R™, this is simply the Poincaré lemma.

In the following we will regard M x F as a product bundle over M. Let
U and V be open sets in M and n a fixed integer. From the Mayer-Vietoris
sequence

- — H(U v V) - HU)® H’(V) - H U n V)--:
we get an exact sequence by tensoring with H*~?(F)
- = HYU v V)® H""*(F) — (HA(U) ® H""*(F)) ® (H*(V) ® H""*(F))
' ~ H(U A V)@ H*(F) - -

since tensoring with a vector space preserves exactness. Summing over all
integers p yields the exact sequence

.~ @HAU U V)@ H(F)
p=0

— é (HP(U) ® H""(F)) @ (H"(V) ® H""*(F))

p=0

~ @HAU A V)@ HHF) = .

p=0
The following diagram is commutative

é HY(U U V)® H*"?(F)— @ (H(U)® H""*(F)) @ (H"(V) ® H""*(F))~ @ H/U nV) ® H"""(F)
- - =0
»=0 lw p=0 lw » lw
HY(U u V) x F)——————— HU x F) & HYV x F) —————— H{(UnV)xF)

The commutativity is clear except possibly for the square

de

@ H(U n V)@ H""A(F)) @ H" (U v V)@ H"(F)

wi “

H(U A V) x F) ul H*Y(U U V) x F),

which we now check. Let w ® ¢ be in H(U n V) ® H"~?(F). Then
Yd*(w ® ¢) = n*(d*w) A p*¢
d*Y(w @ ¢) = d*(n*w A p*¢).
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Recall from (2.5) that if {py, py} is a partition of unity subordinate to
{U, V} then
P {—d(pyw) on U
d(pyw) on V.

Since the pullback functions {n*py,, n*p,} form a partition of unity on
(U u V) x F subordinate to the cover {U x F, V x F},on(U n V) x F
d*(n*w A p*¢) = d(m*py)n*w A p*¢)

= (dn*(py w)) A p*¢  since ¢ is closed

= a*d*w) A p*¢.
So the diagram is commutative.

By the Five Lemma if the theorem is true for U, ¥, and U n V, then it is

also true for U u V. The Kiinneth formula now follows by induction on
the cardinality of a good cover, as in the proof of Poincaré duality. O

Let n: E — M be a fiber bundle with fiber F. Suppose there are coho-
mology classes e, ..., ¢, on E which restrict to a basis of the cohomology
of each fiber. Then we can define a map

v: H¥M)® Riey, ..., e,} — H¥E).

The same argument as the Kiinneth formula gives

Theorem 5.11 (Leray-Hirsch). Let E be a fiber bundle over M with fiber F.
Suppose M has a finite good cover. If there are global cohomology classes
ey, ..., e, on E which when restricted to each fiber freely generate the cohomol-
ogy of the fiber, then H*(E) is a free module over H*(M) with basis {e,, ...,
e}, ie.

H*E) ~ HM)®@R{e,, ..., e,} ~ H*M)Q H*(F).

Exercise 5.12 Kiinneth formula for compact cohomology. The Kiinneth for-
mula for compact cohomology states that for any manifolds M and N
having a finite good cover.

HXM x N) = H}(M) ® HZ(N).

(a) In case M and N are orientable, show that this is a consequence of
Poincaré duality and the Kiinneth formula for de Rham cohomology.

(b) Using the Mayer-Vietoris argument prove the Kiinneth formula for
compact cohomology for any M and N having a finite good cover.

The Poincaré Dual of a Closed Oriented Submanifold

Let M be an oriented manifold of dimension n and S a closed oriented
submanifold of dimension k; here by “closed” we mean as a subspace of M.
Figure 5.1 is a closed submanifold of R? — {0}, but Figure 5-2 is not. To
every closed oriented submanifold i : § ¢, M of dimension k, one can associ-
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ate a unique cohomology class [ns] in H"~%(M), called its Poincare dual, as
follows. Let w be a closed k-form with compact support on M. Since S is

==

Figure 5.1 Figure 5.2

closed in M, Supp(w|s) is closed not only in S, but also in M. Now because
Supp(wls) = (Supp w) N S is a closed subset of a compact set, i*w also has
compact support on S, so the integral |5 i* is defined. By Stokes’s theorem
integration over S induces a linear functional on HXM). It follows by
Poincaré duality: (H{M))* ~ H"~%(M), that integration over S corresponds
to a unique cohomology class [#s] in H*¥(M). We will often call both the
cohomology class [ns] and a form representing it the Poincaré dual of S. By
definition the Poincaré dual 75 is the unique cohomology class in H"~5(M)
satisfying

(5.13) j i*w =_[ wAns
s M

for any w in H¥M). )

Now suppose S is a compact oriented submanifold of dimension k in M.
Since a compact subset of a HausdorfT space is closed, S is also a closed
oriented submanifold and hence has a Poincaré dual ng € H*%M). This 7
we will call the closed Poincaré dual of S, to distinguish it from the compact
Poincaré dual to be defined below. Because S is compact, one can in fact
integrate over S not only k-forms with compact support on M, but any
k-form on M. In this way S defines a linear functional on H¥M) and so by
Poincaré duality corresponds to a unique cohomology class [ns] in
H"~%M), the compact Poincaré dual of S. We must assume here that M has
a finite good cover; otherwise, the duality (H5M))* ~ H? (M) does not
hold. The compact Poincare dual [#5] is uniquely characterized by

(5.14) J‘ i*o =J’ wAns,
S M

for any w € HXM). If (5.14) holds for any closed k-form w, then it certainly
holds for any closed k-form w with compact support. So as a form, ns is also
the closed Poincaré dual of S, ie., the natural map H* ¥M) —» H" ¥(M)
sends the compact Poincaré dual to the closed Poincaré dual. Therefore we
can in fact demand the closed Poincaré dual of a compact oriented sub-
manifold to have compact support. However, as cohomology classes, [#s] €
H" M) and [n5] € H?"%(M) could be quite different, as the following
examples demonstrate.
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EXAMPLE 5.15 (The Poincaré duals of a point P on R"). Since HY(R") = 0,
the closed Poincaré dual 7, is trivial and can be represented by any closed
n-form on R", but the compact Poincaré dual is the nontrivial class in
HY(R") represented by a bump form with total integral 1.

ExAMPLE-EXERCISE 5.16 (The ray and the circle in R? — {0}). Let x, y be the
standard coordinates and r, 6 the polar coordinates on R? — {0}.

(a) Show that the Poincaré dual of the ray {(x, 0)| x > 0} in R? — {0} is
d6/2n in HY(R? — {0}).

(b) Show that the closed Poincaré dual of the unit circle in H!(R? — {0})
is 0, but the compact Poincaré dual is the nontrivial generator p(r)dr in
H!(R? — {0}) where p(r) is a bump function with total integral 1. (By a
bump function we mean a smooth function whose support is contained in
some disc and whose graph looks like a “bump”.)

Thus the generator of H'(R? — {0}) is represented by the ray and the
generator of H!(R? — {0}) by the circle (see Figure 5.3).

ReMARK 5.17. The two Poincaré duals of a compact oriented submanifold
correspond to the two homology theories—closed homology and compact
homology. Closed homology has now fallen into disuse, while compact
homology is known these days as the homology of singular chains. In
Example-Exercise 5.16, the generator of H;  ¢jge.a (R? — {0}) is the ray, while
the generator of Hy, compact (R? — {0}) is.the circle. (The circle is a boundary
in closed homology since the punctured closed disk is a closed 2-chain in
R? — {0}.) In general Poincaré duality sets up an isomorphism between
closed homology and de Rham cohomology, and between compact homol-
ogy and compact de Rham cohomology.

Let S be a compact oriented submanifold of dimension k in M. If
W < M is an open subset containing S, then the compact Poincaré dual of
Sin W, s, w € H*" (W), extends by 0 to a form njs in H?~%(M). 7 is clearly
the compact Poincaré dual of § in M because

'f'i‘w ='f oAns, w =_[ @ Ans.
S w M

Figure 5.3
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Thus, the support of the compact Poincaré dual of S in M may be shrunk into
any open neighborhood of S. This is called the localization principle. For a
noncompact closed oriented submanifold S the localization principle also
holds. We will take it up in Proposition 6.25.

In this book we will mean by the Poincaré dual the closed Poincaré dual.
However, as we have seen, if the submanifold is compact, we can demand
that its closed Poincaré dual have compact support, even as a cohomology
class in H""%M). Of course, on a compact manifold M, there is no dis-
tinction between the closed and the compact Poincaré duals.

§6 The Thom Isomorphism

So far we have encountered two kinds of C® invariants of a manifold, de
Rham cohomology and compactly supported cohomology. For vector bun-
dles there is another invariant, namely, cohomology with compact support
in the vertical direction. The Thom isomorphism is a statement about this
last-named cohomology. In this section we use the Mayer-Vietoris argu-
ment to prove the Thom isomorphism for an orientable vector bundle. We
then explain why the Poincaré dual and the Thom class are in fact one and
the same thing. Using the interpretation of the Poincaré dual of a sub-
manifold as the Thom class of the normal bundle, it is easy to write down
explicitly the Poincaré dual, at least when the normal bundle is trivial. Next
we give an explicit construction of the Thom class for an oriented rank 2
bundle, introducing along the way the global angular form and the Euler
class. The higher-rank analogues will be taken up in Sections 11 and 12. We
conclude this section with a brief discussion of the relative de Rham theory,
citing the Thom class as an example of a relative class.

Vector Bundles and the Reduction of Structure Groups

Let n: E—» M be a surjective map of manifolds whose fiber n."(x) is a
vector space for every x in M. The map = is a C® real vector bundle of rank
n if there is an open cover {U,} of M and fiber-preserving diffeomorphisms

¢ Ely,=7n"'(U) 3 U, x R"
which are linear isomorphisms on each fiber. The maps
Geodi':(U,nUp xR (U, nUp x R"

are vector-space automorphisms of R" in each fiber and hence give rise to
maps
gup: U, 0 Ug — GL(n, R)

9ap(X) = Do Pp-1 |{x)xR‘ .

In the terminology of Section 5 a vector bundle of rank n is a ﬁber bundle
with fiber R" and structure group GL(n, R). If the fiber is C" and the
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structure group is GL(n, C), the vector bundle is a complex vector bundle.
Unless otherwise stated, by a vector bundle we mean a C® real vector
bundle.

Let U be an open set in M. A map s: U — E is a section of the vector
bundle E over U if = o s is the identity on U. The space of all sections over
U is written I'(U, E). Note that every vector bundle has a well-defined
global zero section. A collection of sections sy, ..., s, over an open set U in
M is a frame on U fif for every point x in U, s4(x), ..., s,(x) form a basis of
the vector space E, = n™ !(x).

The transition functions {g,;} of a vector bundle satisfy the cocycle
condition

9ap ° 9py = YGay on Ua('\Uﬁh U)..

The cocycle {g,,} depends on the choice of the trivialization.

Lemma 6.1. If the cocycle {g,;} comes from another trivialization {¢.}, then
there exist maps 4, : U, — GL(n, R) such that

Gap = AeugAs ' on U, Uy
Proor. The two trivializations differ by a nonsingular transformation of R"
at each point:
=20, , 4 :U, = GL(n, R).
Therefore,
Gep = G ' = 2a0uby ‘A5 = Ao dg . O

Two cocycles related in this way are said to be equivalent.

Given a cocycle {g,5} with values in GL(n, R) we can construct a vector
bundle E having {g,s} as its cocycle as in (5.10). A homomorphism between
two vector bundles, called a bundle map, is a fiber-preserving smooth map
f : E — E' which is linear on corresponding fibers.

Exercise 6.2. Show that two vector bundles on M are isomorphic if and
only if their cocycles relative to some open cover are equivalent.

Given a vector bundle with cocycle {g,5}, if it is possible to find an
equivalent cocycle with values in a subgroup H of GL(n, R), we say that the
structure group of E may be reduced to H. A vector bundle is orientable if its
structure group may be reduced to GL*(n, R), the linear transformations of
R" with positive determinant. A trivialization {(U,, ¢,)},.; on E is said to
be oriented if for every a and B in I, the transition function g.p has positive
determinant. Two oriented trivializations {(U,, ¢,)}, {(V;s, ¥5)} are equival-
ent if for every x in U, N V;, ¢, o (¥5)~(x) : R"— R" has positive determi-
nant. It is easily checked that this is an equivalence relation and that on a
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connected manifold M it partitions all the oriented trivializations of the
vector bundle E into two equivalence classes. Either equivalence class is
called an orientation on the vector bundle E.

ExXAMPLE 6.3 (The tangent bundle). By attaching to each point x in a mani-
fold M, the tangent space to M at x, we obtain the tangent bundle of M :
Tu= U .M.

xeM

Let {(U,, ¥,)} be an atlas for M. The diffeomorphism

v, U, s R
induces a map
Wy - Ty, 3 Tge,

which gives a local trivialization of the tangent bundle Ty,. From this we
see that the transition functions of T, are the Jacobians of the transition
functions of M. Therefore M is orientable as a manifold if and only if its
tangent bundle is orientable as a bundle. (However, the total space of the
tangent bundle is always orientable as a manifold.) If y, = (x,, ..., X,), then
0/0x,, ..., 0/0x, is a frame for T,, over U,. In the language of bundles a
smooth vector field on U, is a smooth section of the tangent bundle over U,.

We now show that the structure group of every real vector bundle £ may
be reduced to the orthogonal group. First, we can endow E with a
Riemannian structure—a smoothly varying positive definite symmetric
bilinear form on each fiber—as follows. Let {U,} be an open cover of M
which trivializes E. On each U,, choose a frame for E|;, and declare it to be
orthonormal. This defines a Riemannian structure on E|,. Let (, ),
denote this inner product on E|;. Now use a partition of umty.{p,,} to
splice them together, i.e., form

Y=Lr s D

This will be an inner product over all of M.

As trivializations of E, we take only those maps ¢, that send orthonor-
mal frames of E (relative to the global metric ( , )) to orthonormal frames
of R”"—such maps exist by the Gram-Schmidt process. Then the transition
functions g.s will preserve orthonormal frames and hence take values in
the orthogonal group O(n). If the determinant of g.s is positive, g,, will
actually be in the special orthogonal group SO(n). Thus

Proposition 6.4. The structure group of a real vector bundle of rank n can
always be reduced to O(n); it can be reduced to SO(n) if and only if the vector
bundle is orientable.
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Exercise 6.5. (a) Show that there is a direct product decomposition
GL(n, R) = O(n) x {positive definite symmetric matrices}.

(b) Use (a) to show that the structure group of any real vector bundle
may be reduced to O(n) by finding the 4,’s of Lemma 6.1.

Operations on Vector Bundles

Apart from introducing the functorial operations on vector bundles, our
main purpose here is to establish the triviality of a vector bundle over a
contractible manifold, a fact needed in the proof of the Thom isomorphism.

Functorial operations on vector spaces carry over to vector bundles. For
instance, if E and E’ are vector bundles over M of rank n and m respect-
ively, their direct sum EQ@E' is the vector bundle aver M whose fiber at the
point x in M is E,@ E.. The local trivializations {¢,} and {¢.} for E and E’
induce a local trivialization for E@® E':

$. D¢, EDE |y, 3 U, x (R"®R™.

Hence the transition matrices for E @ E’ are

(gcﬂ Y )
0 g

Similarly we can define the tensor product E® E', the dual E*, and
Hom(E, E'). Note that Hom(E, E’) is isomorphic to E* ® E'. The tensor
product E® E’ clearly has transition matrices {g,s ® gis}, but the tran-
sition matrices for the dual E* are not so immediate. Recall that the dual
V* of a real vector space V is the space of all linear functionals on V, ie.,
V* ~ Hom(V, R), and that a linear map f: V¥V — W induces a map f*:
W*— V* represented by the transpose of the matrix of f. If

¢, Ely, 3 U, x R"
is a trivialization for E, then
()~ ': E*|y, 3 U, x (R")*

is a trivialization for E*. Therefore the transition functions of E* are

(6.6) @D 7' =9t N " =g ™"

Let M and N be manifolds and 7 : E — M a vector bundle over M. Any
map f : N - M induces a vector bundle f “'E on N, called the pullback of
E by f. This bundle f ~'E is defined to be the subset of N x E given by

{(n, &)] f(n) = n(e)}.
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It is the unique maximal subset of N x E which makes the following di-
agram commutative

cNxE
fE E
T
N M.
S

The fiber of f "'E over a point y in N is isomorphic to E - Since a
product bundle pulls back to a product bundle we see that f ~'E is locally
trivial, and is therefore a vector bundle. Furthermore, if we have a com-
position

then
(feg) 'E=g '(f'E).

Let Vect,(M) be the isomorphism classes of rank k real vector bundles
over M. It is a pointed set with base point the isomorphism class of the
product bundle over M. If f : M — N is a map between two manifolds, let
Vect(f) =f ! be the pullback map on bundles. In this way, for each
integer k, Vect,( ) becomes a functor from the category of manifolds and
smooth maps to the category of pointed sets and base point preserving
maps.

REMARK 6.7 Let {U,} be a trivializing open cover for E and g,z the tran-
sition functions. Then {f ~'U,} is a trivializing open cover forf “*E over N
and (f ~'E)|s-1y, = f ~*(E|v). Therefore the transition functions for f ~'E
are the pullback functions f*g,,.

A basic property of the pullback is the following.

Theorem 6.8 (Homotopy Property of Vector Bundles). Assume Y to be a
compact manifold. If f, and f; are homotopic maps from Y to a manifold X
and E is a vector bundle on X, then f'E is isomorphic to f | 'E,i.e., homo-
topic maps induce isomorphic bundles.

ProoF. The problem of constructing an isomorphism between two vector
bundles ¥V and W of rank k over a space B may be turned into a problem in
cross-sectioning a fiber bundle over B, as follows. Recall that
Hom(V, W)= V*® W is a vector bundle over B whose fiber at each point
p consists of all the linear maps from V, to W,. Define Iso(V, W) to be the
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subset of Hom(V, W) whose fiber at each point consists of all the isomor-
phisms from ¥, to W,. (This is like looking at the complement of the zero
section of a line bundle.) Iso(V, W) inherits a topology from Hom(V, W),
and is a fiber bundle with fiber GL(n, R). An isomorphism between ¥V and
W is simply a section of Iso(V, W).

Let f:YxI— X be a homotopy between f, and f;, and let
n: Y x I — Y be the projection. Suppose for some t, in I, f;'E is isomor-
phic to some vector bundle F on Y. We will show that for all ¢t near ¢,,
f'E ~ F. By the compactness and connectedness of the unit interval I it will
then follow that f,™'E ~ F for all t in I.

Over Y x I there are two pullback bundles, f “'E and =~ !F. Since
folE ~F, Iso(f "'E, n"'F) has a section over Y x t,, which a priori is
also a section of Hom(f ~'E, n~'F). Since Y is compact, Y x t, may be
covered with a finite number of trivializing open sets for Hom(f ~'E, n~'F)
(see Figure 6.1). As the fibers of Hom(f ~'E, n~'F) are Euclidean spaces, the
section over Y x t, may be extended to a section of Hom(f ~'E, n~'F)
over the union of these open sets. Now any linear map near an isomor-
phism remains an isomorphism; thus we can extend the given section of
Iso(f “'E, n~'F) to a strip containing Y x t,. This proves thatf'E~F
for t near t,. We now cover Y x I with a finite number of such strips.
Hence fo'E~F ~f['E. O

]t ra Y Fa
T ]

Y
Figure 6.1

REMARK. If Y is not compact, we may not be able to find a strip of constant
width over which Iso(f ~!E, n~!F) has a section; for example the strip may
look like Figure 6.2.

But the same argument can be refined to give the theorem for Y a paracom-
pact space. See, for instance, Husemoller [1, Theorem 4.7, p. 29]. Recall that
Y is said to be.paracompact if every open cover U of Y has a locally finite
open refinement W, that is, every point in Y has a neighborhood which
meets only finitely many open sets in U'. A compact space or a discrete
space are clearly paracompact. By a theorem of A. H. Stone, so is every
metric space (Dugundji [1, p. 186]). More importantly for us, every mani-
fold is paracompact (Spivak [1, Ch. 2, Th. 13, p. 66]). Thus the homotopy
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to

Y
Figure 6.2

property of vector bundles (Theorem 6.8) actually holds over any manifold
Y, compact or not.
Corollary 6.9. A vector bundle over a contractible manifold is trivial.

PROOF. Let E be a vector bundle over M and let fand g be maps
s
M 2 point
[}

such that g o f is homotopic to the identity 1,,. By the homotopy property
of vector bundles

Ex(@gef) 'E~f"'g 'E).
Since g~ !E is a vector bundle on a point, it is trivial, hence so is f ~!(g " !E).

a

So for a contractible manifold M, Vect,(M) is a single point.

REMARK. Although all the results in this subsection are stated in the differ-
entiable category of manifolds and smooth maps, the corresponding state-
ments with “manifold” replaced by “space” also hold in the continuous
category of topological spaces and continuous maps, the only exception
being Corollary 6.9, in which the space should be assumed paracompact.

Exercise 6.10. Compute Vect,(S*).

Compact Cohomology of a Vector Bundle

The Poincaré lemmas
H*M x R") = H¥M)
HX(M x R") = H* (M)
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may be viewed as results on the cohomology of the trivial bundle M x R"
over M. More generally let E be a vector bundle of rank n over M. The zero
section of E, s : x—(x, 0), embeds M diffeomorphically in E. Since M x {0}
is a deformation retract of E, it follows from the homotopy axiom for de
Rham cohomology (Corollary 4.1.2.2) that

H*(E) ~ H*(M).
For cohomology with compact support one may suspect that
(6.11) HXE) ~ H* "(M).

This is in general not true; the open M&bius strip, considered as a vector
bundle over S*, provides a counterexample, since the compact cohomology
of the Mobius strip is identically zero (Exercise 4.8). However, if E and M
are orientable manifolds of finite type, then formula (6.11) holds. The proof
is based on Poincaré duality, as follows. Let m be the dimension of M. Then

H*E) ~ (H™*""%E))* by Poincaré duality on E
~ (H™*"~*(M))* by the homotopy axiom for d¢ Rham cohomology
~ H*""(M) by Poincaré duality on M.

Lemma 6.12. An orientable vector bundle E over an orientable manifold M is
an orientable manifold.

PRrOOF. This follows from the fact that if {(U,, ¥,)} is an oriented atlas for
M with transition functions h,s = ¥, o Y5 ' and
¢a: EIU. =3 Ua x R"

is a local trivialization for E with transition functions d.s, then the com-
position :

E

.3U,xR"3xR" xR
gives an atlas for E. The typical transition function of this atlas,
WexDoddp'o@Wi'x1):R"xR" > R" xR"
sends (x, y) to (h.s(x), gos(¥s '(x))y) and has Jacobian matrix
D (haﬂ) * )
6.12.1 ( - ;
©12h )

where D(h,g) is the Jacobian matrix of h,,. The determinant of the matrix
(6.12.1) is clearly positive. O

Thus,

Proposition 6.13. If n: E — M is an orientable vector bundle and M is
orientable of finite type, then H}E) ~ H*~"(M).
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REMARK 6.13.1. Actually the orientability assumption on M is superfluous.
See Exercise 6.20.

REMARK 6.13.2. Let M be an oriented manifold with oriented atlas {(U,,
Y2} and n: E—> M an oriented vector bundle over M with an oriented
trivialization {(U,, @,)} determining the orientation on the vector bundle
(terminology on pp. 54-55). Then E can be made into an oriented manifold
with orientation given by the oriented atlas

(nYUD, o x 1) o ¢ : 1" Y(U) — U, x R" = R™ x R"}.
This is called the local product orientation on E.

Compact Vertical Cohomology and Integration along the Fiber

As mentioned earlier, for vector bundles there is a third kind of cohomol-
ogy. Instead of Q¥E), the complex of forms with compact support, we
consider Q%(E), the complex of forms with compact support in the vertical
direction, defined as follows: a smooth n-form w on E is in Q},(E) if and
only if for every compact set K in M, n~'(K)n Supp w is compact. If
w € Q4,(E), then since Supp(w|,-1(;)) = 7' (x) " Supp w is a closed subset
of a compact set, Supp(w|,-1) is compact. Thus, although a form in
Q2% (E) need not have compact support in E, its restriction to each fiber
has compact support. The cohomology of this complex, denoted H*(E), is
called the cohomology of E with compact support in the vertical direction, or
compact vertical cohomology.

Let E be oriented as a rank n vector bundle. The formulas in (4.4) extend
to this situation to give integration along the fiber, n, : Q%(E) — Q* (M),
as follows. First consider the case of a trivial bundle E=M x R" Let
ty, ..., t, be the coordinates on the fiber R*.. A form on E is a real linear
combination of two types of forms: the type (I) forms are those which do
not contain as a factor the n-form dt, ... dt, and the type (II) forms are
those which do. The map =, is defined by :

M (r*d)f(x, ty, ..., t0de;, ...dt, —»0 , r<n
(1) (R*@)f(x, ty, ..., t) dty ... dt = ¢ foe fix, ty, ..., t) dty ... dt,,

where f has compact support for each fixed x in M and ¢ is a form on M.
Next suppose E is an arbitrary oriented vector bundle, with oriented triv-
ialization {(U,, ¢)}qc1- Let x4, ..., x,, and y,, ..., y, be the coordinate
functions on U, and Uy, and t,, ..., t,, 4y, ..., u, the fiber coordinates on
E|.,. and Elu, given by ¢, and ¢, respectively. Because {(U,, ¢,)} is an
oriented trivialization for E, the two sets of fiber coordinates ¢,, ..., t, and
U, ..., u, are related by an element of GL'(n, R) at each point of U, n Uy.
Again a form o in Q%,(E) s locally of type (I) or (II). The map =, is defined
to be zero on type (I) forms. To define n, on type (II) forms, write w, for
w |.- TU/AY 'l'hen

Wy = (M*P) (X1, vy Xms L1s o--s L) dty ... dE,

Wp = (A*TVG(Y1 - -» Vs Uts -5 Uy) duy ... du,.

and
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Define
T,0,=¢ J. S, t)dey ... dt,.
R=

Exercise 6.14. Show that if E is an oriented vector bundle, then n, w, =
n,wg. Hence {m,w,},1 piece together to give a global form n,w on M.
Furthermore, this definition is independent of the choice of the oriented
trivialization for E.

Proposition 6.14.1. Integration along the fiber =, commutes with exterior
differentiation d.

Proor. Let {(U,, ¢,)} be a trivialization for E, {p,} a partition of unity
subordinate to {U,}, and @ a form in Q%(E). Sincew = ), p, w, and bothr,
and d are linear, it suffices to prove the proposition for p,w, that is,
n,d(p, ) = dn,(p,w). Thus from the outset we may assume E to be the
product bundle M x R". If o = (n*¢)f (x, t) dt, ... dt, is a type (II) form,

drn,o = d(¢ jf(x, t)de, ...dt,)

= (d¢) J‘f(x, t)dt, ...dt, + (—1)% ¢ Y dx; Jg (x, t)dt, ... dt,
i i

and

n,do = n (n*d¢) fdt, ... dt, + (—1)°3% n*¢ Y % dx; dt, ... dt,)

= (d¢) J‘fdtx e dty + (=132 Y ¢ dx; J% de, ...dt,.
i i
So dn, w = n,do for a type (I) form. Next let w = (a*¢)f(x, t) dt;, ... dt; ,
r < n, be a type (I) form. Then

dn,o =0
and

n,dw = (—1)*s? ; n(m*¢) gtf: (x, t) dt; dt,, ... dt,)

=0 if dtidtil"‘dti,¢ idtl...dtn.
If dt; dt;, ... dt, = +dt, ... dt,, then [ 0f/ot{x, t) dt; dt,, ... dt; is again O:
because f has compact support,

le g—':;(x, yyde;=f(..,0,..)—f(.., —00,..)=0. ]

Note that integration along the fiber, x, : Q%(E) - Q* ~*(M) lowers the
degree of a form by the fiber dimension.
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Proposition 6.15 (Projection Formula). (a) Let n: E — M be an oriented
rank n vector bundle, t a form on M and w a form on E with compact support
along the fiber. Then

T (n*7) - w)=1"1,0.

(b) Suppose in addition that M is oriented of dimension m, w € QI (E), and
7 € Q""" YM). Then with the local product orientation on E

f m*7)A\w =J TAn, 0.
E M

PROOF. (a) Since two forms are the same if and only if they are the same
locally, we may assume that E is the product bundle M x R If w is a form
of type (I), say w = n*¢ - f(x, t) dt;, ... dt; , where r < n, then

T ((n*7) - W) = (n*T @) - f(x, ) dt;, ... dt;)))=0=1"-n,0.

If w is a form of type (II), say w = n*¢ - f(x, t) dt, ... dt,, then
n(n*1) - w) =1 ¢ .[ flx,t)dt, ...dt, =1 -1, 0
-

(b) Let {(U,, ¢,)}.cs be an oriented trivialization for E and {p,},.s a
partition of unity subordinate to {U,}. Writing w = . p, », where p, w has
support in U,, we have

J (t*)Ao =Y _[ (n*1) A (p, @)
E E'u-

and :

J tAr,o=Y | tAn(p, ).
M a JU,

Here t A n,(p, w) has compact support because its support is a closed subset
of the compact set Supp t; similarly, (z*1) A (p, w) also has compact sup-
port. Therefore, it is enough to prove the proposition for M = U, and E
trivial. The rest of the proof proceeds as in (a). O

The proof of the Poincaré lemma for compact supports (4.7) carries over
verbatim to give

Proposition 6.16 (Poincaré Lemma for Compact Vertical Supports). Inte-
gration along the fiber defines an isomorphism
n, : HY(M x R") — H*™"(M).
This is a special case of

Theorem 6.17 (Thom Isomorphism). If the vector bundle n: E — M over a
manifold M of finite type is orientable, then

HA(E) ~ H*~"(M)
where n is the rank of E.
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PRrROOF. Let U and V be open subsets of M. Using a partition of unity from
the base M we see that

0 —=QEly o v) = QUE|0) ® QUEly) = Q4(Ely ~v) —0

is exact, as in (2.3). So we have the diagram of Mayer-Vietoris sequences

e/ H:.,(Eluuv) _‘H;(E|U)QH;(E|V)_‘ H:‘v(EIUnV) _EL‘H:VH(EIINV)“—""
n, T, T, T,

cor——H*=n(U u V)—H*-n(U)® H* - n(V)—H*-n(U n V)—d.—~H'+l-"(U U V)—---

The commutativity of this diagram is trivial for the first two squares; we
will check that of the third. Recalling from (2.5) the explicit formula for the
coboundary operator d*, we have by the projection formula (6.15)

n, d*w = n((7* dpy) * w) = (dpy) - 1,0 = d*n, 0.

So the diagram in question is commutative.

By (6.9) if U is diffeomorphic to R", then E | is trivial, so that in this case
the Thom isomorphism reduces to the Poincaré lemma for compact vertical
supports (6.16). Hence in the diagram above, n, is an isomorphism for
contractible open sets. By the Five Lemma if the Thom isomorphism holds
for U, V, and U n V, then it holds for U U V. The proof now proceeds by
induction on the cardinality of a good cover for the base, as in the proof of
Poincaré duality. This gives the Thom isomorphism for any manifold M
having a finite good cover. O

REMARK 6.17.1. Although the proof above works only for a manifold of
finite type, the theorem is actually true for any base space. We will reprove
the theorem for an arbitrary manifold in (12.2.2).

Under the Thom isomorphism J : H*(M) ~ H**"(E), the image of 1 in
HO(M) determines a cohomology class ® in H,(E), called the Thom class of
the oriented vector bundle E. Because n, ® = 1, by the projection formula
(6.15)

T (M*oAD) = wAn, O = @
So the Thom isomorphism, which is inverse to =, is given by
TJ( )==n% )AOD.

Proposition 6.18. The Thom class ® on a rank n oriented vector bundle E can
be uniquely characterized as the cohomology class in H,(E) which restricts to
the generator of HXF) on each fiber F.

PRrOOF. Since 1, ® = 1, ®lg,, is a bump form on the fiber with total in-
tegral 1. Conversely if @ in H?%,(E) restricts to a generator on each fiber,
then

T (*)A D) = wAn,P = w.
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Hence n*( )A® must be the Thom isomorphism J and @' = (1) is the
Thom class. O

Proposition 6.19. If E and F are two oriented vector bundles over a manifold
M, and n, and n, are the projections

E®F
Ty T2
N
then the Thom class of E ® F is (E @ F) = n}®(E) A n3d(F).

PROOF. Let m = rank E and n = rank F. Then n{®(E) A n3®(F) is a class in
H™*"(E @ F) whose restriction to each fiber is a generator of the compact
cohomology of the fiber, since tt: » isomorphism

HZ*(R™ x R") > HY(R™) @ HA(R")
is given by the wedge product of the generators. O

Exercise 6.20. Using a Mayer-Vietoris, argument as in the proof of the
Thom isomorphism (Theorem 6.17), show that if #: E — M is an orient-
able rank n bundle over a manifold M of finite type, then

H*E) ~ H* ""(M).

Note that this is Proposition 6.13 with the orientability assumption on M
removed.

Poincaré Duality and the Thom Class

Let S be a closed oriented submanifold of dimension k in an oriented
manifold M of dimension n. Recall from (5.13) that the Poincaré dual of S is
the cohomology class of the closed (n — k)-form ns characterized by the

property
(6.21) J‘ w =J wAng
s ]

for any closed k-form with compact support on M. In this section we will
explain how the Poincaré dual of a submanifold relates to the Thom class
of a bundle (Proposition 6.24). To this end we first introduce the notion of a
tubular neighborhood of S in M this is by definition an open neighborhood
of S in M diffeomorphic to a vector bundle of rank n-k over S such that §
is diffeomorphic to the zero section. Now a sequence of vector bundles
over M,
0—E—E —E"—0,

is said to be exact if at each point p in M, the sequence of vector spaces
0—E,—E,—E,—0
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is exact, where E, is the fiber of E at p. If S is a submanifold in M, the
normal bundle N = Ng;, of S in M is the vector bundle on S defined by the
exact sequence

(6.22) 0— Ty — Ty|s — N —0,

where Ty, |s is the restriction of the tangent bundle of M to S. The tubular
neighborhood theorem states that every submanifold S in M has a tubular
neighborhood T, and that in fact T is diffeomorphic to the normal bundle
of § in M (see Spivak [1, p. 465] or Guillemin and Pollack [1, p. 76]). For
example, if S is a curve in R3, then a tubular neighborhood of S may be
constructed using the metric in R® by attaching to each point of S an open
disc of sufficiently small radius ¢ > O perpendicular to S at the center. The
union of all these discs is a tubular neighborhood of S (Figure 6.3(a)).

(@) (b)
Figure 6.3

In general if A and B are two oriented vector bundles with oriented
trivializations {(U,, ¢,)} and {(U,, ¥,)}, respectively, then the direct sum
orientation on A @ B is given by the oriented trivialization {(U,, ¢, ® ¥,)}.
Returning to our submanifold S in M, we letj: T ¢, M be the inclusion of a
tubular neighborhood T of S in M (see Figure 6.3(b)). Since S and M are
orientable, the normal bundle N, being the quotient of Ty, |s by Tg, is also
orientable. By convention it is oriented in such a way that

Ns@Ts=TM|s

has the direct sum orientation. So the Thom isomorphism theorem applies
to the normal bundle T = N over S and we have the sequence of maps

H*(S) ™ HA™"HT) —2—s H**"=¥(M)

where ® is the Thom class of the tube T and j, is extension by 0; here j, is
defined because we are only concerned with forms on the tubular neighbor-
hood T which vanish near the boundary of T. We claim that the Poincare
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dual of S is the Thom class of the normal bundle of S; more precisely
(6.23) Ns =j(®A1)=j,® in H"*M).

To prove this we merely have to show that j, @ satisfies the defining prop-
erty (5.13) of the Poincaré dual ns. Let w be any closed k-form with
compact support on M, and i: S — T the inclusion, regarded as the zero
section of the bundle n: T — S. Since = is a deformation retraction of T
onto S, n* and i* are inverse isomorphisms in cohomology. Therefore on
the level of forms, w and n*i*w differ by an exact form: w = n*i*w + dr.

J. oAj,®
M
P
=| oAD because j, @ has supportin T
JT
= | (t**w + di)A D
ur'
= | (t*i*o)A D since J (doAd ='I d(z A®) = 0 by Stokes’
JT T T
theorem
= | *oAn,® by the projection formula (6.15)
Js
= | i*o because n,d = 1.
Us

This concludes the proof of the claim. Note that if S is compact, then its
Poincaré dual 5 = j,® has compact support.

Conversely, suppose E is an oriented vector bundle over an oriented
manifold M. Then M is diffcomorphically embedded as the zero section in
E and there is an exact sequence

0— Tyy— (Tp)ly = E— 0,

i.e., the normal bundle of M in E is E itself. By (6.23), the Poincaré dual of M
in E is the Thom class of E. In summary, '

Proposition 6.24. (a) The Poincare dual of a closed oriented submanifold S in
an oriented manifold M and the Thom class of the normal bundle of S can be
represented by the same forms.

(b) The Thom class of an oriented vector bundle n: E — M over an
oriented manifold M and the Poincaré dual of the zero section of E can be
represented by the same form.

Because the normal bundle of the submanifold S in M is diffeomorphic
to any tubular neighborhood of S, we have the following proposition.

Proposition 6.25 (Localization Principle). The support of the Poincaré dual of
a submanifold S can be shrunk into any given tubular neighborhood of S.
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Figure 6.4

EXAMPLE 6.26.

(a) The Poincaré dual of a point p in M.
A tubular neighborhood T of p is simply an open ball around p (Figure 6.4).
A generator of H:(T) is a bump n-form with total integral 1. So the
Poincaré dual of a point is a bump n-form on M. The form need not have
support at p since all bump n-forms on a connected manifold are cohomol-
ogous. Here the dual of p is taken in HYM), and not in H*(M).

(b) The Poincaré dual of M.
Here the tubular neighborhood T is M itself, and H*(T) = H*(M). So the
Poincaré dual of M is the constant function 1.

(c) The Poincaré dual of a circle on a torus.

Figure 6.5

The Poincaré dual is a bump 1-form with support in a tubular neighbor-
hood of the circle and with total integral 1 on each fiber of the tubular
neighborhood (Figure 6.5). In the usual representation of the torus as a
square, if the circle is a vertical segment, then its Poincaré dual is p(x) dx
where p is a bump function with total integral 1 (Figure 6.6).

Using the explicit construction of the Poincaré dual ns=j,® as the
Thom class of the normal bundle, we now prove two basic properties of
Poincaré duality. Two submanifolds R and S in M are said to intersect
transversally if and only if

(6.27) T.R+T,S=T,M

at all points x in the intersection R N S (Guillemin and Pollack [1, pp.
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Figure 6.6

%7—32]). For such a transversal intersection the codimension in M is addi-
tive:

(6.28) codim R n § = codim R + codim §.
This implies that the normal bundle of R N Sin M is
(6.29) Ng.s =Nz ® Ns.

Assume M to be an oriented manifold, and R and S to be closed oriented
submanifolds. Denoting the Thom class of an oriented vector bundle E by
®(E), we have by (6.19)

(6.30) DO(Nrns) = (Ng @ Ns) = ®(Ng) AD(Ns).
Therefore,
(6.31) NrRas =Nr A 1s;

i.e., under Poincaré duality the transversal intersection of closed oriented
submanifolds corresponds to the wedge product of forms.

More generally, a smooth map f: M’ — M is said to be transversal to
a submanifold S = M if for every x € fX(S), fUTM') + T;,S = Ty ;M. If
f:M' - M is an orientation-preserving map of oriented manifolds, T is a
sufficiently small tubular neighborhood of the closed oriented submanifold S
in M, and f is transversal to S and T, then f "' T is a tubular neighborhood
of f~1S in M’. From the commutative diagram

o7 +x s
HYS) —— H'(T) —— H'M)

S

HY(f's) LD, gt roiT) — 2 B,

we see that if o is the cohomology class on M representing the submanifold
S in M, then f*w is the cohomology class on M’ representing f ~'(S), i..,
under Poincaré duality the induced map on cohomology corresponds to the
pre-image in geometry, i.e., N;-1s, = f*ns. By the Transversality Homotopy
Theorem, the transversality hypothesis on f is in fact not necessary (Guillemin
and Pollack [1, p. 70]).
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The Global Angular Form, the Euler Class, and the Thom Class

In this subsection we will construct explicitly the Thom class of an oriented
rank 2 vector bundle = : E — M, using such data as a partition of unity on
M and the transition functions of E. The higher-rank case is similar but
more involved, and will be taken up in (11.11) and (12.3). The construction
is best understood as the vector-bundle analogue of the procedure for going
from a generator of H"!(§"~') = H"~}(R" — {0}) to a generator of H¥R").
So let us first try to understand the situation in R".

We will call a top form on an oriented manifold M positive if it is in the
orientation class of M. The standard orientation on the unit sphere $"~! in
R" is by convention the following one: if o is a generator of H"~!(S*~!) and
n:R" — {0} —» S""! is a deformation retraction, then ¢ is positive on §"~!
if and only if dr - n*s is positive on R" — {0}.

Exercise 6.32. (a) Show that if 8 is the standard angle function on RZ,
measured in the counterclockwise direction, then d#@ is positive on the circle
st

(b) Show that if ¢ and 6 are the spherical coordinates on R as in Figure
6.7, then d¢ A d@ is positive on the 2-sphere S2.

Y
Figure 6.7

Let o be the positive generator of H"~}(S"™!) and y = n*s the corre-
sponding generator of H" }(R" — {0}); v is called the angular form on
R" — {0}. If p(r) is the function of the radius shown in Figure 6.3, then
dp = p'(r)dr is a bump form on R' with total integral 1 (Figure 6.9). There-
fore (dp) - ¥ is a compactly supported form on R" with total integral 1, ie.,
(dp) - ¥ is the generator of HX(R"). Note that because ¥ is closed, we can
write

(6.33) ' (dp) - ¥ =dlp - ¥).
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p(r)

Figure 6.8

Now let E be an oriented rank n vector bundle over M, and E°® the
complement of the zero section in E. Endow E with a Riemannian structure
as in (6.4) so that the radius function r makes sense on E. We begin our
construction of the Thom class by finding a global form ¥ on E° whose
restriction to each fiber is the angular form on R" — {0}. ¥ is called the
global angular form. Once we have the angular form , it is then easy to
check that @ = d(p - y) is the Thom class.

Now suppose the rank of E is 2, and {U,} is a coordinate open cover of M
that trivializes E. Since E has a Riemannian structure, over each U, we can
choose an orthonormal frame. This defines on E°|,_ polar coordinates r, and
0,;ifx,,..., x, are coordinates on U,, then n*x,, ..., n*x,, r,, 0, are coordinates
on E% U,. On the overlap U, N Uy, the radii r, and r, are equal but the angular
coordinates 6, and 6, differ by a rotation. By the orientability of E, it makes
sense to speak of the “counterclockwise direction” in each fiber. This allows

p'(r)

Figure 6.9
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us to define unambiguously ¢,z (up to a constant multiple of 27) as the
angle of rotation in the counterclockwise direction from the a-coordinate
system to the SB-coordinate system:

(6.34) oﬁ=0a+7f‘(0¢p, (paB:Uaﬂ Uﬁ"“‘)R-
Although rotating from a to B and then from B to y is the same as

rotating from a to y, it is not true that @,5 + @5, — @,, = 0; indeed all that
one can say is

Pap + Pgy — Pgy € 21Z.

AsIDE. To each triple intersection we can associate an integer
1 .
(635) suﬁy = i; (‘pcﬂ — Pqy + ‘pﬂy )

The collection of integers {¢,5, } measures the extent to which {¢,,} fails to
be a cocyle. We will give another interpretation of {e,,, } in Section 11.

Unlike the functions {¢,s}, the 1-forms {d¢,,} satisfy the cocycle condi-
tion. ' ‘

Exercise 6.36. There exist 1-forms £, on U, such that
1
Ed‘Paﬁ:éﬂ"'éa'

[Hint: Take £,=(1/2m)Y., p,do,,, where {p,} is a partition of unity
subordinate to (U, }.]

It follows from Exercise 6.36 that d¢, = d&; on U, n U,. Hence the d¢,
piece together to give a global 2-form e on M. This global form e is clearly
closed. It is not necessarily exact since the £, do not usually piece together
to give a global 1-form. The cohomology class of e in H*(M) is called the

Euler class of the oriented vector bundle E. We sometimes write e(E) instead
of e.

Claim. The cohomology class of e is independent of the choice of & in our
construction.

Proor oF CLam. If {Z,} is a different choice of 1-forms such that
dpy =T -T= b L,
2n
then ’
Eﬂ_§ﬁ=za"€a=é
is a global form. So d&, and d¢, differ by an exact global form. O
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By (6.34) and (6.36), on E°|y, . ¢,

; 4 ., _90_ _,
(6.36.1) b

These forms then piece together to give a global 1-form § on E°, the global
angular form, whose restriction to each fiber is the angular form (1/27) d6,
ie,if1,: R? — E is the orthogonal inclusion of a fiber over p, then 1L, =
(1/2n) df. The global angular form is not closed:

de,

dy = d(a - n‘é,) = —n*df, = —n*d,.

Therefore,
(6.37) dy = —n*e.

When E is a product, § could be taken to be the pullback of (1/2x) df
under the projection E® = M x (R? — 0) —» R? — 0. In this case y is closed
and e is 0. The Euler class is in this sense a measure of the twisting of the
oriented vector bundle E.

The Euler class of an oriented rank 2 vector bundle may be given in
terms of the transition functions, as folows. Let g,5: U, n Uy — SO(2) be
the transition functions of E. By identifying SO(2) with the unit circle in the
complex plane via (¢! ~i8) =¢" g, may be thought of as complex-
valued functions. In this context the angle from the f-coordinate system to
the a-coordinate system is (1/i)log g,s. Thus

0, — 05 = w*(1/i)log g.s,
and
T*pp= —w*(1/i)log gop.

Since the projection # has maximal rank (i.e., 7, is onto), 7* is injective, so
that
Pap™ — (l/l )108 9dap-

Let {p,} be a partition of unity subordinate to {U,}. Then
|
-2—7; d(paﬂ = gﬂ - EQ’
where
1 1
(6.37.1) §u=-2';;py d‘pyu" - znl;py d 108 Gya-
Therefore,

(6.38) eE)= — L Y dp,dlogg,) onU,.
2ni 5



74 I de Rham Theory

Proposition 6.39. The Euler class is functorial, ie., if f: N — M is a C® map
and E is a rank 2 oriented vector bundle over M, then

eof 'E)=f* ¢E).

PRroOF. Since the transition functions of f ~'E are f *g,,, the proposition is
an immediate consequence of (6.38). a

We claim that just as in the untwisted case (6.33), the Thom class is the
cohomology class of

(6.40) ® =d(p(r) - ¥) = dp(r) - ¥ — p(r)n*e .

In this formula although p(r) -y is defined only outside the zero section of
E, the form ® is a global form on E since dp =0 near the zero section.
® has the following properties:

(a) compact support in the vertical direction;
(b) closed: d® = — dp(r) - dy — dp(r)n*e = 0;
(c) restriction to each fiber has total integral 1:

2x

" do
M, ® = _[ Idp(r) '%=p(°0)—p(0)= 1,
o o
where 1,: E,— E is the inclusion of the fiber E, into E;

(d) the cohomology class of ® is independent of the choice of p(r). Sup-

pose p(r) is another function of r which is —1 near 0 and 0 near infinity, and
which defines @. Then

@ — & = d((p(r) — p(r) - ¥)

where (p(r) — p(r)) - ¢ is.a global form on E because p(r) — p(r) vanishes
near the zero section.

Therefore ® indeed defines the Thom class. Furthermore, if s : M — E is
the zero section of E, then

s*® = d(p(0)) - s*y — p(0)s* n*e=¢.
This proves

Proposition 6.41. The pullback of the Thom class to M by the zero section is
the Euler class.

Let {U,} be a trivializing cover for E, {p,} a partition of unity subordi-
nate to {U,}, and g,, the transition functions for E. Since



6 The Thom Isomorphism 75

do,

y= 27

do, 1

= 217 \+ m"*zpyd log gya'
Y

- ”*sa

(cf. (6.36.1) and (6.37.1)), we have by (6.40),

642) ©-= d(p(r)‘;—f;') + %d(p(r)w‘zy‘,pyd log g,a).

This is the explicit formula for the Thom class.

Exercise 6.43. Let = : E - M be an oriented rank 2 bundle. As we saw in
the proof of the Thom isomorphism, wedging with the Thom class is an
isomorphism A® : H*(M) ~x H%*2(E). Therefore every cohomology class
on E is the wedge product of ® with the pullback of a cohomology class on
M. Find the class u on M such that

®? = O An*uin HY (E) .

Exercise 6.44. The complex projective space CP" is the space of all lines
through the origin in C**!, topologized as the quotient of C**! by the
equivalence relation

z~Az for zeC"*!, Aanonzerocomplex number.

Let zo, ..., z, be the complex coordinates on C"*'. These give a set of
homogeneous coordinates [z, ..., z,] on CP", determined up to multi-
plication by a nonzero complex number A. Define U; to be the open subset
of CP" given by z; # 0. {U,, ..., U,} is called the standard open cover of
cpn.

(a) Show that CP" is a manifold.
(b) Find the transition functions of the normal bundle N¢p. cp. relative
to the standard open cover of CP'.

EXAMPLE 6.44.1. (The Euler class of the normal bundle of CP! in CP?). Let
N = N¢picp: be the normal bundle of CP! in CP2. Since CP' is a compact
oriented manifold of real dimension 2, its top-dimensional cohomology is
H?(CP') = R. We will find the Euler class e(N) as a multiple of the gener-
ator in H{CP").

By Exercise 6.44 the transition function of N relative to the standard
open cover is go; = z,/z, at the point [z,, z,]. Let z = z,/z, be the coordi-
nate of U,, which we identify with the complex plane C. Let w = z,/z, = 1/z
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be the coordinate on U, ~ C. Then gy, = z = 1/w on Uyn U,. The Euler
class of N is given by

1
2mi

e(N)= — d(pod log%) on U, (by (6.38))

1
= —3-d(podlogz) onUynU,,

where p, is 1 in a neighborhood of the origin, and 0 in a neighborhood of
infinity in the complex z-plane U, ~ C.

Fix a circle C in the complex plane with so large a radius that Supp p, is
contained inside C. Let 4, be the annulus centered at the origin whose
outer circle is C and whose inner circle B, has radius r (Figure 6.10). Note
that as the boundary of A4,, the circle C is oriented counterclockwise while
B is oriented clockwise.

Figure 6.10

Now

|
| N) = — —
.[:Ple( ) 2mi J;: dpo d log 2,
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and

f d(po dz/z) = lim | d(p, dz/z)
C r—0 J4,

=lim | podz/z + J' Po dz/z by Stokes’ theorem
r—0 JC B,

lim | dz/z

r—=0 JB,

= —2nmi,

where the minus sign is due to the clockwise orientation on B,. Therefore,
1
N = —_—— (= 1) = .
Lme( ) i (—2n)=1

Exercise 6.45. On the complex projective space CP" there is a tautological
line bundle S, called the universal subbundle; it is the subbundle of the
product bundle CP* x C"*! given by

S={ 2)|zet}.

Above each point ¢ in CP", the fiber of S is the line represented by /. Find
the transition functions of the universal subbundle S of CP! relative to the
standard open cover and compute its Euler class.

Exercise 6.46. Let S" be the unit sphere inR"*! and i the antipodal map on
s

P2 (Xgy ooy Xpe1) 2 (—X1y ceey —Xps1)

The real projective space RP" is the quotient of S* by the equivalence
relation

x ~i(x), for x e R"*1,

(@) An invariant form on S" is a form w such that i*w = w. The vector
space of invariant forms on S", denoted Q*(S"), is a differential complex,
and so the invariant cohomology H*S"' of S" is defined. Show that
H*RP") ~ H*S"".

(b) Show that the natural map H*S")' — H*(S") is injective. [Hint : If
is an invariant form and o = dr for some form t on S", then w =
d(t + i*1)/2.]

(c) Give §" its standard orientation (p. 70). Show that the antipodal map
i: §"— §" is orientation-preserving for n odd and orientation-reversing for
n even. Hence, if [o] is a generator of H"(S"), then [o] is a nontrivial
invariant cohomology class if and only if » is odd.
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(d) Show that the de Rham cohomology of RP" is
R forg=0,
0 forO<g<n,
R for g =nodd,

0 for g =neven.

HI(RP") =

Relative de Rham Theory

The Thom class of an oriented vector bundle may be viewed as a relative
cohomology class, which we now define. Let f : S— M be a map between
two manifolds. Define a complex Q*(f) = @50 Q%(f) by
X(f) = XM S Q©S),
d(w, 6) = (dw, f*w — db).
It is easily verified that d2 = 0. Note that a cohomology class in Q*(f) is

represented by a closed form w on M which becomes exact when pulled
back to S.

By definition we have the exact sequence
0— Qo (8) 2 Q%) 2 QM) — 0

with the obvious maps a and 8 : a(6) = (0, 6) and f(w, ) = w. Clearly B is a
chain map but a is not quite a chain map; in fact it anticommutes with d,

ad = —da. In any case there is still a long exact sequence in cohomology
(647) = HHS) S H() 5 H(M) S5 HYS)— -

Claim 6.48. 6* = f*.

ProoF OF CLAmM. Consider the diagram

0— () - *'(f)» Q"' (M) -0
at dat dat
0278~ QYf) — QM) -0
w w
(w, 0) o

Let w € Q9 M) be a closed form and (w, §) any element of 9(f) which
maps to «. Then d(w,8) = (0, f*w — df). So 8*[w]=[f*w —db]=[f*«].
- O
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Combining (6.47) and (6.48) we have

Proposition 6.49. Let f: S — M be a differentiable map between two manifolds.
Then there is an exact sequence

©o= H() 5 HM) 5 HY) S HE ().

Exercise 6.50. If f, g: S— M are homotopic maps, show that H*(f) and
H*(g) are isomorphic algebras.

If S is a submanifold of M and i : S— M is the inclusion map, we define
the relative de Rham cohomology H%M, S) to be HY(i).

We now turn to the Thom class. Recall that if x: E— M is a rank 2
oriented vector bundle and E° is the complement of the zero section, then

there is a global angular form ¥ on E° such that dy = —n*e, where e
represents the Euler class of E (6.37). Furthermore, if s : M — E is the zero
section, then e = s*® (Proposition 6.41). Hence, (s - n)*® = —dy, where

s o m: E°— E. This shows that (®, —) is closed in the complex Q¥*(s o =)
and so represents a class in H%(s o 7). Since the map s o n: E® — E is clearly
homotopic to the inclusion i: E® — E, by Exercise 6.50, H%(s o ) = H*(i).
Hence, (®, —y) represents a class in the relative cohomology H*(E, E°). The
rank n case is entirely analogous and will be taken up in Section 12.

§7 The Nonorientable Case

Since the integral of a differential form on R” is not invariant under the
whole group of diffeomorphisms of R, but only under the subgroup of
orientation-preserving diffeomorphisms, a differential form cannot be inte-
grated over a nonorientable manifold. However, by modifying a differential
form we obtain something called a density, which can be integrated over
any manifold, orientable or not. This will give us a version of Poincaré
duality for nonorientable manifolds and of the Thom isomorphism for non-
orientable vector bundles.

The Twisted de Rham Complex

Let M be a manifold and E a vector space. The space of differential forms on
M with values in E, denoted Q*(M, E), is by definition the vector space
spanned by w ® v, where w € Q*(M), v € E, and the tensor product is over
R. This space can be made naturally into a differential complex if we let the
differential be i

d(w ®v) = (do) ® v.

So the cohomology H*(M, E) is defined. Indeed, if E is a vector space of
dimension n, then H*(M, E) is isomorphic to n copies of H3z(M).
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Now let E be a vector bundle. We define the space of E-valued g-forms,
QYM, E), to be the global sections of the vector bundle (AT§) ® E. Lo-
cally such a g-form can be written as ) w; ® e,, where w, are g-forms and ¢;
are sections of E over some open set U in M, and the tensor product is over
the C® functions on U. For these vector-valued differential forms, no na-
tural extension of the de Rham complex is possible, unless one is first given
a way of differentiating the sections of E.

Suppose the vector bundle E has a trivialization {(U,, ¢,)} relative to
which the transition functions are locally constant. Such a vector bundle is
called a flat vector bundle and the trivialization a locally constant triv-
ialization. For a flat vector bundle E a differential operator on Q*(M, E)
may be defined as follows. Let e}, ..., e be the sections of E over U,
corresponding to the standard basis under the trivialization ¢, : Elu.-ﬁ
U, x R". We declare these to be the standard locally constant sections, i.e.,
de! =0. Over U, an E-valued g-form s in QYM, E) can be written as
Y w, ® €, where the o, are g-forms over U,. We define the exterior deriva-
tive ds over U, by linearity and the Leibnitz rule:

d(z o;® e;) = Z (dw) ® e:.

It is easy to show that, because the transition functions of E relative to
{(U,, ¢,)} are locally constant, this definition of exterior differentiation is
independent of the open sets U,. More precisely, on the overlap U, n Uy,
if
s=)Yoi®e=31,0e¢
and e} = Y. cijej, where the c;; are locally constant functions, then
T i = Z CU Cl),'
and
dY 1, @ep) =Y (@dr)®e}

= Z_("u 40)1') ® e{a

= ZA(dwi) ® ei

=d} o;®é€).

Hence ds is globally defined and is an element of Q?*}(M, E). Because d* is
clearly zero, Q*(M, E) is a differential complex and the cohomology
H*M, E) makes sense. As defined, d very definitely depends on the triv-
ialization {(U,, ¢,)}, for it is through the trivialization that the locally
constant sections are given. Hence, d, Q*(M, E), and H*(M, E) are more
properly denoted as dy, Q3(M, E), and H¥(M, E).

ExampLE 7.1 (Two trivializations of a vector bundle E which give rise to
distinct cohomology groups H*(M, E)).
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Let M be the circle S* and E the trivial line bundle S* x R! over the
circle. If E is given the usual constant trivialization ¢:

¢(x,)=r for xeS'* and reR!

then the cohomology H3(S', E) = R.
However, we can define another locally constant trivialization y for E as
follows. Cover S' with two open sets U and V as indicated in Figure 7.1.

U /

™
<

Figure 7.1

Let p(x) be the real-valued function on V whose graph is as in Figure 7.2.
The trivialization ¢ is given by

. r)_{r for x e U, re R?,
"7 lpx)r  forxeV,reR.

The standard locally constant sections over U and V are ey(x) = (x, 1) and
ey(x) = (x, 1/p(x)) respectively. Relative to the trivialization ¢, the cohomol-
ogy Hy(S', E) = 0, since the locally constant sections over U and V do not
piece together to form a global section (except for the zero section).

It is natural to ask: to what extent is the twisted cohomology H3(M, E)
independent of the trivialization ¢ for E?
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~

-

\%
Figure 7.2

Proposition 7.2. The twisted cohomology is invariant under the refinement of
open covers. More precisely, let {(U,, §)}.cs bé a locally constant triv¥
ialization for E. Suppose {V3}g s is a refinement of {U,},c and the coordi-
nates maps Y5 on Vy < U, are the restrictions of ¢p,. Then the two twisted
complexes Q¥(M, E) and Q}(M, E) are identical and so are their cohomology :

H3(M, E) = H{(M, E).

PROOF. Since the definition of the differential operator on a twisted complex
is local, and ¢ and ¥ agree on the open cover {V;}, we have d, =d,.
Therefore the two complexes Q3(M, E) and Q¥(M, E) are identical. a

Still assuming E to be a flat vector bundle, suppose {(U,, ¢,)} and
{(U,, ¥} are two locally constant trivializations which differ by a locally
constant comparison 0-cochain, i.., if e, and f! are the standard locally
constant sections over U, relative to the trivializations ¢ and ¥ respectively,
then

e=Y alf!
for some locally constant function !
a, = (a¥): U,— GL(n, R).
In this case there is an obvious isomorphism
F: QY(M, E)— QYM,; E)
given by
e alfl.
It is easily checked that the diagram '
Q}(M, E) —*-Q3*'(M, E)
F F
QM E) —— Q3" '(M, E)
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commutes. Hence F induces an isomorphism in cohomology. Next, suppose
we are given two locally constant trivializations {(U,, ¢,)} and {(V;, ¥,)}
for E, with possibly different open covers. By taking a common refinement,
which does not affect the twisted cohomology (Proposition 7.2), we may
assume that the two open covers are identical. The discussion above there-
fore proves the following.

Proposition 7.3. (a) Let E be a flat vector bundle over M, and {(U,, ¢,)} and
{(Vs, ¥p)} two locally constant trivializations for E. Suppose after a common
refinement the two trivializations differ by a locally constant comparison 0-
cochain. Then there are isomorphisms

Q¥(M, E) ~Q}(M, E)
and
H}M, E) ~ H}(M, E).
This proposition may also be stated in terms of the transition functions

for E.

Proposition 7.3. (b) Let E be a flat vector bundle of rank’n and {g,s} and {h.y}
the transition functions for E relative to two locally constant trivializations ¢
and  with the same open cover. If there exist locally constant functions

A,: U,— GL(n, R)
such that
9ap = la huﬁ j'ﬂ-l’

then there are isomorphisms as in 7.3(a).

Proposition 7.4. If E is a trivial rank n vector bundle over a manifold M, with
¢ a trivialization of E given by n global sections, then

$(M, E) = H¥(M, RY) = EBI HYM).

PROOF. Let ey, ..., e, be the n global sections corresponding to the standard
basis of R". Then every element in Q*(M, E) can be written uniquely as
Y ©;® e;, where w; € Q*(M) and the tensor product is over the C func-
tions on M. The map

E (l)g@ eiH(wb sy wn)
gives an isomorphism of the complexes Q¥(M, E) and Q*(M, R"). O

Now let {(U,, ¢,)} be a coordinate open cover for the manifold M, with
transition functions g, = @, ¢ '. Define the sign function on R' to be
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+1 for x positive
sgn(x) = 0 forx=0
—1  for x negative.

The orientation bundle of M is the line bundle L on M given by transition
functions sgn J(g,), where J(g,p) is the Jacobian determinant of the matrix
of partial derivatives of g,5. It follows directly from the definition that M is
orientable if and only if its orientation bundle is trivial.

Relative to the atlas {(U,, ¢,)} for M with transition functions g,s, the
orientation bundle is by definition the quotient

(Uq x RY)/(x, v) ~ (x, sgn J(gas(x))v),
where (x, v) € U, x R' and (x, sgn J(gs(x))v) € Uy x R'. By construction
there is a natural trivialization ¢’ on L,

¢a: L

which we call the trivialization induced from the atlas {(U,, ¢,)} on M.
Because sgn J(g,g) are locally constant functions on M, the locally constant
sections of L relative to this trivialization are the equivalence classes of
{(x, v)| x € U,} for v fixed in R!.

u.s L’l X Rl,

Proposition 7.5. If ¢' and Y’ are two trivializations for L induced from two
atlases ¢ and y on M, then the two twisted complexes Q%,(M, L) and Q}(M,
L) are isomorphic and so are their cohomology H}(M, L) and H}(M, L).

ProoF. By going to a common refinement we may assume that the two
atlases ¢ and y have the same open cover. Thus on each U, there are two
sets of coordinate functions, ¢, and y, (Figure 7.3.).

P

Figure 7.3
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The transition functions g,, and h,, for the two atlases ¢ and  respectively
are related by

Gus = o0 5"
=¥ oY oYy oyyo 4yt
=p o hy0p;t,

where p, := ¢, 0 Y711 Y (U) — ¢,(U,). It follows that
380 J(gap) = 580 J(1.)- 580 J(heg) sgn J(ug) ™"

Define a O-chain 4,: U, = GL(1, R) by 4,(x) = sgn J(u)(Y(x)) for x e U,.
Since 1,(x) = + 1, by Proposition 7.3(b)

2 (M, L) ~ Q3(M, L). m]

We define the twisted de Rham complex Q*(M, L) and the twisted de
Rham cohomology H*(M, L) to be Q}(M, L) and H}(M, L) for any triv-
ialization ¢’ on L which is induced from M. Similarly one also has the
twisted de Rham cohomology with compact support, H*(M, L).

REMARK. If a trivialization Y on L is not induced from M, then H}(M, L)
may not be equal to the twisted de Rham cohomology H*(M, L).

The following statement is an immediate consequence of Proposition 7.4
and the triviality of L on an orientable manifold.

Proposition 7.6. On an orientable manifold M the twisted de Rham cohomol-
ogy H¥(M, L) is the same as the ordinary de Rham cohomology.

Integration of Densities, Poincaré Duality, and the
Thom Isomorphism

Let M be a manifold of dimension n with coordinate open cover {(U,, ¢,)}
and transition functions g,s. A density on M is an element of Q*(M, L), or
equivalently, a section of the density bundle (A"T3)® L. One may think of a
density as a top-dimensional differential form twisted by the orientation
bundle. Since the transition function for the exterior power A"TY is 1/J(g.p),
the transition function for the density bundle is

- 5gn J(g,p) =

1 1
J(Gap) | (gas)|
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Let e, be the section of L |u. corresponding to. 1 under the trivialization
of L induced from the atlas {(U,, ¢)}. If ¢, = (x;, ..., x,) are the coordi-
nates on U,, we define the density |dx, - - - dx,| in [(U,, (A*"T%)®L)) to be

-

ldx, --- dx,| = e, dx, --- dx,.

Locally we may then write a density as g(x,, ..., x,)|dx, ‘- dx,| for some
smooth function g.

Let T: R" — R" be a diffeomorphism of R* with coordinates x,, ..., x,
and y,, ..., y, respectively. If w =g|dy, ...dy,| is a density on R", the
pullback of w by T is

T*o0=(g°T)|dy,°T)...dy,~ T)|
=(g > DIJ(D|ldx, ... dx, |.

The density g|dy, ... dy, | is said to have compact support on R" if g has
compact support, and the integral of such a density over R” is defined to be
the corresponding Riemann integral. Then

f T"w=J. (g - DIIDIldx, ... dx, |
R* R

= J‘ gldy, ... dy,| by the change of variable formula
R*

- L“"

Thus the integration of a density is invariant under the group of all diffeo-
morphisms on R". This means we can globalize the integration of a density
to a manifold. If {p,} is a partition of unity subordinate to the open cover
{(U,, ¢} and w € QX(M, L), define

J w=2f (¢ 1)* (0, 0).
M a JR*

It is easy to check that this definition is independent of the choices involved.
Just as for differential forms there is a Stokes’ theorem for densities. We
state below only the weak version that we need.

Theorem 7.7 (Stokes’ Theorem for Densities). On any manifold M of dimen-
sion n, orientable or not, if © € Q'™ Y(M, L), then

J dw = 0.
M

The proof is essentially the same as (3.5).
It follows from this Stokes’ theorem that the pairings

QM) ® Q" YM, L) — R
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and
QM) ® @M, L) — R
given by

w/\n—-»J. wA1
M

descend to cohomology.

Theorem 7.8 (Poincaré Duality). On a manifold M of dimension n with a finite
good cover, there are nondegenerate pairings

HYM) @ H" M, L)— R
and "

HYM) @ H""%M, L) - R.
R

ProoF. By tensoring the Mayer-Vietoris sequences (2.2) and (2.7) with
I'(M, L) we obtain the corresponding Mayer-Vietoris sequences for twisted
cohomology. The Mayer-Vietoris argument for Poincaré duality on an
orientable manifold then carries over word for word. O

Corollary 7.8.1. Let M be a connected manifold of dimension n having a finite
good cover. Then

H(M) = {

R if M is compact orientable
0 otherwise.

PrOOF. By Poincaré duality, H'(M) = H(M, L). Let {U,} be a coordinate
open cover for M. An element of HY(M, L) is given by a collection of
constants f, on U, satisfying

fa = (sgn J(gap)) f-

If f, = O for some «, then by the connectedness of M, we have f, = 0 for all
a. It follows that a nonzero element of H)(M, L) is nowhere vanishing.
Thus, HX(M, L) # 0 if and only if M is compact and L has a nowhere-
vanishing section, i.e., M is compact orientable. In that case,

HXM, L) = H(M) = R. a

Exercise 7.9. Let M be a manifold of dimension n. Compute the cohomol-
ogy groups HXM), H'(M, L), and HAM, L) for each of the following four
cases: M compact orientable, noncompact orientable, compact nonorient-
able, noncompact nonorientable.

Finally, we state but do not prove the Thom isomorphism theorem in all
orientational generality. Let E be a rank n vector bundle over a manifold
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M, and let {(U,, ¢,)} and g,, be a trivialization and transition functions for
E. Neither E nor M is assumed to be orientable. The orientation bundle of
E, denoted o(E), is the line bundle over M with transition functions
sgn J(g.,). With this terminology, the orientation bundle of M is simply the
orientation bundle of its tangent bundle T),. It is easy to see that when E is
not orientable, integration along the fiber of a form in Q% (E) does not yield
a global form on M, but an element of the twisted complex Q*(M, o E)).

Theorem 7.10 (Nonorientable Thom Isomorphism). Under the hypothesis
above, integration along the fiber gives an isomorphism

m,: HY*E) 5" HYM, o(E)).

Exercise 7.11. Compute the twisted de Rham cohomology H*(RP*, L).



CHAPTER II
The Cech-de Rham Complex

§8 The Generalized Mayer—Vietoris Principle

Reformulation of the Mayer—Vietoris Sequence
Let U and V be open sets on a manifold. In Section 2, we saw that the
sequence of inclusions
UuV«U]JVEUANYV
gives rise to an exact sequence of differential complexes
0-QU U V)- QU)X V) - QU N V)> 0

called the Mayer-Vietoris sequence. The associated long exact sequence
= H(U U V) S H(U)® HY(V) S H(U n V) SH* U O V) — -

allows one to compute in many cases the cohomology of the union U u V
from the cohomology of the open subsets U and V. In this section, the
Mayer-Vietoris sequence will be generalized from two open sets to count-
ably many open sets. The main ideas here are due to Weil [1].

To make this generalization more transparent, we first reformulate the
Mayer-Vietoris sequence for two open sets as follows. Let U be the open
cover {U, V}. Consider the double complex C*U,Q* = K=
@ CP(U, Q) where

K% = C%U, Q9 = QY(U) @ QU(V),
Kb = C\U, Q%) = QU n V),
KP4=0, p>2.

89
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q .
3 : :
2 | e o) | XU ~ v)

0
ar QU Q\V) | QYU A V)| 0
0| QUUY®QUV) | QU A V)| 0
0 1 2 P
']

This double complex is equipped with two differential operators, the
exterior derivative d in the vertical direction and the difference operator ¢ in
the horizontal direction. Of course, é is 0 after the first column. Because d
and ¢ are independent operators, they commute.

In general given a doubly graded complex K* * with commuting differ-
entials d and J, one can form a singly graded complex K* by summing
along the antidiagonal lines

1]

2
K= @ kr1 1

ptq=n
AN
)|

01 23 p

and defining the differential operator to be
D =D+ D" with D' = 4, D" = (—1)’d on KP1.

REMARK ON THE DEFINITION OF D.

If D were naively defined as D = d + 4, it would not be a differential oper-
ator since D? = 2dé # 0. However, if we alternate the sign of d from one
column to the next, then as is apparent from the diagram above,
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D*=d*>+6d—dé+6*=0.

In the sequel we will use the same symbol C*U, Q*) to denote the
double complex and its associated single complex. In this setup, the Mayer-
Vietoris principle assumes the following form.

Theorem 8.1. The double complex C*(U, Q*) computes the de Rham cohomol-
ogyof M:
Hp{C*(U, Q*)} ~ H3x(M).
PRrOOF. In one direction there is the natural map
r: Q¥M) - Q*U) @ Q%(V) = C*(U, Q*)

given by the restriction of forms. Our first observation is that r is a chain
map, i.e., that the following diagram is commutative:

Q" (M) s C*(U, Q¥)
d' [D
Q¥ (M) — U, Q).
This is because
Dr=(+(—1dyr [here p=0]
=dr
=rd.
Consequently r induces a map in cohomology
r* : Hia(M)— Hp{(C*(U, Q%)}.
q

p

A g-cochain a in the double complex C*(U, Q*) has two components
a=ao+a|, aoEKo", aleKl"'—l. *

By the exactness of the Mayer—Vietoris sequence there exists a § such that
0B = a;. With this choice of f, « — Df has only the (0, g)-component. Thus,
every cochain in C*(U, Q*) is D-cohomologous to a cochain with only the top
component. ‘
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We now show r* to be an isomorphism.

Step 1. r* is surjective.
By the remark above we may assume that a given cohomology class in

Hp{C*U, Q%)} is represented by a cocycle ¢ with only the top component.
In this case

D=0 ifand onlyif d¢ =é¢ =0.
So ¢ is a global closed form.

Step 2. r* is injective.

Suppose rw) = D¢ for some cochain ¢ in C*(U, Q*). Again by the
remark above we may write ¢ = ¢’ + D¢”, where ¢’ has only the top
component. Then

nw) = D¢’ =d¢’, §¢' =0.

So w is the exterior derivative of a global form on M.

-
" J
T

¢—--

Generalization to Countably Many Open Sets and Applications

Instead of a cover with two open sets as in the usual Mayer-Vietoris se-
quence, consider the open cover U = {U,},., of M, where the index set J is
a countable ordered set. Of course J may be finite. Denote the pairwise
intersections U, n Uy by U,,, triple intersections U, n Uy N U, by U
etc. There is a sequence of inclusions of open sets

afy>

0 i

M—Uy, % U Usa 2 1 Uuong'“

«—— ao<ay 3, %0<ai<a
—

where 0, is the inclusion which “ignores” the ith open set; for example,

00: Uspaya, & Uypa,

182
This sequence of inclusions. of open sets induces a sequence of re-
strictions of forms %
r % .‘_: s 4
Q* M) - []Q*U,) E{ “119'(%«.) 7 Il Q*Ueee) 3
. 1

% a<ai<a
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where d,, for instance, is induced from the inclusion

00: 11 Uspy — Uy,
and therefore is the restriction ‘
80:Q*(Up,) = [1 Q*(U,,).

We define the difference operator § : [[Q*(U,y,) = [IQ*(Uagar o2) to be the
alternating difference 6, — 6, + 8,. Thus

(‘SC)ao a2 — énaz - cao a2 + Elo ay*

More generally the difference operator is defined as follows.

Definition 82. If w e HQ"(U,O_”,'), then @ has “components” w,, . o, €
Q(U,...,) and

ptl
(6w)ao...¢,+ 1 =‘;°( - l)'wao...dl...a,+ 12

where on the right-hand side the restriction operation to U,,,. ,,,, has been
suppressed and the caret denotes omission. ’

Proposition 8.3. 62 = 0.

PRrOOF. Basically this is true because in (62w),o“_,'n we omit two indices
a;, o; twice with opposite signs. To be precise,

(62w)¢o...a,+1 = Z ("' l)‘(‘sw)ao...dl...a,+1
= jg[(_ l)‘(_ l)jmao...dj...m...c,¢3

+ Z(_ l)‘(— l)!- lwu...h...dl...u,oz

J>i
=0.
a

Convention. Up until now the indices in ,,.. ,, are all in increasing order
4o <... < a,. More generally we will allow indices in any order, even with
repetitions, subject to the convention that when two indices are inter-
changed, the form becomes its negative:

m...a...ﬂ.‘. = - w...ﬁ...a... .

In particular a form with repeated indices is 0. In the following exercise the
reader is asked to check that this convention is consistent with the defini-
tion of the difference operator é above.

Exercise 8.4. Suppose a < f. Then (éw). . ;.. ... may be defined either as
—{0w). 4...5... Or by the difference operator formula (8.2). Show that these
two definitions agree.



94 II The Cech-de Rham Complex

Proposition 8.5. (The Generalized Mayer-Vietoris Sequence). The sequence
0 — Q*M) 5 [[Q*(Uyy) 5 [10*(Usna,) 2+ [10*(Usgasar) 2

is exact; in other words, the 8-cohomology of this complex vanishes ident-
ically.

Proor. Clearly Q*(M) is the kernel of the first é since an element of
[1Q*U,,) is a global form on M if and only if its components agree on the
overlaps.

Now let {p,} be a partition of unity subordinate to the open cover
U={U,}. Suppose we[[Q*U,, ,,) is a p-cocycle. Define a (p — 1)-
cochain 7 by

ruo...u,-l = Z pawno...u,_r
a

Then
(61:)40...1, = z (- l)‘tdo...‘l...a‘,

Because w is a cocycle,
(6(0)“0...3, = wao.‘.a, + ; (— l)i+lw¢¢o...&i...a, =0.

So
(6t)ao,..a, = Z Pa Z (— l)‘wno...d(...a,

4 = Z pawao...a,

= wao...a,'

This shows that every cocycle is a coboundary. The exactness now follows
from Proposition 8.3. O

In fact, the definition of 7 in this proof gives a homotopy operator on the
complex. Write Ko for t:
(86) (Kw)ao.‘.a,-l = z pawaao...a,-l'
Then
(6Kw)ao...a, = Z (— l)i(Kw)ao...d(...a,
= Z ('— l)ipa wmo...dl...a,
(Ko0)g...ap = 2. Pl0D)ago. .,

= (Z pa)‘”ao...a, + Z (— l)H- lpawuao...al...a,

= wao...a, - (6Kw)ao...¢,'
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Therefore, K is an operator from HQ‘(U“.,_,’) to ]_[Q‘(U,om,’_l) such that
8.7 0K + Ké=1.

As in the proof of the Poincaré lemma, the existence of a homotopy oper-
ator on a differential complex implies that the cohomology of the complex
vanishes.

For future reference we note here that if ¢ is a cocycle, then by (8.7),
6K¢ = ¢. So on cocycles K is a right inverse to 8. Given such ¢, the set of all
solutions ¢ of ¢ = ¢ consists of K¢ + 5-coboundaries.

The Mayer-Vietoris sequence may be arranged as an augmented double
complex

q

0 — QM) -

KO, 2

Kl_,2

0—-Q'(M)

KO. 1

Kl.l

0 — QM) -

KO, 0

KI.O

where K?1 = CP(U, Q) = HQ"(U“_N,P) consists of the “p-cochains of the
cover U with values in the g-forms.” The horizontal maps of the double
complex are the difference operators § and the vertical ones the exterior
derivatives d. As before, the double complex may be made into a single
complex with the differential operator given by

D=D +D"=6+(—1)d
A D-cocycle is a string such as ¢ = a + b + ¢ with

q
da=0, 0
i
da = +db ap.
b= +dc bl
+-
oc = 0, c+0

p

(To be precise we should write 6a = —D"b, 6b = — D"c.) So a D-cocycle
may be pictured as a “zig-zag.”
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A D-coboundary is a string such as ¢ = a + b + ¢ in the figure below,
where a = éa, + D"a,, etc.

q
0
+
a1 a
i +
az—" b
+
ag‘“" 4
i

a4"'>0

The double complex

Cc*Uu, Q%)= @ CU, Q9
p.q20
is called the Cech-de Rham complex, and an element of the Cech—dg Rham
complex is called a Cech—de Rham cochain. We sometimes refer to a Cech—de
Rham cochain more simply as a D-cochain.
The fact that all the rows of the augmented complex are exact is the key
ingredient in the proof of the following,

Proposition 8.8 (Generalized Mayer-Vietoris Principle). The double com-
plex C*(U, Q*) computes the de Rham cohomology of M ; more precisely, the
restriction map r : Q*(M) — C*U, Q*) induces an isomorphism in cohomol-
ogy:

r* : H5x(M) - Hp {C*(U, Q*)}.
PROOF. Since Dr = (6 + d) r = dr = rd, r is a chain map, and so it induces a
map r* in cohomology.

Step 1. r* is surjective.

q q
* *
* * 0
sof ething - 0 0
p

Let ¢ be a cocycle relative to D. By d-exactness the lowest component of
¢ is 6 of something. By subtracting D(something) from ¢, we can remove
the lowest component of ¢ and still stay in the same cohomology class as ¢.

p
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After iterating this procedure enough times we can move ¢ in its cohomol-
ogy class to a cocycle ¢’ with only the top component. ¢’ is a closed global
form because d¢’ = 0 and 6¢’ = 0. '

Step 2. r* is injective.

I 2
00— QM) — 0— QM) >
0> QM)— | = 0-QM)— | ¢
. 0
* 0
p P

If (w) = D¢, we can shorten ¢ as before by subtracting boundaries until
it consists of only the top component. Then because d¢ is 0, it is actually a
global form on M. So w is exact. 4d

The proof of this proposition is a very general argument from which we
may conclude: if all the rows of an augmented double complex are exact, then
the D-cohomology of the complex is isomorphic to the cohomology of the
initial column.

It is natural to augment each column by the kernel of the bottom d,
denoted C*(U, R). The vector space C?(U, R) consists of the locally constant
functions on the (p + 1)-fold intersections U

@0...ap*

q
0 - QXM | [10%U,,)

0- QM) — | [Ie'(U,,)

0- QO(M ) — HQO(Uao) HQO(UIO n) HQ"(U“ ay az)

i i T b
C°4,R) —» C'(U,R) — CHY, R)—
1 1 1

0 0 0
The bottom row
oW, R) S C'(u, R) > XU, R) 5

is a differential complex, and the homology of this complex, H*(U, R), is
called the Cech cohomology of the cover U. This is a purely combinatorial
object. Note that the argument for the exactness of the generalized Mayer-
Vietoris sequence breaks down for the complex C*(U, R), because here the
cochains are locally constant functions so that partitions of unity are not
applicable.

If the augmented columns of the complex C*(U, Q*) are exact, then the
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same argument as in (8.8) will yield an isomorphism between the Cech
cohomology and the cohomology of the double complex

H*U, R) > Hy{C*U, Q%)},

and consequently an isomorphism between de Rham cohomology and Cech
cohomology
H3e(M) ~ H*U, R).

Now the failure of the p™ column to be exact is measured by the coho-
mology groups
[1 HW,...)
q21
a0 < <ap
So if the cover is such that all finite nonempty intersections are contractible,

e.g., a good cover, then all augmented columns will be exact. We have
proven

Theorem 8.9. If U is a good cover of the manifold M, then the de Rham
cohomology of M is isomorphic to the Cech cohomology of the good cover

H}x(M) ~ H*U, R).

Let us recapitulate here what has transpired so far. First, the basic
sequence of inclusions :

-
MUEUyxzE Ugy & -
gives rise to the diagram
differential
geometry of 0 — Q*(M) = C*U, Q%)
forms
i
C*U, R)
1
0
combinatorics

of the cover

Along the left-hand side is the differential geometry of forms on M, along
the bottom is the combinatorics of the cover U = {U,}, and in the double
complex itself the two are mixed. As the complex is the generalized Mayer—
Vietoris sequence, the augmented rows are exact, for any cover. It follows
that the de Rham cohomology of M is always isomorphic to the cohomol-
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ogy of the double complex:
Hpg(M) ~ Hp {C*(U, Q%)}.

If in addition U is a good cover, then by the Poincare lemma the
augmented columns are exact. In that case the Cech cohomology of the
cover is also isomorphic to the cohomology of the double complex:

H*U, R) ~ Hp {C*(U, Q%)}.

Hence there is an isomorphism between de Rham and Cech. This result
provides us with a way of computing the de Rham cohomology by means
of combinatorics, since from Section 5 we know that every manifold has a
good cover. All three complexes here can be given product structures, in
which case the isomorphisms between them are actually isomorphisms of
algebras, as will be shown in (14.28).

A priori there is no reason why different covers of M should have the
same Cech cohomology. However, it follows from Theorem 8.9 that

Corollary 89.1. The Cech cohomology H*(, R) is the same for all good
covers U of M.

If a manifold is compact, then it has a finite good cover. For such a cover
the Cech cohomology H*(U, R) is clearly finite-dimensional. Thus,

Corollary 8.9.2. The de Rham cohomology H¥g(M) of a compact manifold is
finite-dimensional.

In fact,

Corollary 8.9.3. Whenever M has a finite good cover, its de Rham cohomology
H¥:(M) is finite-dimensional.

Both the proof here'and the induction argument in Section 5 of the finite
dimensionality of the de Rham cohomology rest on the Mayer-Vietoris
sequence, but they are otherwise independent of each other.

§9 More Examples and Applications of the
Mayer-Vietoris Principle

In thte previous section we used the Mayer-Vietoris principle to show the
isomorphism of the de Rham cohomology of a manifold and the Cech
cohomology of a good cover; from this, various corollaries follow. In this
section, after some examples in which the combinatorics of a good cover is
used to compute the de Rham cohomology, we give an explicit isomor-
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phism from Cech to de Rham: given a Cech cocycle, we construct the
corresponding global closed differential form by means of a collating for-
mula (9.5) based on the homotopy operator K of (8.6). To conclude the
section, we give as another application of the Mayer—Vietoris principle a
proof of the Kiinneth formula valid under the hypothesis that one of the
factors has finite-dimensional cohomology.

Examples: Computing the de Rham Cohomology from the
Combinatorics of a Good Cover

Let U = {U,} be an open cover of a manifold M. The nerve of U is a
simplicial complex constructed as follows. To every open set U,, we associ-
ate a vertex a. If U, n U, is nonempty, we connect the vertices  and f
with an edge. If U, n U, n U, is nonempty, we fill in the face of the
triangle afly. Repeating this procedure for all finite intersections gives the
nerve of U, denoted N(U). For the basics of simplicial complexes, see Croom

[1.
EXAMPLE 9.1 (The circle). Let U = {U,, U,, U,} be the good cover of the
circle as shown in Figure 9.1. The Cech complex has two terms:
C'U, R =RP R R={(wo, wy, )| w, is a constant on U},
C'U,R) =R @ R D R={(to1, Moz, M12)| M is a constant on U,g}.

Uo

U

U,
Figure 9.1

The coboundary § : C° — C! is given by (dw),s = w; — w,. Therefore,
ker & = {(wo, @1, W) Wo = 0, = W} =R
and
HOSY) = R.
Since im § = R?, H'(S') = R¥im § = R.
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ExAMPLE 9.2 (A nontrivial 1-cocycle on the circle). If a 1-cocycle n = (10,
No2, N12) is a coboundary, then ng; — no2 + 71,2 =0. So n=(1,0, 0) is a
nontrivial 1-cocycle on the circle.

ExAMPLE 9.3 (The 2-sphere). Cover the lower hemisphere of Figure 9.2 with
three open sets as in Figure 9.3. Together with the upper hemisphere U,,
this gives a good cover of the entire sphere. The nerve of the cover is the
surface of a tetrahedron as depicted in Figure 9.4. The Cech complex has

Figure 9.2

U,
U,
Figure 9.3

VAN
<

Figure 9.4
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three terms:

8,
oM, m) 5 cam 2 caw
1l I Il

R@R@R@R RORPROROPRER RORDROR

0 3 01 02 03 12 13 23 o012 013 023 123
ker 3 = {(wo, @1, W3, ©3)|Wp = 0y = W; = w3} =
So im 8, = R® and H%S%) = R. If n is in ker §,, then n is completely
determined by 704, 102, and 703 . Therefore ker §, = R* and
H'(S?) = ker 6,/im 8, = 0.
Since im 6, = C'/ker 6, = R?,
H*8%) = R*/im 6, = R.

Explicit Isomorphisms between the Doub]e Complex and de Rham
and Cech

We saw in Proposition 8.8 that the Cech-de Rham complex C*U, Q*)
and the de Rham complex Q*(M) have the same cohomology. Actually,
what is true is that these two complexes are chain homotopic. To be more
precise, there is a chain map
(9.9 [ CHU, Q%) — Q%M)
such that
@) for=1,and
(b) r o fis chain homotopic to the identity.

We may think of f as a recipe for collating together the components of a
Cech—de Rham cochain into a global form. The not very intuitive formulas

below were obtained, after repeated tries, by a careful bookkeeping of the
inductive steps in the proof of Proposition 8.8.

Proposition 9.5 (The Collating Formula). Let K be the homotopy operator
defised in (8.6). If « = Y 7 a; is an n-cochain and Da = f = Y 124 B;, then

n+1
Sfla) = Z (=D"K)a; — Z K(—D"K)~'8,e COU, QY
is a global form satisfying the properties above. The homotopy operator
L: C*U, Q*)— C*U, Q%)
such that 1 —r o f= DL + LD is given by

n-1

Le= Y (La),,

p=0
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where

(La)p = Z K(_DI'K)i-(P+ l)ai e Cp(u, Q- 1 —p).

i=p+1

Bo
% | By

az | Bs

o, ﬁn+l

REMARK. To strip away some of the mysteries in the expression for f(a), it
may be helpful to observe that the operator D"K sends an element of
CPU, Q9 into CP~1(U, Q**"), so that (D"K)'x; and K(D"K)'~'§; are col-
lections of n-forms on the open sets U,. The collating formula says that a
suitable linear combination of these local n-forms, with +1 as coefficients,
is the restriction of a global form.

The proof of Proposition 9.5 requires the following technical lemma.

Lemma 9.6. Fori> 1,
6(D”K)i = (D"K)i 5 _ (DHK)i— an'

PrROOF OF LEMMA 9.6. Since:- § anticommutes with D” and since
K + Ké =1,

S(D"KXD"K)' "' = —D"8K(D"K) ™!
= —D"(1 — K8)D"K)'"!
= (D"K)8(D"K) ~".
So we can commute D”K and é until we reach (D"K)*~'§(D"K). Then,
d(D"K) = (D"K)'~'6(D"K)
= —(D"K)Y~'D"(1 — K§)
= —(D"K)'"'D" + (D"K)s. |
PRrROOF OF PROPOSITION 9.5. To show that f(«) is a global form, we compute

0f (). Using the lemma above and the fact that da; + D"a;4; = fi4y, thisis
a straightforward exercise which we leave to the reader.
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Exercise 9.7. Show that §f () = 0.
Next we check that fis a chain map.

n+1

f(Da)=f(B) = _Z,o( —D(D"KyB:.

n+l

df (@) = D’f(0) = Bo + l;(— 1(D"KY'B;.
So
S (Do) = df ().

The verification of Property (a) is easy, since if « is a global form, then
a = ag and

for@)=f@) =0 =ua
Property (b) follows from the fact that
1—rof=DL+LD.

As its verification is straightforward and not very illuminating, we shall
omit it. The skeptical reader may wish to carry it out for himself Apart
from the definitions, the only facts needed are Lemma 9.6 and the chain-
homotopy formula (8.7). a

REMARK. Actually the existence of the chain-homotopy inverse f and the
homotopy operator L is guaranteed by a general principle in the theory of
chain complexes (See Spanier [1, Ch. 4, Sec. 2; in particular, Cor. 11,
p. 167]).

We can now give an explicit description of the various isomorphisms
that follow from the generalized Mayer-Vietoris principle. For example, by
applying the collating formula (9.5), we get

Proposition 9.8 (Explicit Isomorphism between de Rham and Cech). Ifn e
C"(U, R) is a Cech cocycle, then the global closed form corresponding to it is
given by f(n) = (—1)(D"K)" n.

ExAMPLE 9.9. Let U be a good cover of the circle S!. We shall construct
from a generator of the Cech cohomology H'(U, R) a differential form
representing a generator of the de Rham cohomology H)x(S?).

As we saw in Example 9.2, a nontrivial 1-cocycle on S! is

n = (Mo1> Moz, M12) = (1, 0, 0).
If {p, } is a partition of unity, then
Kn =(=py, po, 0).
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So the generator —D"Kn of Hpg (S') is represented by —d(—p,), a bump
form on Uy n U, with total integral 1.

Exercise 9.10. The real projective plane RP? is obtained by identifying the
boundary of a disc as shown in Figure 9.5. Find a good cover for RP? and

Figure 9.5

compute its de Rham cohomology from the combinatorics of the cover.
One possible good cover has the nerve depicted in Figure 9.6.

Figure 9.6

Exercise 9.11. Let Figure 9.7 be the nerve of a good cover U on the torus,
where the arrows indicate how the vertices are ordered. Write down a
nontrivial 1-cocycle in C'(!f, R).

The Tic-Tac-Toe Proof of the Kiinneth Formula

We now apply the main theorems of the preceding section to give another
proof of the Kiinneth formula. This proof, admittedly more involved in its
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Figure 9.7

construction than the Mayer—Vietoris argument of Section 5, is a prototype
for the spectral sequence argument of Chapter III It will also allow us to
replace the requirement that M has a finite good cover by the slightly
weaker hypothesis that F has finite-dimensional cohomology.

Before commencing the proof we make some general remarks about a
technique for studying maps. Let n: E — M be a map of manifolds. A
cover U on M induces a cover #~ U on E, and we have the inclusions

E-lln'U, eln UL E -

n

M‘—]_IU, :Uuaﬁ E

In general U, n Uy # ¢ is not equivalent to n~'U, n n~'U, # ¢. How-
ever, if n is surjective, then the two statements are equivalent, so that in this
case the combinatorics of the covers U and =~ ' are the same. The double
complex of the inverse cover computes the cohomology of E, which can
then be related to the cohomology of M, because the inverse cover comes
from a cover on M. This idea will be systematically exploited throughout
this chapter and the next.

A quick example of how the inverse cover n ‘u may be used to study
maps is the following. Note that although the inverse image of a good cover
is usually not a good cover, for a vector bundle n: E— M the “goodness”
of the cover is preserved. Since the de Rham cohomology is determined by
the combinatorics of a good cover, this implies that

HBR(E) ~ Hpp(M).
Of course, this also follows from the homotopy axiom for the de Rham
cohomology (Corollary 4.1.2.2).

Proposition 9.12 (Kiinneth Formula). If M and F are two manifolds and F
has finite-dimensional cohomology, then the de Rham cohomology of the prod-
uct M x F is

H*M x F) = H¥M) ® H*(F).
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ProoF. Let U = {U,} be a good cover for M and n: M x F— M the pro-
jection onto the first factor. Then n~'U = {a~'U,} is some sort of a cover
for E = M x F, though in general not a good cover. There is a natural map

C*n~'u, Q%)
7“

c* U, Q%)

which pulls back differential forms on open sets. Choose a basis for H*(F),
say {[,]}, and choose differential forms w, representing them. These may
be used to define a map of double complexes

C*n 'Y, Q%)

-

H*F) @ C*U, Q*)
by
mi(wd @ ¢) = p*w,An*é
where p is the projection on the fiber

p

E F

1
M.

Since H*(F) is a vector space, H*(F) @ C*({, Q*) is a number of copies of
C*(U, Q%) and the differential operator D on the double complex C*(U, Q*)
induces an operator on H*(F) ® C*(U, Q*) whose cohomotogy is

H*F) ® Hp{C*U, Q*)} = H*F) @ H*M).
Since the D-cohomology of C*(n~'U, Q*) is H*(E), if we can show that
C*n~ U, Q%)

i

H*(F) @ C*(Uu, Q*
induces an isomorphism in D-cohomology, the Kiinneth formula will

follow.
The proof now divides into two steps:

Step 1.
For a good cover U, the map n§ induces an isomorphism in H, of these
complexes.
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Step 2.

Whenever a homomorphism f:K— K' of double complexes induces
Hisomorphism, it also induces Hp-isomorphism. (By a homomorphism of
double complexes, we mean a vector-space homomorphism which preserves
bidegrees and commutes with d and 4.)

PROOF OF STEP 1. The p* column CP(n~'U, Q*) consists of forms on the
(p + 1)-fold intersections ].ln"‘U,om” and C?’(U, Q*) consists of forms on
HU,, ..., The d-cohomology of C?(n~'U, Q*)is

©0121)  [IH*'U,...,) = H* (A [] H* (U,

the isomorphism being given by the wedge product of pullbacks. So =}
induces an isomorphism of the d-cohomology of C*@n~'U, Q*) and
HYF) @ C*(4,Q*). 0

Exercise 9.13. Give a proof of Step 2.

REMARK. This argument for the Kiinneth formula also proves the Leray-
Hirsch theorem (5.11), but again instead of assuming that M has a finite
good cover, we require the cohomology of F to be finite-dimensional. If
both M and F have infinite-dimensional cohomology, the isomorphism in
(9.12.1) may not be valid.

The following example shows that some sort of finiteness hypothesis is
necessary for the Kiinneth formula or the Leray-Hirsch theorem to hold.

ExAMPLE 9.14 (Counterexample to the Kiinneth formula when both M and
F have infinite-dimensional cohomology). Let M and F each be the set Z*
of all positive integers. Then

HM x F) = {square matrices of real numbers (a;), i, j € Z*}.

But H(M) ® H°(F) consists of finite sums of matrices (a;)) of rank 1. These
two vector spaces are not equal, since a finite sum of matrices of rank 1 has
finite rank, but H%M x F) contains matrices of infinite rank.

§10 Presheaves and Cech Cohomology

Presheaves

The functor Q*( ) which assigns to every open set U on a manifold the
differential forms on U is an example of a presheaf. By definition a presheaf
F on a topological space X is a function that assigns to every open set U in
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X an abelian group #(U) and to every inclusion of open sets
ig:V-U
a group homomorphism, called the restriction,
Flig) : F(U) - #F(V)
satisfying the following properties:

(a) #(iy) = identity map .
(b) transitivity: F (i) F(i) = F (7).

The restriction #(iy) : F(U) — F(V) is often denoted py. A homomorphism
of two presheaves, f: % — ¥, is a collection of maps f, : F(U) — 4(U)
which commute with the restrictions:

Ju
FU)—-%U)

Pyl | p¥
F(V) —4(V)

Sv

Let Open(X) be the category whose objects are the open sets in X and
whose morphisms are inclusions of open sets. In functorial language, a
presheaf is simply a contravariant functor from the category Open(X) to the
category of Abelian groups, and a homomorphism of two presheaves,
f:F — ¥, is a natural transformation from the functor # to the functor 4.

We define the constant presheaf with group G to be the presheaf # which
associates to every open set U the locally constant functions: U — G, and to
every inclusion of open sets V < U the restriction of functions: #(U) —» #(V).

ExaMPLE. By abuse of notation, the constant presheaf with group R will also
be denoted by R.

ExaMPLE 10.1. Let n: E — M be a fiber bundle with fiber F. Define a presheaf
#?on M by #YU) = H(n"'U), and if V < U is an inclusion, let

pY HY(n~'U) > HYn~'V)

be the natural restriction map. For U contractible, n"'U ~ U x F, so by the
Kiinneth formula

H#YU) ~ H(U x F) ~ HYF).
Moreover, if V< U is an inclusion of contractible open sets, then

py : Hi(n~'U) » H%n~'V) is an isomorphism. The presheaf 5 is an example
of a locally constant presheaf on a good cover, to be defined in Section 13.
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Cech Cohomology

Let U ={U,},., be an open cover of the topological space X. The 0-
cochains on U with values in the presheaf # are functions which assign to
each open set U, an element of #(U)), ie., C°M, #)=T11,., #(U,). Sim-
ilarly the 1-cochains are elements of

C'\U, #F) =[] #FWU, N Uyp)
a<p
and so on. -
The sequence of inclusions

U, SuU, <
- ...
u;—' ¢ﬂ‘_

gives rise to a sequence of group homomorphisms
|JEQUARY JECUMESEY

We define §: C?(u, F) - C?*}(U, &) to be the alternating difference of
the % (4d,)’s; for example,

5:CoU, F) - C'(U, F)

is given by
0 = F(0o) — F(0,).
In general
5:C°(U, F) - C**'\(U, F)
is given by

0=F0) = FO)+  + (=)' F(G,41).
Explicitly, if w e C(U, &), then

p+l

(102) (50)):0...:,” = '20 (_ 1)‘w¢;...d,...¢,.l'

where on the right-hand side the restriction of w,, ..o, ...q,., t0 Usg...q,., 18
suppressed. It follows from the transitivity of the restriction homomorphism
that 62 = 0 (proof as in Proposition 8.3). Thus C*(l, #) is a differential
complex with differential operator 6. The cohomology of this complex,
denoted by H;C*(U, &) or H*U, #), is called the Cech cohomology of the
cover U with values in &

REMARK. 10.3. If # is a covariant functor from the category Open(X) to the
category of Abelian groups, and U is an open cover of X, one can define
analogously a chain complex C (U, #) and its homology H (!, #). Apart
from the direction of the arrows, the only difference from the case of a



§10 Presheaves and Cech Cohomology 111

presheaf is in the definition of the coboundary operator & G, U, F) >
C,-1(U, F), which is now given by

ag...

(8"’)"‘0“""4:Zwaao...a‘,_le‘g‘(u al,_l)‘

One verifies easily that this § also satisfies 62 = 0. The functor H'? which

associates to every open set U on a manifold the compact cohomology
HYU) is covariant.

Because of the antisymmetry convention on the subscripts, in this for-
mula there is no sign in the sum. Of course, if we had written each term
Wy ...q,, With the subscript « inserted in the i-th place, then there would be
a Sign: Zi (_ l)iwao,..a ap-

. @p-1°

Returning to the discussion of the Cech cohomology of a presheaf %,

recall that the cover B = {Va}pe. is a refinement of the cover U = (U, Yaers

written U < B, if there is a map ¢:J -1 such that VaC Uy () The
refinement ¢ induces a map

¢*:CIU, F) > CY(B, F)
in the obvious manner:
(9%0)(Vg,...5,) = “(U¢(ﬁo)...¢(ﬂ,))-

Lemma 10.4.1. ¢* is a chain map, i.e., it commutes with 8.

PROOF.  (8(¢* W)V, .. ,..) = Y~ 1)(¢* ) Veo..b.8,.)

= (= V' Ugyg,. disy.. o8,.0)
(¢*6w)(V,o B+ )= (5¢0)(U¢(po) v PBg+ )

=Y(- AU gy ... sty e dBgs )
a

‘Lemma 10.4.2. Given U = {Uslaer an open cover and B = {Vilses a re-

Sfinement, if ¢ and Y are two refinement maps: J — I, then there is a homotopy
operator between ¢* and y*.

ProOF. Define K : C(U, #) —» C*~}(B, #) by
(KX Vpo wr Bq- J= Z( - l)i“’(ch(no) v BBV ... W(Bg- .))'
Exercise 10.5. Show that

Y* — ¢* = 6K + Ko.
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A direct system of groups is a collection of groups {G,}, <, indexed by a
directed set I such that for any pair a < b there is a group homomorphism
f&:G, > G, satisfying

(1) f7=identity,
Q) fo=flofiifa<b<ec

On the disjoint union [IG; we introduce an equivalence relation ~ by
decreeing two elements g, in G, and g, in G, to be equivalent if for some
upper bound ¢ of a and b, we have f°(g,) =f2(g,) in G.. The direct limit
of the direct system, denoted by lim, ., G,, is the quotient of LIG; by the
equivalence relation ~ ; in other words, two elements of L1G; represent the
same element in the dlrect limit if they are “eventually equal”. We make
the direct limit into a group by defining [g,] +[g,) —[f"(ga)«l-f (9,)),
where [g,] is the equivalence class of g,.

It follows from the two lemmas above that if U < B, then there is a
well-defined map in cohomology

H* (1, F) > H*(B, F),

making { H*(U, )}, into a direct system of groups. The direct limit of
this direct system
H*X, #) = lim H*U, ¥)
u

is the Cech cohomology of X with values in the presheaf #.

Proposition 10.6. Let R be the constant presheaf on a manifold M. Then the
Cech cohomology of M with values in R is isomorphic to the de Rham
cohomology.

ProoF. Since the good covers are cofinal in the set of all covers of M
(Corollary 5.2), we can use only good covers in the direct limit

H*M, R) = lim H*(l, R).
u
By Theorem 8.9,
H*(U, R) >~ Hpx(M)

for any good cover of M. Moreover, it is easily seen that this isomorphism is

compatible with refinement of good covers. Therefore, there is an isomorphism
H*(M, R) >~ Hp(M).

a

Exercise 10.7 (Cohomology with Twisted Coefficients). Let # be the presheaf
on S! which associates to every open set the group Z. We define the
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restriction homomorphism on the good cover U = {U,, U,, U,} (Figure
10.1) by

PoL =por =1,

pla=pl2=1,

Ptzu = -1, sz =1,

where p, is the restriction from U, to U,N U. Compute H*(U, F),
(Cft. presheaf on an open cover, p. 142.)

Uy

U,

U,
Figure 10.1

§11 Sphere Bundles

Let n: E—+ M be a fiber bundle with fiber the sphere S", n > 1. As the
structure group we normally take the largest group possible, namely the
diffeomorphism group Diff{S"), but sometimes we also consider sphere bun-
dles with structure group O(n + 1). These two notions are not equivalent;
there are examples of sphere bundles whose structure groups cannot be
reduced to the orthogonal group. Thus, every vector bundle defines a
sphere bundle, but not conversely. By the Leray-Hirsch theorem if there is a
closed global n-form on E whose restriction to each fiber generates the
cohomology of the fiber, then the cohomology of E is

H*(E) = H¥M) ® H*(S").

It is therefore of interest to know when such a global form exists.
In Section 6 we constructed the global angular form y on a rank 2

vector bundle with structure group SO(2). This-form § was seen to have the
following two properties:

(a) y restricts to the volume form on each fiber, i.e., a generator of H3(fiber)
(b) dyy = —n*e

where e is the Euler class. Exactly the same procedure defines the angular
form and the Euler class of a circle bundle with structure group SO(2).
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Consequently, for such a bundle also, if the Euler class vanishes, then y is
closed and satisfies the condition of the Leray-Hirsch theorem.

We now consider more generally a sphere bundle with structure group
Diff(S") or O(n + 1). We will see that the existence of a global form as above
entails overcoming two obstructions: orientability and the Euler class.

Orientability

In this section the base space of the bundle is assumed to be connected. A
sphere bundle with fiber §%, n > 1, is said to be orientable if for each fiber F,
it is possible to choose a generator [o,] of H"(F,)satisfying the local com-
patibility condition: around any point there is a neighborhood U and a
generator [o,] of H*(E|y) such that for any x in U, [a,] restricted to the
fiber F, is the chosen generator [os.]; equivalently, there is an open
cover {U,} of M and generators [o,] of HYE|y) so that [¢,] = [g,s] in
Hn(E IU. ) U‘)'

Since a generator of the top cohomology of a fiber is an n-form with
total integral 1, there are two possible generators, depending on the orienta-
tion of the fiber. A priori all that one could say is that [¢,] = +[0s] on
U, n Ug. For an orientable sphere bundle either choice of a consistent
system of generators is called an orientation of the sphere bundle. A bundle
with a given orientation is said to be oriented. An S°-bundle over a mani-
fold M is a double cover of M; such a bundle over a connected base space

is said to be orientable if and only if the total space has two connected
components.

CAVEAT. The fact that the cohomology classes {[o.]} agree on overlaps
does not mean that they piece together to form a global cohomology class.
A global cohomology class must be represented by a global form; the
equality of cohomology classes [o,] = [o5] implies only that the forms o,
and g, differ by an exact form.

Recall that in Section 7 we called a vector bundle of rank n + 1 orient-
able if and only if it can be given by transition functions with values in
SO(n + 1). We now study the relation between the orientability of a sphere
bundle and the orientability of a vector bundle.

Let. E be a vector bundle of rank n + 1 endowed with a Riemannian
metric so that its structure group is reduced to O(n + 1). Its unit sphere
bundle S(E) is the fiber bundle whose fiber at x consists of all the unit
vectors in E, and whose transition functions are the same as those of E.
S(E) is an S$"-bundle with structure group O(n + 1).

ReMARK 11.1. Fix an orientation on the sphere S". If the linear trans-
formation g is in the special orthogonal group SO(n + 1) and [o] is a
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generator of H*(S") with fs- o = 1, then the image g(5") is the sphere S" with
the same orientation, so that

[ioro=] a=f o=t

Thus for an orthogonal transformation g, g*c and o represent the same
cohomology class if and only if g has positive determmant

Proposition 11.2. 4 vector bundle E is orientable if and only if its sphere
bundle S(E) is orientable. .

PROOF. (=>) Fix a generator ¢ on S" and fix a trivialization {(U,, ¢,)} for E
so that the transition functions g,; assume values in SO(n + 1). Let
Pe:U, x S"— S

be the projection and let n~'(x) be the fiber of th= sphere bundle
n:S(E)— M at x. Define [¢,] in HY(S(E)|y,) by

[o.] = ¢2 pZ[0].

To avoid cumbersome notations we will write [¢,]|, and ¢,|, for the re-
strictions [6,] |- 1(x) and ¢, |,-1(x respectively. Then for every x in U,,

Lo s = ($al*[0]:
For xe U,n U,
[op]lx = [o ]I,
iff (85l0*[0] = (4al)*[0]
iff [0] = ((¢5])*) ' (@al)*[0]
iff [o] = g.p(x)*[0].

Since g,4(x) has positive determinant, [¢] = g,4(x)*[s] by (11.1). Therefore,
[os] = [0.] on U, N U, and the sphere bundle S(E) is orientable.

(=) Conversely, let {U,, [0.]} be an orientation on the sphere bundle S(E)
and let (5", o) be an oriented sphere in R"*!, where ¢ is a nontrivial top
form on S”. Choose the trivializations for S(E)

¢¢ :S(E)lu. — Ua x §"

in such a way that ¢, preserves the metric and ¢? p*[c]=[0,]. Then at any
point x in U, n Uy, the transition function g,s(x) pulls [a] to itself and so
g.p(x) must be in SO(n + 1). a

REMARK 11.3. Since SO(1) = {1}, a line bundle L over a connected base
space is orientable if and only if it is trivial. In this case the sphere bundle
S(L) consists of two connected components.
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Proposition 11.4. A vector bundle E is orientable if and only if its determinant
bundle det E is orientable.

PROOF. Let {g,5} be the transition functions of E. Then the transition func-
tions of det E are {det g,4}. An orthogonal matrix g,; assumes values in
SO(n + 1) if and only if det g, is positive, so the proposition follows.

a

Whether E is orientable or not, the 0-sphere bundle S(det E) is always a
2-sheeted covering of M. Combining Corollary 11.3 and Proposition 11.4,
we see that over a connected base space a vector bundle E is orientable if
and only if S(det E) is disconnected. Since a simply connected base space
cannot have any connected covering space of more than one sheet, we have
proven the following.

Proposition 11.5. Every vector bundle over a simply connected base space is
orientable.

In particular, the tangent bundle of a simply connected manifold is
orientable. Since a manifold is orientable if and only if its tangent bundle is
(Example 6.3), this gives

Corollary 11.6. Every simply connected manifold is orientable.

The Euler Class of an Oriented Sphere Bundle

We first consider the case of a circle bundle n : E — M with structure group
.Diff(S*). As stated in the introduction to this section, our problem is to find
a closed global 1-form on E which restricts to a generator of the cohomol-
ogy on each fiber. As a first approxnmatlon in each U, of a good cover {U }
of M we choose a generator [g,] of H'(E|y). Thc collection {s,} is an
element ¢°! in the double complex C*(x ™', Q*):

a-o.l—h——

i

—e

From the isomorphism between the cohomology of E and the cohomology
of this double complex,
H3R(E) ~ Hp {C*(z™ U, Q¥)},

we see that to find a global form which restricts to the d-cohomology class
of 6% it suffices to extend 0%! to a D-cocycle. The first step of the exten-
sion requires that (66*'),s = 0, — g, be exact, ie., [a,] = [o,] for all a, B.
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This is precisely the orientability condition. Assume the bundle E to be
oriented with orientation ¢®!, so that d¢%! = dg!® for some o' in
C'(n~'U, Q°). Then ¢°! + ¢! is a D-cocycle if and only if d¢**° = 0. Since

d(6"%) = 6(do"%) = 5(50°1) = 0,

da'® actually comes from an element —¢ of the cochain group C}(n~'U,
R). Now since the open covers U and 7~ 'U have the same combinatorics,
ie, 17 U, ,, is nonempty if and only if U,,_, is, C*(zx~'U, R) = C*(U, R)
and we may regard ¢ as an element of C*(U, R) In fact, because de =0, e
defines a Cech cohomology class in H3(U, R). By the isomorphism between
the Cech cohomology of a good cover and de Rham cohomology, & corre-
sponds to a cohomology class e(E) in H*(M). For a circle bundle with
structure group SO(2), this class turns aut to be the Euler class of Section 6,
as will be shown later. So for an oriented circle bundle E with structure
group Diff(S!) we also call e(E) the Euler class.

The discussion above generalizes immediately to any sphere bundle with
fiber S”, n > 1. Such a sphere bundle is orientable if and only if it is possible
to find an element ¢%" in Co%n~'U, Q") which extends one step down
toward being a D-cocycle:

8% " = do.l.n-—l = —D"'gt"1

4 , oﬁ.o

L
1
—n*
There is no obstruction to extending o' "~ one step further, since every
closed (n — 1)-form on E|y,, ,, ., is exact. In general, extension is possible
.until we hit a nontrivial cohomology of the fiber. Thus for an oriented

sphere bundle E we can extend all the way down to ¢™° in such a manner
that if

0= 60.:1 + o.l,u-lu_*_ e +o,n.0’
then

Do = 6a™°.
Since d(6c™ °) = 8(da™®) = +6(c" ') =0,
Do = 60™° = i(—é)
for some ¢ in C"*'(n”'U, R)~C"*'(U, R), where i is the inclusion

C*(n™'U, R) » C**!(n~'U, Q°). Clearly &¢ = 0, so & defines a cohomology
class e(E) in H**'(U, R) ~ H"*'(M), the Euler class of the oriented S*-bundle E
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with orientation ¢% ". The Euler class of an oriented S°-bundle is defined to
be 0. Note that the Euler class depends on the orientation {[s,]} of E; the
opposite orientation would give — e(E) instead.

If E is an oriented vector bundle, the complement E° of its zero section
has the homotopy type of an oriented sphere bundle. The Euler class of E is
defined to be that of E°. Equivalently, if E is endowed with a Riemannian
metric, then the unit sphere bundle S(E) of E makes sense and we may
define the Euler class of E to be that of its unit sphere bundle. This latter
definition is independent of the metric and in fact agrees with the definition
in terms of E°, since for any metric on E, the unit sphere bundle S(E) has
the homotopy type of E°.

In the next two propositions we show that the Euler class is well defined.

Proposition 11.7. For a given orientation {[a,]} the Euler class is independent
of the choice of ¢*" 7, j=0,...,n.

PROOF.

!
]

*
ol

)

|
|i i
T —&

Let %" be another cochain in C°(n~'U, Q") which represents the orien-

tation {[0,]}. Then %" — 6% " = dr"~! for'some 1"~ ! in CO%(n~'U, Q"7").

Since d(6t" ') and d(6" "' — ¢" "~ !) are equal, 67" ! and ' "' — " ""!

differ by d"~ 2 for some t"~ 2 in C}(z~'U, Q" 2). Again,
A" = —d(G>""2 — g2 "),

s0

(61"~ — (32"~ 2 — g2 = gon=3
for some "3 in C3(n~'U, Q"~3). Eventually we get

61 — (@™ ° — o™ %) =i, 1 € C(n 'Y, R).
Taking 6 of both sides, we have
E—¢=9/rt.

So & and ¢ define the same Cech cohomology class.
' 0

Proposition 11.8. The Euler class e(E) is independent of the choice of the good
cover.
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PROOF. Write ¢y for the cocycle in H"* (U, R) which defines the Euler class
in terms of the good cover U. If a good cover B is a refinement of U, then
there is a commutative diagram

H™ (U, R)

Hn+ l(%, R)

HpR'(M)
ey and &g give the same element in H%!'(M), because if we choose the ¢ "
on 7~ !B to be the restriction of the ¢° " on =~ 'U, the cocycle &g in C** (B,
R) will be the restriction of the cocycle &, in C** (U, R), so that as elements
of the Cech cohomology H"*'(M, R) they are equal. Given two arbitrary
good covers U and B, we can take a common refinement IB; then gy =
&g = €y in H"*'(M, R). So the Euler class is independent of the cover.

a

If the Euler class e(E) € H"*'(M) vanishes, its representative ¢ € C"* (U, R)
is a d-coboundary; this permits one to alter ¢™° so that Do =0. The
D-cocycle o then corresponds to a global form which restricts to the d-
cohomology class of 6°". In sum, then, there is a global form that restricts to
a generator on each fiber if and only if

(a) E is orientable, and
(b) the Euler class e(E) vanishes.

For E a product bundle, the extension stops at the ¢* " stage so that
e =0. In this sense the Euler class is a measure of the twisting of an
oriented sphere bundle. However, as we will see in the proposition below, E
need not be a product bundle for its Euler class to vanish.

Proposition 11.9. If the oriented sphere bundle E has a section, then its Euler
class vanishes.

PRrOOF. Let s be a section of E. It follows from © o s = 1 that s*n* = 1. We
saw in the construction of the Euler class that

—n*e = Do
for some D-cochain 6. Applying s* to both sides gives

—¢ = Ds*c,

so e is a coboundary in H*(M).

a

The converse of this proposition is not true. In general a cohomology
class is too “coarse” an invariant to yield information on the existence of
geometrical constructs. In (23.16) we will show the existence of a sphere
bundle whose Euler class vanishes, but which does not admit any section.
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We now show that for a circle bundle = : E — M with structure group
SO(2) the definitions of the Euler class in Section 6 and in this section agree.
We briefly recall here the earlier construction. If 8, is the angular coordi-
nate over U,, then [d6,/2n] is a generator of H'(E|y ). Furthermore,

45 - 46, =n* 4%y = n*¢y — n*&, for some 1-form &, over U,.
2r  2rn 2n
The Euler class of the circle bundle E was defined to be the cohomology
class of the global form {d¢,}.
In the present context these cochains fit into the double complex
C*(n~'U, Q*) of E as shown in the diagram below.

de,
Q*(E) 5 Tﬂ C*n~'U, Q%)

=

e
1

—n*e
C*n~'U, R)
By the explicit isomorphism between de Rham and Cech (Proposition
9.8), the differential form on M corresponding to the Cech cocycle ¢ is

(—D"K)?. Since &g — &, = (1/2m) d,g, 6& = (1/27) d¢, so by (8.7), we may
take £ to be (1/2n) Kd¢. Also note that since §(¢/2n) = —e¢,

— Ke = ¢/2n (modulo a §-coboundary).

Hence
(—=D"K)%¢ = —dKdKe
= dKd((¢/2n) + é1) for some t
= dKd(¢/2n) + dKdot
= d¢ + dKdor.
Here
dKdét = dKédr because d commutes with §
=d(1 — 5K)dt by (8.7)
= —4dKdr.

Since Kdr € Q'(M), dKdz is a global exact form, so édKdt =0. Hence
(—D"K)?e = d¢&, showing that the two definitions of the Euler class could be
made to agree on the level of forms.
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The Global Angular Form

In Section 6 we exhibited on an oriented circle bundle the global angular
form ¥ which has the following properties:

(a) its restriction to each fiber is a generator of the cohomology of the
fiber;

(b) dyy = —mn*e, where e represents the Euler class of the circle bundle.

Using the collating formula (9.5) we will now construct such a form on any
oriented S"-bundle.

Let U = {U,} be an open cover of M. Recall that the Euler class of E is
defined by the following diagram:

1)
ay
az
o, | —n*e

where a € C°(r~'U, Q") is the orientation of E,

oa; = —D"0y4 4, i=0,...,n—1,
and
oo, = —m*e.
Hence
D(ao + -+ + a,) = —n*e.

Here «; is what we formerly wrote as ¢ "%,

. If {p,} is a partition of unity subordinate to the open cover U = {U,},
then {n*p,} is a partition of unity subordinate to the inverse cover ™ 'U =
{r~'U,}. Using these data we can define a homotopy operator K on the
double complex C*(U, Q*) and also one on C*xn~'U, Q*) as in (8.6). We
denote both operators by K. Both K satisfy

0K + Ké = 1.
Since
(K”.w)ao. . @p—-1 = Z(N‘Pa)(ﬂ‘w)uo e @Gp-1

= *
=n Zpawuo...u,.n

= (N‘Kw)ao e @p1?

K commutes with n*.
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Exercise 11.10. If s : M — E is a section, show that Ks* = s*K.
By the collating formula (9.5),
(11.11) ¥ = Z(-D(D'K)a; + (=1)""'K(D"K)"(—n*e)
=0

is a global form on E. Furthermore,
dy = (=11 dK(D"K)(—n*e)

—n*(—1)"*Y(D"K)"*'e since n* commutes with D"K

]

(11.12) — n*e by Proposition 9.8.

In formula (11.11) since the restriction of #*((—1)"*'K(D”K)"¢) to a fiber
is 0, the restriction of the global form ¢ to each fiber is d-cohomologous to
o] iper» heNCe is a generator of the cohomology of the fiber. The global
n-form ¢ on the sphere bundle E satisfies the properties (a) and (b) stated
earlier. We call it the global angular form on the sphere bundle.

REMARK 11.12.1. Let {U, },<; be an open cover of M which trivializes the
n-sphere bundle E and let § and e be defined by (11.11) and (11.12). Then
Suppdy C U'rr“l(Uaoma") and Supp e is contained in the union UU, .,
of the (n + 1)-fold intersections.

PrROOF. By (8.6), Supp(Ko;)‘,,o ., € Yy Supp w,g,. cy,U

.,y a Yaay...a,_

Since Suppec UU,, ., the remark follows from (11. 11) and (11. 12) "o

Exercise 11.13. Use the existence of the global angular form y to prove
Proposition 11.9.

Euler Number and the Isolated Singularities of a Section

Let n : E — M be an oriented (k — 1)-sphere bundle over a compact orien-
ted manifold of dimension k. Since H¥(M) ~ R, the Euler class of E may be
identified with the number [y e(E), which is by definition the Euler number
of E. The Euler number of the manifold M is defined to be that of its unit
tangent bundle S(T},) relative to some Riemannian structure on M. While
the Euler number of an orientable sphere bundle is defined only up to sign,
depending on the orientations of both E and M, the Euler number of the
orientable manifold M is unambiguous, since reversing the orientation of M
also reverses that of the tangent bundle.

In general the sphere bundle E will not have a global section; however,
there may be a section s over the complement of a finite number of points
Xy, ..., X, in M. In fact, as we will show in Proposition 11.14, if the sphere
bundle has structure group O(k), then such a “partial” section s always
exists. In this section we will explain how one may compute the Euler class
of E in terms of the behavior of the section s near the singularities

Xiyeeny xq.
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Proposition 11.14. Let n : E— M be a (k — 1)-sphere bundle over a compact
manifold of dimension k. Suppose the structure group of E can be reduced to
O(k). Then E has a section over M — {x,, ..., x,} for some finite number of
points in M.

PROOF. Since the structure group of E is O(k), we can form a Riemannian
vector bundle E’ of rank k whose unit sphere bundle is E. A section s’ of E’
over M gives rise to a partial section s of E : s(x) = s'(x)/ || s'(x) ||, where || |
denotes the length of a vector in E'. Let Z be the zero locus of §'; s is only a
partial section in the sense that it is not defined over Z. Thus to prove the
proposition, we only have to show that the vector bundle E’ has a section
that vanishes over a finite number of points.

This is an easy consequence of the transversality theorem which states
that given a submanifold Z in a manifold Y, every map f: X — Y becomes
transversal to Z under a slight perturbation (Guillemin and Pollack [1, p.
68]). Furthermore, we may assume that a small perturbation of a section t of
E' is again a section, as follows. Suppose f is a perturbation of t and f is
transversal to the zero section. Then g = mo f is a perturbation of mot,
which is the identity. Thus, for a sufficiently small perturbation, g will be close
to the identity and so must be a diffeomorphism. For such an f, define s'(x) =
f(g™*(x)). Then mos’=1and s’ is transversal to s,(M), i.e., S =s’(M) intersects
So = so(M) transversally. Applying this procedure to the zero section of E’,
i.e,, choosing t = s, will yield the desired transversal section s’ for E'. Since

dim S + dim S, = dim E/,

S N S, consists of a discrete set of points. By the compactness of S, it must
be a finite set of points. O

ReMARK 11.15. It follows from the rudiments of obstruction theory that this
proposition is true even if the structure group of the sphere bundle cannot
be reduced to an orthogonal group. For a beautiful account of obstruction
theory, see Steenrod [1, Part III].

Suppose s is a section over a punctured neighborhood of a point x in M.
‘Choose this neighborhood sufficiently small so that it is diffeomorphic to a
punctured disc in R* and E is trivial over it. Let D, be the open neighbor-
hood of x corresponding to the ball of radius r in R* under the diffeomor-
phism above. As an open subset of the oriented manifold M, D, is also
oriented. Choose the orientation on the sphere $*~! in such a way that the
isomorphism E |, ~ D, x $*~! is orientation-preserving, where D, x $*~*
is given the product orientation. (If 4 and B are two oriented manifolds
with orientation forms w4 and wg, then the product orientation on A x B is
given by (ptw,) A (p% wg), where p, and p, are the projections of A x B
onto A and B respectively.) The local degree of the section s at x is defined
to be the degree of the composite map

3D, 5 E|p, =D, x §k~1 5 gk

where p is the projection and D, is the closure of D,.
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Theorem 11.16. Let n: E— M be an oriented (k — 1)-sphere bundle over
a compact oriented manifold of dimension k. If E has a section over M — {x,,
«.+» X}, then the Euler number of E is the sum of the local degrees of s at
Xiyeees Xg.

PROOF. We first show that it is possible to move the support of the Euler
class away from finitely many points.

Lemma. Let M be a manifold and {U,}, ,; an open cover of M. Given finitely
many points x,,..., x, on M, there is a refinement {V,},c; of {U,}ae such
that V, C U, and each x; has a neighborhood W, which is disjoint from all but
one of the V,’s.

PROOF OF LEMMA. Suppose x, € U,. Let W, be an open neighborhood of x,
such that x, € W, c W, c U,. We define a new open cover {U,},<, by
setting Uy = U, and U} = U, — W, for a # 1. (Check that this is indeed an
open cover of M.) The neighborhood W, of x, is contained in U/ but
disjoint from all U/, a # 1.

Next suppose x, € Uy. Let W, be an open neighborhood of x, such that
x, € W, c W, c Uy. As before define a new open cover {U,”}, < by setting
Uy’=Uy and U}’ = U} — W, for a # 2. Since U;” C U/, the open neighbor-
hood W, of x, is disjoint from all U/, a+# 1. By definition, the open
neighborhood W, of x, is disjoint from all U}, a #2. Repeating this
process to x3,..., X, in succession yields the open cover {V,} of the lemma.

(m]

Now let {U,},, be an open cover of M which trivializes E. By the
lemma we may assume that each x; has a neighborhood W, which is
contained in exactly one U,. Construct the global angular form  and the
form e relative to {U,},¢;. By Remark 11.12.1, since Suppe = WU, ,, ,»
the form e must vanish on W, for all i=1,..., 4. So e is supported away
from the points x,,..., x_. _

For each i choose an open ball D, around the point x; so that D,C W,.
Then :

(11.16.1) f e= / e= s*m*e  since s is a global section
M “M-UD  “M-UD over M — U D,
= - s*dy because w*e = —dy
M-uD,
=Y / s by Stokes’ theorem and
i "D, the fact that dD, has the
opposite orientation as
I(M—uUD).

Although the global angular form is not closed, by our construction
dy=0on E|,, so y defines a cohomology class in H*~'(E|,,), which is
in fact the generator. Let o be the generator of S¥~1, Then p*o restricts to
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the generator on each fiber of E|, . So p*o and the angular form ¢ define
the same cohomology class in H*¥"1(E lw,) ie.,

Y—p*o=dr
for some (k — 2)-form 7 on E|,,. Thus on D,,
sS* —s**e=s*dr
and

/ s*y - s p"o = f _ds*r=0 by Stokes’ theorem.
D, D,
Therefore,

f _s*)=local degree of the section s at x;.
D,
Together with (11.16.1), this gives
f e= Y (local degree of s at x;). o
M i

This theorem can also be phrased in terms of vector bundles. Let
n : E — M be an oriented rank k vector bundle over a manifold of dimen-
sion k and s a section of E with a finite number of zeros. The multiplicity of
a zero x of s is defined to be the local degree of x as a singularity of the
section s/|| s || of the unit sphere bundle of E relative to some Riemannian
structure on' E. (This definition of the index is independent of the Rieman-
nian structure because the local degree is a homotopy invariant.) Since the
Euler class e(E) of E is a k-form on M, it is Poincaré dual to nP, where
n = [) e(E) and P is a point on M. Thus we have the following.

Theorem 11.17. Let n: E— M be an oriented rank k vector bundle over a
compact oriented manifold of dimension k. Let s be a section of E with a finite
number of zeros. The Euler class of E is Poincaré dual to the zeros of s,
counted with the appropriate multiplicities.

ExXAMPLE 11.18 (The Euler class of the unit tangent bundle to $2). Let S(Tsz)
be the unit tangent bundle to S2. It is a circle bundle over §2:

Sl and S(Ts:)

Sl
Fix a unit tangent vector v at the north pole. We can define a smooth
vector field on S%-{south pole} by parallel translating v along the great
circles from the north pole to the south pole (see Figure 11.1). (Parallel

translation along a great circle on S? is prescribed by the following two
conditions:

(a) the tangent field to the great circle is parallel;
(b) the angles are preserved under parallel translation.)
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Figure 11.1 Figure 11.2

This gives a section s of S(Ts:) over S2-{south pole}. On a small circle
around the south pole, the vector field looks like Figure 11.2, i.e.,, as we go
around the circle 90°, the vectors rotate through 180°; therefore, the local
degree of s at the south pole is 2. By Theorem 11.16, the Euler number of
the unit tangent bundle to S? is 2.

Exercise 11.19. Show that the Euler class of an oriented sphere bundle with
even-dimensional fibers is zero, at least when the sphere bundle comes from
a vector bundle.

Since the Euler class is the obstruction to finding a closed global angular
form on an oriented sphere bundle, by the Leray-Hirsch theorem we have
the following corollary of Exercise 11.19.

Proposition 11.20. If n : E— M is an orientable S*"-bundle, then
H*(E) = H*(M) ® H*S™).

Exercise 11.21. Compute the Euler class of the unit tangent bundle of the
sphere S* by finding a vector field on S* and computing its local degrees.

Euler Characteristic and the Hopf Index Theorem

In this section we show that the Euler number [, e(T),) is the same as the
Euler characteristic (M) = Y (—1)"dim HYM) and deduce as a corollary
the Hopf index theorem. The manifold M is assumed to be compact and
oriented.

Let {w;} be a basis of the vector space H*(M), {r;} be the dual basis
under Poincaré duality, ie., [yw; A 1; = §;;, and let = and p be the two
projections of M x M to M:

Mx M
M M.
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By the Kiinneth formula, H*(M x M) = H*M) @ H*(M) with {n*w; A
p*t;} as an additive basis. So the Poincaré dual n, of the diagonal A in
M x M is some linear combination n, = Y ¢;;n*w; A p*1;.

Lemma 11.22. 5, = Y (—1)*$“n*w; A p*1,.

PrOOF. We compute [A n*7, A p*w,; in two ways. On the one hand, we can
pull this integral back to M via the diagonalmap:: M — Ac M x M:

‘[ A pto, = J‘ *n* i, A 1*p*w, = J. T A = (—1)deswdeswi g
h - M M

On the other hand, by the definition of the Poincaré dual of a closed
oriented submanifold (5.13),

J. n*t A p*w, = j n* T Ap*w, An,
A MxM

z ci!j n‘t,, A p‘(l), A n‘wi A p‘fj
i J M xM

CU( _ 1)(del @ +deg wi)(deg wi) j n‘(w, A ‘t,‘)p‘(w, A t})

] M x M

— l)(dq t +deg wi)deg wk Cu-

—~ e

Therefore
_)o ifk#1
WEU-1fs e ik =1

a

Lemma 11.23. The normal bundle N, of the diagonal A in M x M is isomor-
phic to the tangent bundle T, .

PROOF. Since the diagonal map «: M - M X M sends M diffeomorphically
onto A, *T, = Ty,. It follows from the commutative diagram

(v,v) — (v,0)
0— T, — TMxMIA —+ Ny— 0
R R
0-Ty->Tuy®Ty—- Ty— 0
v (v,0)
that Ny~ Ty~ T,.
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Recall that the Poincaré dual of a closed oriented submanifold § is
represented by the same form as the Thom class of a tubular neighborhood
of S (see (6.23)). Thus

n
f na= | ®N,) where ®(N,)is the Thom class of the normal

A a bundle N, regarded as a tubular neighborhood
of AinM x M
"
= | e(N,) since the Thom class restricted to the zero

A section of the bundle is the Euler class (proved for

rank 2 bundles in Prop. 6.41 on p. 74; the general
case will be shown later, in Prop. 12.4 on p. 128))

o

= | 1)

= e(Ty) -
M

LS

So the self-intersection number of the diagonal A in M x M is the Euler

number of M. (By Poincaré duality, [4 7y = [mxnnaAna is the self-

intersection number of Ain M x M.) ’
Now the right-hand side of Lemma 11.22 evaluated on the diagonal A is

Yy

J ma= X (-1 | wwiApte,
A i

,

= Z(_ l)del ] l‘n‘w,A ;‘p‘t,
i M

"
=Y (-1 | oAy
i

JM

_ l)deg )]

T
Z(— 1)? dim HY(M)

M).

i
x
_

Therefore,

Proposition 11.24. The Euler number of a compact oriented manifold {u e(Tiy)
is equal to its Euler characteristic y(M) = Z(— 1)? dim H.

It is now a simple matter to derive the Hopf index theorem. Let V be a
vector field with isolated zeros on M. The index of V at a zero u is defined
to be the local degree at u of V/ || V || as a section of the unit tangent bundle



§12 Thom Isomorphism and Poincaré Duality Revisited 129

of M relative to some Riemannian metric on M. By Theorem 11.16 the sum
of the indices of V is the Euler number of M. The equality of the Euler
number and the Euler characteristic then yields the following.

Theorem 11.25 (Hopf Index Theorem). The sum of the indices of a vector
field on a compact oriented manifold M is the Euler characteristic of M.

Exercise 11.26 (Lefschetz fixed-point formula). Let f: M — M be a smooth
map of a compact oriented manifold into itself. Denote by H%(f) the in-
duced map on the cohomology HM). The Lefschetz number of f is defined
to be

L(f) = ¥ (—1)* trace H(f).
q
Let I' be the graph of f in M x M.

(a) Show that

Jﬂr=Uf)-
A

(b) Show that if f has no fixed points, then L(f) is zero.
(c) At a fixed point P of f the derivative (Df), is an endomorphism of the
tangent space T, M. We define the multiplicity of the fixed point P to be

op = sgn det((Df)p — I).
Show that if the graph I is transversal to the diagonal A in M x M, then

.L(f)=§ol’y

where P ranges over the fixed points of f. (For an explanation of the
meaning of the multiplicity o5, see Guillemin and Pollack [1, p. 121].)

§12 Thom Isomorphism and Poincaré Duality
Revisited

In this section we study the Thom isomorphism and Poincaré duality from
the tic-tac-toe point of view. The results obtained here are more general
than those of Sections 5 and 6 in two ways:

(a) M need not have a finite good cover,
and

(b) the orientability assumption on the vector bundle E has been
dropped. ~
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The Thom Isomorphism

Let n: E — M be a rank n vector bundle. E is not assumed to be orient-
able. We are interested in the cohomology of E with compact support in the
vertical direction, H%(E) = H*{Q*(E)}. Recall that

R in dimension n
0 otherwise,

(a) H¥R") = {
(b) (Poincaré lemma) H%*(M x R") = H* "(M).

Let U be a good cover of the base manifold M. We augment the double
complex C*(n~'U, Q*) by adding a column consisting of the kernels of the
first o:

0 — QZ(E) -
0— QL(E)—
0 — Q(E) —

Using a partition of unity from the base, it can be shown that all the rows
of this agumented double complex are exact. The proof is identical to that
of the generalized Mayer-Vietoris sequence in (8.5) and will not be repeated
here. From the exactness of the rows. of the augmented complex, it follows
as in (8.8) that the cohomology of the initial column is the total cohomol-
ogy of the double complex, i.e.,

H3(B) = Hp {C*(x ™'Y, Q8)).
On the other hand,
Hpo{C*n™'U, Q8)} = Hi(LIn"'U,,. )
=[1H4(n"'U,..)
= C*(U, i),
where o4, is the presheaf given by
#3,(U) = Hi,(n'U).
By the Poincaré lemma for compactly supported cohomology, if U is con-
tractible, then
R ifq=n
0 otherwise.

#:,(U) ={

Therefore H, and also H§ 9H, = H§{C*(U, o#%,)} = H?(U, »#)) have entries
only in the nth row.

Proposition 12.1. Given any double complex K, if H; H{K) has entries only in
one row, then Hy; H, is isomorphic to Hp.
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This proposition will be substantially generalized in Section 14, for it is
simply an example of a degenerate spectral sequence. Its proof is a technical
exercise which we defer to the end of this section. Combined with the
preceding discussion, it gives

H}E)=H}= @ HPU, »#9)=H*""U, #").

Ppte=w

This is the Thom isomorphism for a not necessarily orientable vector
bundle.

Theorem 12,2 (Thom Isomorphism). For n: E— M any vector bundle of
rank n over M and U a good cover of M,

H(E) =~ H*™"(U, »¢;,),
where X", is the presheaf #"(U) = H (™ 'U).

We now deduce the orientable version of the Thom isomorphism from
this. So suppose n : E — M is an orientable vector bundle of rank n over M.
This means there exist forms o, on the sphere bundles S(E)],,. which restrict
to a generator on each fiber and such that on overlaps U, n U, their
cohomology classes agree: [,] = [0,]. Now choose a Riemannian metric
on E so that the “radius” r is well-defined on each fiber and any function of
the radius r is a global function on E. Let p(r) be the function shown in
Figure 12.1. Then (dp)o, is a form on E |, where we regard o, as a form on
the complement of the zero section. Furthermore, [(dp)o,] € H",(E |u.) res-
tricts to a generator of the compactly supported cohomology of the fiber
and [(dp)o,] = [(dp)os] on U, n Uy. Since the fiber has no cohomology in
dimensions less than n, 6%" = {(dp) g,} can be extended to a D-cocycle.
This D-cocycle corresponds to a global closed form ® on E, the Thom class
of E, which restricts to a generator on each fiber. Now 5£7(U) is generated
by ®|, and for ¥V C U the restriction map from #7(U) to #.7(V) sends

3

0 >

p(r)

Figure 12.1
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®|y to ®],. Hence, via the map which sends ®|,,, for every open set U, to
the genetator 1 of the constant presheaf R, the presheaf »#7 is isomorphic to
R. The Thom isomorphism theorem then assumes the form

(12.2.1) HZ(E) ~ H*~™(U, %) = H*~"(U, R) = H*~"(M),

for an orientable rank n vector bundle E. This agrees with Proposition 6.17.
It holds in particular when M is simply connected, since by (11.5), every
vector bundle over a simply connected manifold is orientable.

From the explicit formula (11.11) for the global angular form on an
oriented sphere bundle, we can derive a formula for the Thom class of an
oriented vector bundle. Let f : E° — S(E) be a deformation retraction of the
complement of the zero section in E onto the unit sphere bundle. If /s is the
global angular form on S(E), then y = f*y5 € H*~(E°) is the global angu-
lar form on E°. It has the property that '

dy = —n*e,
where e represents the Euler class of the bundle E.
Proposition 12.3. The cohomology class of

® = dip(r) - ¥) € QL(E)

is the Thom class of the oriented vector bundle E.

ProOOF. Note that
(12.3.1) ® =dp(r) - ¢ — p(r)n*e.

For the same reasons as in the discussion following (6.40), ® is a closed
global form on E with compact support in the vertical direction. Its re-
striction to the fiber at p is dp(r) - 12 ), where 1,: E,— E is the inclusion
and 17 ¢ gives a generator of H* ! (R" — {0}) = H*~!(S"~!). Since

‘[ do(r) 13y = jx dp(r)J‘ o npYy=1,
R" R s*

by (6.18), ® is the Thom class of E. a

If 5 is the zero section of E, then s*dp = 0 and s*p = —1. By (12.3.1),
s*0 = —(s*p)s*n*e =e.
Thus,

Proposition 12.4. The pullback of the Thom class of an oriented rank n vector
bundle via the zero section to the base manifold is the Euler class.
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REMARK 12.4.1. From the formula for the Thom class (12.3), it is clear that
by making the support of p(r) sufficiently close to 0, the Thom class ® can

be made to have support arbitrarily close to the zero section of the vector
bundle.

REMARK 12.4.2. In fact, in Proposition 12.4 any section will pull the Thom
class back to the Euler class. Let s be a section of the oriented vector bundle
E and s*: H%(E)— H*(M) the induced map in cohomology. Note that s*
can be written as the composition of the natural maps i : H*(E)— H*E)
and §* : H*(E)— H*(M). As a map from M into E, the section s is homo-
topic to the zero section s, . By the homotopy axiom for de Rham cohomol-
ogy (Cor. 4.1.2), s* = s . Hence, s* = s§.

Using the description of the Euler class as the pullback of the Thom
class, it is easy to prove the Whitney product formula.

Theorem 12.5 (Whitney Product Formula for the Euler Class). If E and F
are two oriented vector bundles, then (E @@ F) = e(E)e(F).

ProOOF. By Proposition 6.19, the Thom class of E @@ F is
®E D F) =n,*E) A n3WF)

where n, and =, are the projections of E @@ F onto E and F respectively.
Let s be the zero section of E @ F. Then n, o s and =, o s are the zero
sections of E and F. By Proposition 12.4,

dE @ F)=s*NE @ F) = s*nt (E) A s*n3(F) = e(Ee(F).
a

Exercise 12.6. Let n : E— M be an oriented vector bundle.

(a) Show that n*e = ® as cohomology classes in H*(E), but not in
HZ/(E).

(b) Prove that DA® = ® An*ein H:(E).

Euler Class and the Zero Locus of a Section

Let = : E — M be a vector bundle and S, the image of the zero section in E.
A section s of E is transversal if its image S = s(M) intersects S, trans-
versally. The purpose of this section is to derive an interpretation of the
Euler class of an oriented vector bundle as the Poincaré dual of the zero
locus of a transversal section. This is an analogue of Theorem 11.17, but it
differs from Theorem 11.17 in two ways: (1) there is no hypothesis on the
rank of E; (2) the section is now assumed to be transversal.

Proposition 12.7. Let n : E— M be any vector bundle and Z the zero locus of
a transversal section. Then Z is a submanifold of M and its normal bundle in
M iS NZIM ™ Elz.
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Elz

e .

Figure 12.2

Proor. Write S = s(M) for the image of the section s (see Figure 12.2).
Because S intersects S, transversally, S N Sy is a submanifold of S by the
transversality theorem (Guillemin and Pollack [1, p. 28]). Under -the
diffeomorphism s : M — §, Z is mapped homeomorphically to S n S,. So
Z can be made into a submanifold of M.

To compute the normal bundle of Z, we first note that because E is
locally trivial, its tangent bundle on S, has the following canonical de-
composition

TElSo=E|So® Ts,.
By the transversality of S N Sy,
T+ Ts,=Tg=E @ Tg,on SN S,.

Hence the projection Ty— E over S N S, is surjective with kernel Ty N Tg, .
Again by the transversality of § N So, Ts N Ts, = T5 »5,- So we have an
exact sequence over Z =~ § N S;:

0> T, — Tslz—' E|z'—+ 0.
Hence N’ZIM &> Elz. D

In the proposition above, if E and M are both oriented, then the zero
locus Z of a transversal section is naturally an oriented manifold, oriented
in such a way that

E lz @ T;=Ty lz
has the direct sum orientation.

Proposition 12.8. Let n : E— M be an oriented vector bundle over an oriented
manifold M. Then the Euler class e(E) is Poincaré dual to the zero locus of a
transversal section.
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Supp ¢

Figure 12.3

Proor. We will identify M with the image S, of the zero section. If S is the
image in E of the transversal section s : M — E, then the zero locus of s is
Z=8SnS8,.Zis a closed oriented submanifold of M and by Proposition
12.7, its normal bundle in M is N, = E|Z. Since § is diffeomorphic to M,
the normal bundle N5 of Z in S is also E|;. The normal bundles N, and
Nz;s will be identified with the tubular neighborhoods of Z in M and in S
respectivély, as in Figure 12.3. '

Choose the Thom class ® of E to have support so close to the zero
section (Remark 12.4.1) that @ restricted to the tubular neighborhood N
in § has compact support in the vertical direction. In Figure 12.3 the
support of @ is in the shaded region. We will now show that s*® is the
Thom class of the tubular neighborhood Nz, in M.

Let E,, S, and M, be the fibers of E |; ~ N5 > N, respectively above
the point z in Z. Because ® has compact support in S,, s*® has compact
support in M, . Furthermore,

J s*P = J ® Dby the invariance of the integral under the
M: Sz orientation-preserving diffeomorphism s : M, — §,

= I ® because E, is homotopic to S, modulo the region
E:  in E where ® is zero

=1 by the definition of the Thom class.

So s*® is the Thom class of N;;,. By Proposition 12.4, s*® = ¢(E). Since
by (6.24) the Thom class of Nz, is Poincaré dual to Z in M, the Euler class
¢(E) is Poincaré dual to. Z in M. -

A Tic-Tac-Toe Lemma

In this section we will prove the technical lemma (Proposition 12.1) that if
H;H, of a double complex K has entries in only one row, then H, H, is
isomorphic to the total cohomology Hy(K). With this tic-tac-toe lemma we
will re-examine the Mayer—Vietoris principle of Section 8.
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PROOF OF PROPOSITION 12.1.

FZ5 75

We first define a map h: HyH,— H,. Recall that D=D'+D"=§+
(—1)”7d. An element [¢] in H}'9H, may be represented by a D-cochain ¢
of degree (p, q) such that

DII¢ - 0
6¢p = —D"¢, for some ¢,.

This is summarized by the diagram

0
D"t
¢ 56 +D¢, =0
1D
1

Since H§**9"'H,=0, 8¢, = —D"¢$, for some ¢,.. Continuing in this
manner, we see that ¢ can be extended downward to a D-cocycle ¢ +
¢, + - + ¢,. The map h s defined by sending [¢] to [¢+ @, +- -+ ..

Next we define the inverse map g : H, — H;H,;. Let w be a cocycle in
Hp. As the image of w we cannot simply take the component of w in the"
nonzero row because d of it may not be zero. Suppose w =a+b+c+ -
as shown.

a
by | b
s

L

We will move o in its D-cohomology class so that it has nothing above the
nonzero row. Since da = 0 and da = — D"b, a represents a cocycle in H;H,.
But Hy;H, =0 at the position of a, so a is 0 in Hs;H,; this implies that
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a=D"a, for some a,. Then w— Da, has no components in the first
column. Thus we may assume w=b+c+ ---. Again b is 0 in HyH,, so
that b=248b, + D"b,, where D”b, =0. Then w — D(b, + b,)=(c — 8b,)
+ --- starts at the nonzero row.

0
T
b,—b
t
b, — ¢

Thus given [w] € Hp, we may pick w to have no components above the
nonzero row of H;H,, say w = c + ---. Then dc = 0 and the mapg: Hp—
H; H, is defined by sending [w] t > [c].

Provided they are well-defined, h and g are clearly inverse to each other.

Exercise 12.9. Show that h and g are well-defined.
O
Using Proposition 12.1 we can give more succinct proofs of the main
results of Section 8. Let U = {U,} be an open cover of the manifold M and
C(U, Q) = TIQYU,,..,,)- By the exactness of the Mayer-Vietoris sequence,
H; of the Cech-de Rham complex C*(, Q*) is

Q*(M)
Q'(M)
QM)

0 1 2 P
so that H,H, is

H*(M)
H'(M)
Ho(M)
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Since Hy H,; has only one nonzero column, we conclude from Proposition
12.1 that )

HE{C*(U, Q*)} ~ Hpx(M)

for any cover U. This is the generalized Mayer-Vietoris principle (Prop-
osition 8.8).

Now if U is a good cover, H, of the Cech—-de Rham complex is

q

C°, R) | C'(U, R) | C*(U, R)

0 1 2 p
and HyH, is

q

H°(U, R)| H'(U, R)| H(U, R)

Again because H,; H, has only one nonzero row,
HR{C*(Uu, Q*)} ~ H*(Y, R).
This gives the isomorphism between de Rham cohomology and the Cech

cohomology of a good cover with coefficients in the constant presheaf R.

Exercise 12.10. Let CP" have homogeneous coordinates zg, ..., z,. Define
U, = {z; # 0}. Then U = {U,, ..., U,} is an open cover of CP", although
not a good cover. Compute H*(CP") from the double complex C*(U, Q*).
Find elements in C*(U, Q*) which represent the generators of H*(CP").

Exercise 12.11. Apply the Thom isomorphism (12.2) to compute the coho-
mology with compact support of the open Mdbius strip (cf. Exercise 4.8).

Poincaré Duality

In the same spirit as above, we now give a version of Poincaré duality, in
terms of the Cech—-de Rham complex, for a not necessarily orientable mani-
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fold. Let M be a manifold of dimension n and W = {U,} any open cover of
M. Define the coboundary operator
0: @ QUqy..a) > @ QWUqy..q,-1)
by the formula
(‘sw)ao eap—t = Z Wgag ... ap-1

where on the right-hand side we mean the extension by zero of W, q,_, t0

a form on U,, . ,,_,- To ensure that each component of dw has compact
support, the groups here are direct sums rather than direct products, so that
we @ Q(U,..,4,) by definition has only a finite number of nonzero com-
ponents.

Proposition 12.12 (Generalized Mayer—Vietoris Sequence for Compact Sup-
ports). Suppose the open cover U = {U,} of the manifold M satisfies the local
finite condition:

™ each open set U, intersects only finitely many Up's.
Then the sequence

0—QXM) = @ QXU,)— @ Q¥(U.,.,)
e @Q:(Uao...ap) e

is exact.

PrOOF. We first show 6% = 0. Let  be in @ Q¥(U,, ...,,). Then
(62w)ao e @p-2 = 2(50))“0 . @p-2 = Z ; wﬂuo e @p-2

=0, since W,p., = — g, ...

Now suppose dw = 0. We will show that  is a 6-coboundary. Let {p,} be a
partition of unity subordinate to the cover . Define

ptl

aprt & Z(_l)‘pn ao & ..ap+1°

Note that Tag.apay has compact support. Moreover, there are only finitely
many (B, ay, ..., «,) for which p,w,, . * 0, since w,, .. . 0 for finitely
many (%, ...,«,) and by (*) each U, 2, S Uy intersects only finite-
ly many U, Therefore, v has finitely many nonzero components, and
1€ @QNU,,..s,,,)- Then

(61)10 e @p = Z Taao ... ap

= Z(pu Wy, ... ap + ;(_l)“.lpa. wuo...&...a;) *

Wy, + ;(_ l)i+1p¢1(6m)¢o ediay

= Wy, .ap a
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Exercise 12.12.1. Show that the definition of 7 in the proof above provides a
homotopy operator for the compact Mayer-Vietoris sequence (12.12). More
precisely, if  is in @Q¥(U,,....,) and

p+1

(Ka))uo...a,ﬂ = IZO (— l)lpa.wao...d,...apn’
then
0K + Ké=1.

Consider the double complex CP(U, QF), where U satisfies the local finite
condition (*):

q
2
1
0| @ QV,) 4@ WUs.)

0 1 2 p

In this double complex the d-operator goes in the wrong direction, so we
define a new complex

K74 = CP(U, Q).

q

D AUsgaia) P D WUgpa)) 1+ D AUs)

-2 -1 0 P

By the exactness of the rows, Hy(K) is

QM)
Q:(M)
QM)

-2 -1 0 p
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Since H, H, has only one nonzero column, it follows from Proposition
12.1 that

(12.13) Hp(K) = H Hs(K) = H,(M).
On the other hand, if U is a good cover, then H,(K) is
‘ q
- @ R @R @R
a0<...<a, a0<ay a0
-1 0 P

Hy” %K) = C(U, #9) '

where J#? is the covariant functor which associates to every open set U the
compact cohomology H¥(U) and to every inclusion i, the extension by zero,

i, ; moreover, o
Hy?%K)=0 for q# n.

Again by Proposition 12.1,

(12.14) HXK)=H} ™"H,=H,_, (U, #7).

Here H,_ (U, #7) is the (n — *)-th Cech homology of the cover U with
coefficients in the covariant functor #” (cf. Remark 10.3). Comparing
(12.13) and (12.14) gives

Theorem 12.15 (Poincaré Duality). Let M be a manifold of dimension n and U
any good cover of M satisfying the local finite condition (*) of Proposition
12.12. Here M is not assumed to be orientable. Then

H¥M) ~ H,_, (U, #7),
where X7 is the covariant functor #(U) = H(U).

Exercise 12.16. By applying Poincaré duality (12.15), compute the compact
cohomology of the open Mébius strip (cf. Exercise 4.8).

§13 Monodromy

When Is a Locally Constant Presheaf Constant?

In the preceding section we saw that the compact vertical cohomology
HZ,(E) of a vector bundle E may be computed as the cohomology of the
base with coefficients in the presheaf #. When the presheaf 5% is the
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constant presheaf R”, H%(E) is expressible in terms of the de Rham coho-
mology of the base manifold (Proposition 10.6). In this case the problem of
computing H%(E) is greatly simplified. It is therefore important to determine
the conditions under which a presheaf such as /), is constant.

First we need to review some basic definitions from the theory of sim-
plicial complexes (see, for instance, Munkres [2]). Recall that if an n-simplex
in an Euclidean space has vertices v, ..., v,, then its barycenter is the point
(vo + - -+ + v,)/(n + 1). For example, the barycenter of an edge is its mid-
point and the barycenter of a triangle (a 2-simplex) is its center. The first
barycentric subdivision of a simplex ¢ is the simplicial complex having all
the barycenters of o as vertices. By applying the barycentric subdivision to
each simplex of a simplical complex K, we obtain a new simplicial complex
K', called the first barycentric subdivision of K. The support of K, denoted
| K|, is the underlying topological space of K, and the k-skeleton of K is the
subcomplex consisting of all the simplices of dimension less than or equal to
k. The complex K and its barycentric subdivision K’ have the same support.
The star of a vertex v in K, denoted st(v), is the union of all the closed
simplices in K having v as a vertex.

Next we introduce the notion of a presheaf on a good cover. Let X be a
topological space and U = {U,} a good cover of X. The presheaf ¥ on U
is defined to be a functor # on the subcategory of Open(X) consisting of all
finite intersections U,, ,, of open sets in U. Equivalently, if N(U) is the
nerve of U, the presheaf # on U is the assignment of an appropriate group
to the barycenter of each simplex in N(U); for example, the group attached
to the barycenter of the 2-simplex representing UnV n'W is
F (U n V n W). Each inclusion, say U n V — U, becomes an arrow in the
picture, F(U)— #(U n V), and the transitivity of the arrows says that
Figure 13.1 is a commutative diagram.

() .

FUNYV)

F (V)

F(W)

Figure 13.1
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Two presheaves & and 4 are isomorphic relative to a good cover U =
{U,} ifforeach W = U, . .ap there is an isomorphism

hy : F(W) — G(W)

compatible with all arrows. In other words, there is a natural equivalence of
functors & — ¢ where & and ¥ are regarded as functors on the subcate-
gory of Open(X) consisting of all finite intersections U,, __,, of open sets in
U. The constant presheaf with group G on a good cover U is defined as
in Section 10; it associates to every open set Ug,...a, the group of locally
constant and hence constant functions: U,, , — G. Thus, for a constant
presheaf on a good cover, all the groups are G and all the arrows are
the identity map. We say that a presheaf & is locally constant on a
good cover U if all the groups are isomorphic and all the arrows are
isomorphisms.

Of course, if two presheaves & and ¢ are isomorphic on a good cover
U, then the cohomology groups H*(U, #) and H*(U, %) are isomorphic.

Ug

U

U,
Figure 13.2

ExaMpLE 13.1 (A locally constant presheaf on U which is not constant). Let
U ={U,, U,, U,} be a good cover of thecircle S* (see Figure 13.2). Define
a presheaf ¥ by

Z(U) = Z for all open sets U,
Pgl = P(!n = Piz = P%z =1,
P(z)z = -1, sz =1L

F is locally constant but not constant on U because p?, is not the identity.

Let & be a locally constant presheaf with group G on a good cover
U = {U,}. Fix isomorphisms

¢, : F(U) = G.
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If U, and Uy intersect, then from the diagram

b,

FUY > G-
|
P:ﬂl !
f(U, n Uﬂ) l
|

(]
Pap I ¢ﬂ 1
FUy) S G

we obtain an automorphism of G, namely ¢,(pf,)~'p%ps . Write p§ :
F(U,)— F(Uy) for the isomorphism (pf5) ! o p2;. Choose some vertex U,
as the base point of the nerve N(U). For Uy U, ... U, U, a loop based at U,
we get an automorphism of G by following along the edges

0
FUy) - G.

This .gives a map from {loops at Uy} to Aut G. We claim that if a loop
bounds a 2-chain, then the associated automorphism of G is the identity.
Consider the example of the 2-simplex as shown in Figure 13.3.

U,

U
' Dgl
Pal Ul
Figure 13.3
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U,

Uo

U,
p3eind

(a)

Uo

U,
23(01h) ™ (o81) " 08203,

(©)

U,

Uo

U,

%) (08%)" P32 0%

(e)

Figure 13.4
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U,

Uo

U,
301 (p612) " 031209

(b)

U,

U,
p3(pd12) " 081203

(d)

Uo

U,

(P%12) ' 081208 =

0

The associated automorphism of the loop Ug U, U, is ¢o(p2pipd)ds ! so it
is a matter of showing that p2pip? is the identity. This is clear from the
sequence of pictures in Figure 13.4, where we use heavy solid lines to
indicate maps which, by the commutativity of the arrows, are all equal to

Pop1pY-
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More generally, the same procedure shows that the map pj...pJ around
any bounding loop is the identity. Hence there is a homomorphism

{loops}
mNU) = 77—
p:m(N(D) {bounding loops} = AutG,
called the monodromy representation of the presheaf #. Here n,(N(U)) de-
notes the edge path group of the nerve N(U) as a simplicial complex.

Theorem 13.2. Let U be a good cover on a connected topological space X
and N(U) its nerve. If n,(N(U)) = 0, then every locally constant presheaf on U
is constant.

PRroOOF. Suppose n,(N(U)) =0, ie., every loop bounds some 2-chain. For
each open set U,, choose a path from U, to U,, say Uy U,, ... U, U,, and
define ¥, = ¢o (0% ... p2sp%) " 1 F(U) — G.

do
FU)> G

|
ZF(U,)

¥, is well-defined independent of the chosen path, because as we have seen,
around a bounding loop the map pf ... p§ is the identity.

Now carry out the barycentric subdivision of the nerve N(U) to get a
new simplicial complex K so that every open set U,,. . ,, corresponds to a
vertex of K. Clearly n,(N(U)) = n,(K). By the same procedure as in the
preceding paragraph we can define isomorphisms

Il’uo . ap :g’-(uao-udp) -G

for all nonempty U,, . ,,. The maps Vao...a, 8iVE an isomorphism of the
presheaf # to the constant presheaf G on the cover L. O

REMARK 13.2.1. If the group G of a locally constant presheaf has no auto-
morphisms except the identity, then there is no monodromy. In particular,
every locally constant presheaf with group Z, is constant.

REMARK 13.3. Recall that a simplicial map between two simplicial complexes
K and L is a map f from the vertices of K to the vertices of L such that if
o, ..., U, Span a simplex in K, then f(vo), ..., f(v,) span a simplex in L. A
simplicial map f from K to L induces a map f: | K|— | L| by linearity:

JE 4v) =Y 4 filv).

By abuse of language we refer to either of these maps as a simplicial map.



§13 Monodromy 147

For the proof of the next theorem we assemble here some standard facts
from the theory of simplicial complexes.

(a) The edge path group of a simplicial complex is the same as that of its
2-skeleton (Seifert and Threlfall [1, §44, p. 167]).

(b) The edge path group of a simplicial complex is the same as the
topological fundamental group of its support (Seifert and Threlfall [1, §44,
p. 165]).

(c) (The Simplicial Approximation Theorem). Let K and L be two sim-
plicial complexes. Then every map f:|K|—|L| is homotopic to a sim-
plicial map g:|K™®|— | L| for some integer k, where K™ is the k-th bary-
centric subdivision of K(Croom [1, p. 49]).

Because of (b) we also refer to the edge path group of a simplicial complex
as its fundamental group.

. None of these facts are difficult to prove. They all depend on the follow-
ing very intuitive principle from obstruction theory.

The Extension Principle. 4 map from the union of all the faces of a cube into a
contractible space can be extended to the entire cube.

AsiDe. With a little homotopy theory the extension principle can be refined
as follows. Let X be a topological space and I* the unit k-dimensional cube.
If n,(X) = 0 for all g < k — 1, then any maps from the boundary of I* into
X can be extended to the entire cube I*.

In section 5 we defined a good cover on a manifold to be an open cover
{U,} for which all finite intersections U,, N -+ n U, are diffeomorphic to
a Euclidean space. By a good cover on a topological space we shall mean an
open cover for which all finite intersections are contractible.

REMARK. Thus, on a manifold there are two notions of a good cover. These
two notions are not equivalent. Let us call a noncompact boundaryless
manifold an open manifold. Then there are contractible open 3-manifolds
not homeomorphic to R>. In 1935 J. H. C. Whitehead found the first
example of such a manifold [J. H. C. Whitehead, A certain n-manifold
whose group is unity, Quart. J. Math. Oxford 6 (1935), 268-279]. D. R.
McMillan, Jr. constructed infinitely many more in [D. R. McMillan, Jr.,
Some contractible open 3-manifolds, Transactions of the A. M. S. 102
(1962), 372-382]. For an open cover on a manifold to be a good cover we
will always require the more restrictive hypothesis that the finite nonempty
intersections be diffeomorphic to R". This is because in order to prove
Poincaré duality, whether by the Mayer—Vietoris argument of Section S or
by the tic-tac-toe game of Section 12, we need the compact Poincaré lemma
(Corollary 4.7), which is not always true for an open set with merely the
homotopy type of R".
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Theorem 13.4. Suppose the topological space X has a good cover U. Then the
Sfundamental group of X is isomorphic to the fundamental group =n,(N(N)) of
the nerve of the good cover. -

ProoF. Write N, (U) for the 2-skeleton of the nerve N(W). Let U;, U};, and
Ui be the barycenters of the vertices, edges, and faces of N, (U) and let

5(U) be its barycentric subdivision. As the first step in the proof of the
theorem we will define a map f from | N3(U)| to X. We will then show that
this map induces an isomorphism of fundamental groups.

To this end choose a point p; in each open set U, in U, a point p;; in each
nonempty pairwise intersection U, and a point p;; in each nonempty
triple intersection U, . Also, fix a contraction ¢; of U, to p;, and a contrac-
tion ¢;; of Uy; to p;;. These contractions exist because U is a good cover. By
decree the map fsends U,, Uy;, and Uy, to-p;, py;, and pyy respectively.

A
\/

Figure 13.5

Next we define f on the edges of | N3(U)|. The contraction c; takes p;; to
p; and gives a well-defined path between p; and p,;. Similarly, the contrac-
tion c; gives a well-defined path between p;, and p;; (see Figure 13.5).
Furthermore, for each point p; the six contractions ¢;, c;, ¢, ¢, ¢, and
¢, produce six paths in X joining p;u+to p;, p;, Px, Pij» Pix, and p, respect-
ively (see Figure 13.6).

Figure 13.6
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The map f shall send the edges of | N3(U)| to the paths just defined; for
example, the edge U, Uy, is sent to the path joining p; and p;.

Finally we define f on the faces of | N3(i)|. Since each “triangle” p; p;; pix
lies entirely inside the open set U, (such a triangle may be degenerate; i.e., it
may only be a point or a segment), the triangle may be “filled in” in a
well-defined manner: to fill in the triangle p; p;; p;, use the contraction ¢, to
contract the edge p;; pu to p; (see Figure 13.6). This “filled-in” triangle will
be the image of the triangle U, U; U ; under /. In summary, with the choice
of the points p;, py;, pi;x and the contractions c;, ¢, fixed, we have defined a
map f: | N3(U)|— X. We will now show that the induced map of funda-
mental groups, f,: m,(| N3(U)|)— =n,(X) is an isomorphism.

STEP 1 (Surjectivity of f,). Take p, in U, to be the base point of X. Let
y: S' — X be a loop in X basedat p,. We would like to deform y to a map
of the form f, (), where 7: S' — | N, (U)| is a loop in | N, (U) | based at U,,.

Regard S* as the unit interval I with its endpoints identified. To define 7,
we first subdivide the unit interval into equal pieces, so that it becomes a
simplicial complex K with vertices qq, ..., g, (Figure 13.7).

9 901 Q@ q'12 92 qn
Figure 13.7

By making the pieces sufficiently small, we can ensure that the star of g; in
the barycentric subdivision K’ of K is mapped entirely into an open set
U a(i)*

. Yst(q)) = Uy
To simplify the notation, write j instead of i + 1, so that ¢;q; is a 1-
simplex in K. Let g;; be the midpoint of g;g;. Define y: S'— | N, ()| by

sending the segment q;q; to the segment U, U,,; it follows that g, =

U and £,(X90) = Pay-
Next define a map F on the sides of the square I by (see Figure 13.8)

F | botom sige = F(x, 0) = ¥(x),
F|wpsge = F(x, 1) = f, (),
and
F | verticat sides = F(0, £) = F(1, 1) = po.

The problem now is to extend F: 91> — X to the entire square. Subdivide
the square by joining with vertical segments the vertices (g;, 0), (q;;, 0) on
the bottom edge to the corresponding vertices on the top edge. Since
F(gi, 0) = ¥(g) and F(q;, 1) =f,7(q) = P, they both lie in U,,. Since
U.q is contractible, by the extension principle F can be extended to the
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fay

Po Po

Y
Figure 13.8

vertical segment {g;} x I. Similarly, F can be extended to the vertical seg-
ment {q;;} x I. Thus in Figure 13.8, F is defined on the boundary of each
rectangle and maps that boundary entirely into a contractible open set U, .
By the extension principle again, F can be extended over each rectangle. In
this way F is extended to the entire square I2.

STEP 2 (Injectivity of f,). Suppose y: I — | N, (U)| is a loop such that f,(y) is
null-homotopic in X. This means there is a map H from the square I to X
as in Figure 13.9.

foy

Po H Po

Po
Figure 13.9

By the simplicial approximation theorem we may assume that y is a
simplicial map from some subdivision L of the top edge of the square to
| N2 (U)|. Now subdivide the square I repeatedly to get a triangulation K
with the property that if g; is a vertex of K and st(q,) is the star ofg; in the
barycentric subdivision K’, then

H(st(q) < Uy

for some open set U, in U. In the process of the subdivision new vertices
are introduced on the top edge only by repeated bisection of the edge;
furthermore, the function a on the vértices of the top edge may be chosen as
follows. Consider for example the 1-simplex q,q9,. If g, is a new vertex
to the left of the midpoint q,,, choose a(k)= a(1); otherwise, choose
a(k) = a(2).
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Define
H: I* = |K| - |N;(W)|
to be the simplicial map with
H(g) = Uy.

The restriction B of H to the top edge of the square agrees with y on the
.vertices of L. Furthermore, by construction f is homotopic to y in| N, ()|,
and H is a null-homotopy for f. Therefore, fo: 1IN (Q)]) > my(X) is in-
jective. Since the nerve N(U) and its 2-skeleton N, (1) have the same funda-
mental group (Remark 13.3 (a)), the theorem is proved. a

Examples of Monodromy

EXAMPLE 13.5. Let S* be the unit circle in the complex plane with good
cover W = {Uy, U, U,} as in Figure 13.10. The map-n : z — z* defines a
fiber bundle 7 : S' — §' each of whose fibers consists of two distinct points.
Let F = {A4, B} be the fiber above the point 1. The cohomology H*(F)
consists of all functions on {4, B}, i.e., H*(F) = {(a, b) € R?}.

Fix an isomorphism H*n~'U,)  H*(F). We have the diagram

H*n 'Uy) 3 H*(F)
!
H¥n™'U,,)
T
H*n 'U))
!
H*(n"'U,,)
T
H*=n 'U,)
!
H*(n™'Uo;)

1
H*(n~'Uy) 3 H*(F).

E———————————— — ——_—————— e — ——

If we start with a generator, say (1, 0), of H*(F) and follow it around the
diagram, we do not end up with the same generator; in fact, we get (0, 1). In
general (a, b) goes to (b, a). Therefore the presheaf #*(U) = H*(n~'U) is
not a constant presheaf.



152 11 The Cech-de Rham Complex
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Figure 13.10

Exercise 13.6. Since H, of the double complex C*(n~'U, Q*) in Example
13.5 has only one nonzero row, we see by the generalized Mayer-Vietoris
principle and Proposition 12.1 that

H*S') = H3{C*(n~ 'Y, Q*)} = H,;Hy = H*U, »#°).
Compute the Cech cohomology H*(u, #°) directly.

ExampLE 13.7. The universal covering 7 :R' — S given by n(x) = ¢*** is a
fiber bundle with fiber a countable set of points. The action of the loop
downstairs on the homology Ho(fiber) is translation by 1: x+—x + 1. In
cohomology a loop downstairs sends the function on the fiber with support
at x to the function with support at x + 1. (See Figure 13.11.)

x+1

IRy

Figure 13.11

Exercise 13.8. As in Example 13.5, with U being the usual good cover of S?,
H*R') = H3{C*(n~'U, Q*)} = H,H, = H*M, #°).
Compute H*(U, »#°) directly.
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ExaMpLE 13.9. In the previous two examples, the fundamental group of the
base acts on H, of the fiber. We now give an example in which it acts on
H,.

The wedge S™ V S" of two spheres S™ and S" is the union of S™ and S"
with one point identified. Let X be S' V §? as shown in Figure 13.12 and
let X be the universal covering of X. Note that although H*(X) is finite,
H*(X) is infinite. We define a fiber bundle over the circle S* with fiber X by
setting.

E=X x I/(x, 0) ~ (s(x), 1)

where s is the deck transformation of the universal cover X which shifts
everything one unit up. The projection n : E — S' is given by n(%, t) =t.
The fundamental group of the base n,(S*) acts on H,(fiber) by shifting each
sphere one up.

Exercise 13.10. Find the homotopy type of the space E.

Y

(=X ]

Figure 13.12



CHAPTER III

Spectral Sequences and Applications

This chapter begins with the abstract properties of spectral sequences and
their relation to the double complexes encountered earlier. Then in Section
15 comes the crucial transition to integer coefficients. Many, but not all, of
the constructions for the de Rham theory carry over to the singular theory.
We point out the similarities and the differences whenever appropriate. In
particular, there is a very brief discussion of the Kiinneth formula and the
universal coefficient theorems in this new setting. Thereafter we apply the
spectral sequences to the path fibration of Serre and compute the cohomol-
ogy of the loop space of a sphere. The short review of homotopy theory
that follows includes a digression into Morse theory, where we sketch a
proof that compact manifolds are CW complexes. In connection with the
computation of n;(S?), we also discuss the Hopf invariant and the linking
number and explore the rather subtle aspects of Poincaré duality concerned
with the boundary of a submanifold. Returning to the spectral sequences,
we compute the cohomology of certain Eilenberg-MacLane spaces. The
Eilenberg-MacLane spaces may be pieced together into a twisted product
that approximates a given space. They are in this sense the basic building
blocks of homotopy theory. As an application, we show that n4(S*) = Z,.
We conclude with a very brief introduction to the rational homotopy
theory of Dennis Sullivan. A more detailed overview of this chapter may be
obtained by reading the introductions to the various sections. One word
about the notation: for simplicity we often omit the coefficients from the
cohomology groups. This should not cause any confusion, as H*(X) always
denotes the de Rham cohomology except in Sections 15 through 18, where
in the context of the singular theory it stands for the singular cohomology.

154
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§14 The Spectral Sequence of a Filtered Complex

By considering the double complex C*(U, Q*) of differential forms on an
open cover, we generalized in Chapter II the key theorems of Chapter L
This double complex is a very degenerate case of an algebraic construction
called the spectral sequence, a powerful tool in the computation of homol-
ogy, cohomology and even homotopy groups. In this chapter we construct
the spectral sequence of a filtered complex and apply it to a variety of
situations, generalizing and reproving many previous results. Among the
various approaches to the construction of a spectral sequence, perhaps the
simplest is through exact couples, due to Massey [1].

Exact Couples

An exact couple is an exact sequence of Abelian groups of the form

A——4
N
B
where i, j, and k are group homomorphisms. Defined:B— Bbyd=jo k.
Then d? = j(kj)k = 0, so the homology group H(B) = (ker d)/(im d) is de-
fined. Here 4 and B are assumed to be Abelian so that the quotient H(B) is

a group.

Out of a given exact couple we can construct a new exact couple, called
the derived couple,

A—n
(14.1) \ /

by making the following definitions.
(a) A’ = i(A); B' = H(B).
(b) i’ is induced from i; to be precise,
i'(ia) = i(ia).
(c) If @’ = iais in A’, with a in A, then j'a’ = [ ja], where [ ] denotes the

homology class in H(B). To show that j' is well-defined we have to check
two things:

(i) ja is a cycle. This follows from d(ja) = j(kj)a = 0.
(ii) The homology class [ ja] is independent of the choice of a.
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Suppose a’ = id for some other g in A. Then because 0 = i(a — ), we have
a — a = kb for some b in B. Thus
ja — ja = jkb = db,
)
[ja] = [jal.
(d) k' is induced from k. Let [b] be a homology class in H(B). Then
jkb = 0 so that kb = ia for some a in A. Define

k'[b] = kb € i(A).

It is straightforward to check that with these definitions, (14.1) is an
exact couple. We will check the exactness at B’ and leave the other steps to
the reader.

(i) im j' < ker k':
kKj'(@) = kj(ia) = Kj(a) = kj(a) = O.
(ii) ker k' cimj’:
Since k'(b) = k(b) = 0, it follows that b = j(a) = j'(ia) € im j'.

The Spectral Sequence of a Filtered Complex

Let K be a differential complex with differential operator D; ie., K is an
Abelian group and D: K — K is a group homomorphism such that D* = 0.
Usually K comes with a grading K = @, .z C* and D: C*— C**! increases
the degree by 1, but the grading is not absolutely indispensable. A subcom-
plex K’ of K is a subgroup such that DK’ C K’. A sequence of subcom-
plexes

K=Kyo>K,oK,o2Ky;>---

is called a filtration on K. This makes K into a filtered complex, with
associated graded complex

GK = @K /K, 1.
p=0 .

For notational reasons we usually extend the filtration to negative indices
by defining K, = K for p < 0.

ExaMPLE 14.2. If K = @ K”? is a double complex with horizontal oper-
ator 4 and vertical operator d, we can form a single complex out of it in the
usual way, by letting K = @ C*, where C* = @, -« K% and defining
the differential operator D: C*— C**! to be D = é + (—1)? d. Then the
sequence of subcomplexes indicated below is a filtration on K:

K,=@ @ K

izp ¢q20
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T

K,

T
T

Returning to the general flltered complex K, let 4 be the group
A= @ K,.

pel

A is again a differential complex with operator D. Define i: 4 — A to be the
inclusion K., < K, and define B to be the quotient

(14.3) 0—A> A4S B0,

Then B is the associated graded complex GK of K. In the short exact
sequence (14.3) each group is a complex with operator induced from D. In
the graded case we get from this short exact sequence a long exact sequence
of cohomology groups

—bH*(A) Hk(A) Hk(B) Ht+l(A)_.,

which we may write as

i

H(A) » H(A) A, ——*An

VAR WA

H(B)

where the map i need no longer be an inclusion. We suppress the subscript of
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i, to avoid cumbersome notation later. It is not difficult to see that the same
diagram exists in the ungraded case. Since this diagram is an exact couple, it
gives rise as in (14.1) to a sequence of exact couples:

A, —— 4,
.v\ / .

B, ,

each being the derived couple of its predecessor.

For the sake of the exposition consider now the case where the filtered
complex terminates after K;:

=K_=K¢o2K;>2K;>2K;>0.

Then A, is the direct sum of all the terms in the following sequence

-+ & H(K) & H(K) & H(K,) & H(K,) & H(K;) « 0.

This is of course not an exact sequence. Next, 4, by definition is the image
of A, under i in 4, and so is the direct sum of the groups in the sequence

& H(K) & H(K) o iH(K,) « iH(K,) « iH(K;) « 0.

Note that here the map iH(K,) = H(K) is an inclusion. Similarly A, is the
sum of

.

<+ & H(K) & H(K)> iH(K,) o iiH(K,) « iiH(K;) « 0
and A, is the sum of
& H(K) & H(K) > iH(K,) > iiH(K,) > iiiH(K3) 2 0.

Since all the maps become inclusions in A,, all the A’s are stationary after

the fourth derived couple and we define A, to be the stationary value:
Ay=As=Ag=-=A4,

Furthermore, since

A4"'—_’A4

N/

isexactandi: A, — A, is the mclusnon, the map k, : B, — A, must be the
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zero map. Therefore, after the fourth stage all the differentials of the exact
couples are zero and the B’s also become stationary,

B‘=Bs=BG="'=BQ
In the exact couple

inclusion i

Aq Aa
uw\\ //
Boo

A is the direct sum of the groups
(14.4) <+ = H(K) = H(K) o iH(K ) o iiH(K,) 2 iiiH(K3) > 0

and the inclusion i, is as in (14.4). Since B, is the quotient of i, it is the
direct sum of the successive quotients in i, . If we let (14.4) be the filtration
on H(K), then B, is the associated graded complex of the filtered complex
H(K).

We now return to the general case. The sequence of subcomplexes

- =K=KoK;oK;o2K3>--

induces a sequence in cohomology

+ ®H(K) &H(K) < H(K)) « H(KK;) & H(K;) < -,
where the maps i are of course no longer inclusions. Let F, be the image of
H(K,) in H(K). Then there is a sequence of inclusions

(14.5) H(K)=F03FIDF2:)F33"'

’

making H(K) into a filtered complex; this filtration is called the induced
filtration on H(K).

A filtration K, on the filtered complex K is said to have length ¢ if
K,+0 and K, -—0 for p> l. By the same argument as the special case
above, we see that whenever the filtration on K has finite length, then 4,
and B, are eventually stationary and the stationary value B, is the
associated graded complex ® F,/F,,, of the filtered complex H(K) with
filtration given by (14.5).

It is customary to write E, for B,. Hence,

E, = H(B) with differential d, = j, ° kl,
E, = H(E,) with differential d, = j, o k,,
= H(E,), etc. '

A sequence of differential groups {E,, d,} in which each E, is the homology
of its predecessor E,_, is called a spectral sequence. If E, eventually be-
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comes stationary, we denote the stationary value by E, and if E, is equal
to the associated graded group of some filtered group H, then we say that
the spectral sequence converges to H.

Now suppose the filtered complex K comes with a grading: K =
@ ..z K" To distinguish the grading degree n from the filtration degree p,
we will often call n the dimension. The filtration {K,} on K induces a
filtration in each dimension: if K} = K" n K, then {K’} is a filtration on
K"

For the applications we have in mind, the filtration on K need not have
finite length. However, we can prove the following.

Theorem 14.6. Let K = @, , K" be a graded filtered complex with filtration
{K,} and let H}(K) be the cohomology of K with filtration given by (14.5).
Suppose for each dimension n the filtration {K}} has finite length. Then the
short exact sequence

0— @K',+1—’ @Kp—’ @KP/K‘,.’.l—’O

induces a spectral sequence which converges to H}K).

ProoF. By treating the convergence question one dimension at a time, this
proof reduces to the ungraded situation. To be absolutely sure, we will write
out the details. As before, '

A, = @ r'HK);

pel

ifr>p+1,theni"H(K,) = F,and
it i"H(K,4+)—i"H(K))

is an inclusion. With a grading on each derived couple, i and j preserve the
dimension, but k increases the dimension by 1. Given n, let /(n) be the
length of {K}},.zand let r > £(n + 1) + 1. Then for any integer p,

IH"™ (K yey) = F33
and
ititH** YK, )= i"H" " Y(K)
is an inclusion. It follows that
RN LAR PN LA
is an inclusion and
ke: Bi—s A7*!

is the zero map. Therefore, as r— oo, the group B} becomes stationary and
we can define BY, to be this stationary value. Note that

4= F
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and that i, sends F,, into F}, for every n. Because ip,: @ F,.y— @F, is
an inclusion, B,, is the associated graded complex @ F,/F, ., of H§K). O

The Spectral Sequence of a Double Complex

Now let K = @K be a double complex with the filtration of Example
14.2. We will obtain a refinement of Theorem 14.6 for this special case by
taking into account not only the particular filtration in question but also
the bigrading and the presence of the two differential operators § and d.
The direct sum A = @K, is also a double complex. Here, as always, we
form a single complex 4 = @ A* out of this double complex by summing
the bidegrees: A* consists of all elements in 4 whose total degree is k. There
is an inclusion i : 4*— A* given by
i:AnK,y —»AnK,.

The single complex A inherits the differential operator D = § +(—1)"d
from K.

Similarly, B = @ K,/K, .+, can be made into a single complex with oper-
ator D. Note that the differential operator D on B is (— 1)°d; therefore,

~ E; = Hp(B) = Hy(K).

Recall that the coboundary operator k, : H(B) — H(A) is the coboun-
dary operator of the short exact sequence (14.3) and hence is defined by the
following diagram :

I I I

)
0— AN K,y — A" 0 K,— B A KK, -0

(14.7)

(14.8) ]D @ | ]D

0— A" nK,,, — A'_‘nK‘, — B*n KK .1 — 0
(1)

I I I

Let b in A4* N K, represent a cocycle [b] in B* N K,/K,+,. This corre-
sponds to Step (1) in the diagram. To get k,([b]), we

(2) compute Db and
(3) take its inverse under i.

Since b represents an element of E, = Hp(B)= H,(K), db =0 and
Db = 6b + (—1)°db = &b. Thus k,[b] = [6b]; so the differential d;, = jk,
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on E, is given by J (in fact by D, but D = § on E,). Consequently
(14.9) E, = H;H,(K).

We now compute the differential d, on E,. As noted in the proof of
Proposition 12.1, an element of E, = H, H,(K) is represented by an element
b in K such that

o —r O

db=0 [

0b = —D’c for some c in K,

where D" = (—1)?d.-We will denote the class of b in E,, if it is defined, by
[b],. From the definition of the derived couple (14.1),

dz [b]2 =j, kz [b]z =j, kl[b]l'

To compute j, k,[b];, we must find an a such that k,[b], = i[a],. Then
j2k2[b]; = [j1al,. Since kyb isin A*** A K, 4y, aisin A**' n K,,,. To
find a we use not b but b + ¢ in A* N K, to represent [b], in Step (1); this
is possible since b and b + ¢ have the same image under the projection
K, — K,/K,.. Then

ki + c) = D(b + ¢) = dc.
So
(14.10) d, [b], = [dc],.

Thus the differential d, is given by the & of the tail of the zig-zag which
extends b. It is easy to show that dc represents an element of H; H,(K) and
that the definition of d, [b], is independent of the choice of c.

S—— O

o —
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Exercise 14.11. Show that if d, [b], = 0, then there existc, and ¢, so that b
can be extended to a zig-zag as shown:

0
b
|
b——
D'b=0 {
Ci 4
ob= —D"¢c, 1[’
C2
6(.‘1 = —D”Cz.

We say that an element b in K lives to E, if it represents a cohomology
class in E,; equivalently, b is a cocycle in E,, E,,

..., E,_;. From the
discussion above we see that b lives to E, if it can be extended to a zig-zag
of length 2, the length of a zig-zag being the number of terms in it,

db

]
(=)

8b=—D"c

ST — O

and d,[b], = [6c],; it lives to E; if it can be extended to a zig-zag of
length 3:

(f
db=0 p_l,
éb= —D"c, I
€y —4—>
501 = —-D"Cz. I
C2




164 IIT  Spectral Sequences and Applications

To compute d;[bly, we use b +c, + ¢, in 4* N K, to represent [b] e
B"n(K,/K,“) in Step (1) of (14.8), so that ky [b], is given by D(b +
¢y + ¢3) = dc, and dy [b]; = [dc,]5. In general, parallel to the discussion

above, an element b in K™ 7 lives to E, if it can be extended to a zig-zag of
length r:

o — O

Cy——

Cy 44—

Cr-24—

and the differential d, on E, is given by & of the tail of the zig-zag:
(14'12) dr [b]r = [60,_ l]r’

Thus the bidegrees (p, g) of the double complex K = @ K7 persist in the
spectral sequence

E

. Ef. l,

P q
and d, shifts the bidegrees by (r, —r + 1):
d,: EP9— Eptra-r+i,
The filtration on H(K) = @ H"(K):
H(K)=F03Fl DpzD e

induces a filtration on each component H*(K), the successive quotients of
the filtration being E% ", EL "1, ..., E%°:

(14.13) HYK) = (FonH") > (Fy nH") > (F;nH") > ... o (F,nH) >0
N — \——’

Ego.n E:n-l Evgo

This is best seen pictorially
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EO. n

El.n-l

E™ o

——

F,
F F,

In summary, we have proved the following refinement of Théorem 14.6.

Theorem 14.14. Given a double complex K = @ pqz0 KP 9 there is a spectral

sequence {E,, d,} converging to the total cohomology Hp(K) such that each E,
has a bigrading with

d’ . E’.G_’ E:*r.q-r*ﬂ -
and
E%¢ = H34K),
E§* = HY *H,(K);
furthermore, the associated graded complex of the total cohomology is given by

GHy(K)= @ EZK).

pPrqg=n

REMARK 14.15. Of course, instead of the filtration in Example 14.2, we could
just as well have given K the following filtration.

q
4
K,
3
K,
2
1
0
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This gives a second spectral sequence {E,, d,} converging to the total
cohomology Hj(K), but with

E} = Hys(K),
2 = HyHy(K),
and
d:E" — EPrtlatr
EXAMPLE 14.16 (The Mayer-Vietoris principle and the isomorphism be-

tween de Rham and Cech). Let M be a manifold and i a good cover on M.
Consider the double complex K = @ K9,

KP9 = CP(u’ Qq) = l—[ Qq(Uao ...B’)

@ ]

Since the rows of K are the Mayer-Vietoris sequences, the E, term of the
second spectral sequence is -

Q’(M)
Q*(M)
Q'(M)
Q°(M)

o © o o

Therefore the E, term is

. HH, - |HB0D| 0
HM)| 0
Hy(M)| 0
H3(M)| O

In general a spectral sequence is said to degenerate at the E, term ifd, =
d,,, =---=0. For such a spectral sequence E,=E,,, =---=E_. The
degeneration of the second spectral sequence of the double complex
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C*Q, Q*) at the E, term proves once again the Mayer—Vietoris principle
(Proposition 8.8):

(14.16.1) H5(M)= @ HEYC*U, Q).

ptq=k
Now consider the first spectral sequence of C*(U, Q*). Its E, term is

: 0 ifg>0
Pq _ q =
Ef © <H< a,H (Uso ...a) {Cp(u’ R) ifq=0.

0 0 0
cou, R) | C'(u, R) | CHU, R)

So the E, term is

Ez =:I{61{d:=

HU, R) | H'(U, R) | HX (U, R)

The degeneration of this spectral sequence gives
HU R = @ E}'= @ E%*=HpH{C*YU, Q%)
ptq=k ptq=k

Together with (14.16.1) we get
HY%(M) = HU, R) for all integers k > 0.

This is the spectral sequence proof of the isomorphism between de Rham
and Cech (Theorem 8.9).

REMARK 14.17. The extension problem. Because the dimension is the only
invariant of a vector space, the associated graded vector space GV of a
filtered vector space V is isomorphic to V itself. In particular, if the double
complex K is a vector space, then

HYK)~ GH)K)~ @ EP*

ptq=n
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However, in the realm of Abelian groups a knowledge of the associated
graded group does not determine the group itself. For example, the two
groups Z, @ Z, and Z, filtered by

Zz c Zz @ Zz
and

Z,cZ,

have isomorphic associated graded groups, but Z, @ Z, is not isomorphic
to Z,. Put another way, in a short exact sequence of Abelian groups

0—-A—->B—-C—0,

A and C do not determine B uniquely. The ambiguity is called the extension
problem and lies at the heart of the subject known as homological algebra.
For our purpose it suffices to be familiar with the following elementary facts
from extension theory.

Proposition 14.17.1. In a short exact sequence of Abelian groups
045 B4 coo,

if C is free, then there exists a homomorphism s : C — B such that g o s is the
identity on C.

PrOOF. Define s appropriately on the generators of C and extend linearly. (]

Corollary 14.17.2. Under the hypothesis of the proposition,
(a) the map (f, s): A @ C— B is an isomorphism;
(b) for any Abelian group G the induced sequence

0— Hom(C, G)— Hom(B, G)— Hom(4, G)— 0

is exact;
(c) for any Abelian group G the sequence

0-4A®G-BRG-CR®G—-0
is exact.
The proof is left to the reader.
Exercise 14.17.3. Show that if
‘ 0= 4,5 A4A,—> 43—

is an exact sequence of free Abelian groups and if G is any Abelian group,
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then the two sequences
0 ~ Hom(4,, G) ~ Hom(4;, G) ~ Hom(43, G) «~
and
004, ®G-4, G624, R G-
are both exact.
Exercise 14.17.4. Show that if
0—-A-B—-C—-0

is a short exact sequence of Abelian groups (which are not necessarily free)
and G is any Abelian group, then the-two sequences

0—» Hom(C, G)— Hom(B, G)— Hom(4, G)

and
A®G->B®G—->C®G -0

are both exact.

The Spectral Sequence of a Fiber Bundle

Let n: E — M be a fiber bundle with fiber F over a manifold M. Applying
Theorem 14.14 here gives a general method for computing the cohomology
of E from that of F and M. Indeed, given a good cover U of M, n~!U is a
cover on E and we can form the double complex

Kne = O, 09— [] 0 U,.0)
a0 <...<ap
whose E, term is

E}i=Hii= [] HY(n 'U,..)=CU ¥,

20<...<ap

where #7is the presheaf #9(U)= HY="'U) on M. For emphasis we

sometimes write the presheaf J#7 as ) 9(F). Since U is a good cover, 7

1s a Iocally constant presheaf on U with group H(F) (pp 142-143). Since
=48 on E,, the E, term is

Efpi= Hj’(l[ , xq)_

By Theorem 14.14 the spectral sequence of K converges to H3(K), which
by the generalized Mayer-Vietoris principle (Proposition 8.8) is equal to
H*(E), because #~! 1l is a cover on E.

In case the base M is simply connected and H%F) is finite-dimensional,
Theorems 13.2 and 13.4 imply that )7 is the constant presheaf R® :--
@ R on U, consisting of h%(F) copies of R where h%F) = dim H%F). So the
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E% 7 term is isomorphic as a vector space to the tensor product HA(M) ®
HY(F), since

E2i=HU,R D --- @ R) = H?(U, R) ® HYF)
= H"(M) @ HI(F),

where the last equality follows from Theorem 8.9.
We have proven the following.

Theorem 14.18 (Leray’s Theorem for de Rham Cohomology). Given a fiber
bundle n : E — M with fiber F over a manifold M and a good cover U of M,
there is a spectral sequence {E,} converging to the cohomology of the total
space H*(E) with E, term

E3 9 = HY(, #79),

where X1 is the locally constant presheaf #%(U) = Hn~*U) on W. If M is
simply connected and HY(F) is finite-dimensional, then

E% = H*M) @ H(F).

Some Applications

ExaMPLE 14.19 (The Kiinneth formula and the Leray-Hirsch theorem). We
now give a spectral sequence proof of the Kiinneth formula (5.9). Let M and
F be two manifolds and U a good cover of M. Suppose F has finite-
dimensional cohomology. By Leray’s theorem (14.18), the spectral sequence
of the trivial bundle

F-MxF

|
M

has E, term
E% = HP(U, H#F)).

Because M x F is a trivial bundle over M, the presheaf J#%(F) is constant,
so that

E%? = H'U, R) ® HYF) = H"M) @ H(F).

By (14.12) the differential d, measures the extent to which an element of
C*(n~'U, Q%) that lives to E, fails to be extended one step further to a
D-cocycle. Since every element of the E, term is already a global form on
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M xF, dy=dy=---=0."So E, =E_,, which by Theorem 14.18 is
H*(M x F). Therefore we have the Kiinneth formula

H*M x F)= H*M) & H*(F).
The proof of the Leray-Hirsch theorem is analogous.
REMARK 14.20 (Orientability and the Euler class of a sphere bundle). Let

n : E — M be an S"-bundle over a manifold M and let U be a good cover of
M. The spectral sequence of this fiber bundle has

AN A XA

EY% = H}* = C'(, 2(S") =

VA YA NS

o 1 2 n

N

Let o be the element of EY'" = C°(U, »#"(S™) corresponding to the local
angular forms on the sphere bundle E. From the description of the differ-
ential d, as the & of the tail of a zig-zag, we see that E is orientable if and
only if d,o = 0 (compare with pp. 116-118). For an orientable S"-bundle
then, sucha o lives to E, :

UL,
TL

E,=E, =H;H;= H*U, #*S") = SN "L

—L;"
o/ A/ ////)é//

0o 1 2 n n+l

N
N

Up to a sign d, o in H""'(U, #°(S") = H"* (M) is the Euler class of the
sphere bundle. It measures the extent to which o fails to be extended to a
D-cocycle, i.e., a global closed n-form on the sphere bundle.

EXAMPLE 14.21 (Orientability of a simply connected manifold). Let M be a
simply connected manifold of dimension n and S(T,,) its unit tangent
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bundle. The spectral sequence of the fiber bundle
"t 5 S(Ty)
i

has E, term

This shows that there is an element in C%=~'U, »#"~!) which can be
extended one step down toward being a D-cocycle. Therefore S(Ty,) and also
M are orientable. This gives an alternative proof of the orientability of a
simply connected manifold (Corollary 11.6).

EXAMPLE 14.22 (The cohomology of the complex projective space). Consider
the sphere

S = {(zg, ..., z,) || 20> + - + | 242 = 1}
inC"*!. Let S! act on $2"*! by
(zoy -+» 2,) M (Azg, ..., Az,),

where A in S! is a complex number of absolute value 1. The quotient of
§2*1 by this action is the complex projective space CP". This gives S"*!
the structure of a circle bundle over CP*

Sl — SZn+l
!
CP".

As we will see from thg homotopy exact sequence (17.4) to be discussed
later, CP" is simply connected, Thus

E8 %= H?(CP") ® HY(S).

So E, has only two nonzero rows, g = 0, 1, and the two rows are identical,

both being H*(CP").
E;= |Rl4|B{C|D]|O
R|A]B|C[D|oO

Let n = 2. Then

01 2 3 435
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where the bottom row is the cohomology of the base, H*(CP?), and the 0-th
column is the cohomology of the fiber. HA(CP?) = 0 for p > 5 because CP?
has dimension 4. Since d; moves down two steps, d3 = 0. Similarly,

dy=ds=---=0.

So the spectral sequence degenerates at the E; term and E; =E; =+ =
E, = H*S®). Therefore

E;=|0|0(0|O0O|R]|O
R{Oj0O(0O]|O]|O.

0 1 2 3 435
This means
d;:R— B, B— D,
04, A—>C, C—0

must all be isomorphisms. It follows that

E,= |[R|IOIR{O|R]O
RIO|R|{O|R|O

01 23 4 5
Therefore,

R in dimensions 0, 2, 4

* 2)
H*CP) {0 otherwise.

Exercise 14.22.1. Show that

R in dimensions 0,2, 4, ..., 2n

* =
HY(CP?) {0 otherwise.

Exercise 14.23 (Algebraic Kiinneth Formula). Let E and F be graded differ-
ential algebras over R with differential operators & and d respectively.
Define a differential operator D on the tensor product E @ F by

Die @ f)=(e) @ f+(—1)"**e @ df.

Prove by a spectral sequence argument that

Hp(E ® F) = H,(E) @ Hq(F).
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Product Structures

In this section we define product structures on the Cech-de Rham complex
C*(U, Q*), the de Rham cohomology, and the Cech cohomology, and show
that the isomorphism between de Rham and Cech is an isomorphism of
graded algebras. We also discuss the product structures on a spectral se-
quence.

Let Z be the closed forms and B the exact forms on a manifold M. From
the antiderivation property of the exterior derivative

d - 1) =(dw) - n+(-1)%3° o - dy,

it follows that Z is a subring of Q*(M) and B is an ideal in Z. Hence the
wedge product makes the de Rham cohomology Hpx(M)= Z/B into a
graded algebra.

On the double complex C*(U, Q*), where U is any open cover of M, a
natural product

v CPU, Q) ® C(U, Q) — CPHU, Q)
can be defined as follows. If w is in CP(U, Q?) and # is in C"(U, ), then
(1424) ((D v ")(Uao u,o,) = (— l)q’w(uao a,) "'I(Ua, a,")i

where on the right-hand side both forms are understood to be restricted to
Uso...a,.,» With the usual convention that ay < < a,,,.

REMARK 14.25. The sign (—1)* is needed to make the differential operator
D into an antiderivation relative to the product structure. It makes sense
that this should be the sign, for in defining the product, p and r are brought
together, and so are g and s, so the order of g and r in C?(U, Q%) @ C"(Y,
(¥’) are interchanged. It is a useful principle that whenever two symbols of
degrees m and n are interchanged in a graded algebra, there should be the
sign (= 1)™.

Exercise 14.26. Let w € K™ %and n € K"*. Show that

Ddw un)=@0w un+ (=10 uUdy
2)D"(w v n) =(D"w) U n+ (=1 w U D'y
3)D(w U n) = (Dw) U n +(=1)*%° v U Dn,
where deg w = p + ¢q.

We will often write w - 5 or even wn for w U 1.

The inclusion of the Cech complex C*U, R) in the Cech-de Rham
complex induces a product structure on C*(U, R): if w is a p-cochain and n
an r-cochain, then '

(14.27) (@ Mg ..aprr = Dao...ap " May...ape,
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By Exercise 14.26, J is an antiderivation relative to this product. So just as
in the case of de Rham cohomology this makes the Cech cohomology
H*Y, R) into a graded algebra. If B is a refinement of U, then the res-
triction map H*(U, R) - H*(B, R) is a homomorphism of algebras. Hence
the direct limit H*(M, R) is also a graded algebra. Note that (14.27) also
makes sense for the Cech complex C*(1l, R) on a topological space X; this
gives a product structure on the Cech cohomology H*(X, R) of any topo-
logical space X.

With the product structures just defined, both inclusions
r: Q¥M) - C*U, Q%)
and
i:C*U, R)— C*Uu, Q%)

are algebra homomorphisms. Since as we saw in Proposition 8.8, for a good
cover these homomorphisms induce bijective maps in cohomology

Hpe(M) =~ Hp {C*(U, Q*)}
H*QU, R) ~ Hy {C*(U, Q%)},
the isomorphism between H3z(M) and H*(U, R) is an algebra isomorphism.
Because H*(M, R) = H*(U, R) for a good cover U, we have the following.
Theorem 14.28. The isomorphism between de Rham and Cech
Hps(M) ~ H*(M, R)

is an isomorphism of graded algebras.

If a double complex K has a product structure relative to which its
differential D is an antiderivation, the same is true of all the groups E, and

their operators d,, since E, is the homology of E,_, and d, is induced from
D. With product structures, Theorem 14.14 becomes

Theorem 14.29 Let K be a double complex with a product structure relative
to which D is an antiderivation. There exists a spectral sequence

{E,, d,: EPt — Eptra=r+1)
converging to Hp(K) with the following properties:

1) The E% ? term is H} *H {K).
2) Each E,, being the homology of its predecessor E,_ ,, inherits a product
structure from E, _ . Relative to this product, d, is an antiderivation.

WARNING. Although both E_ and Hp(K) inherit their ring structures from
K, they are generally not isomorphic as rings.
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Exercise 14.30 The product structure on the tensor product A @ B of two
graded rings 4 and B is given by

@@ bc ® d) = (—1)4esPes9gc @ bd), a, ce A, b, deB.

Show that if #: E—» M is a fiber bundle with fiber F over a simply
connected manifold M and F has finite-dimensional cohomology, then the
isomorphism of the E, term of the spectral sequence with H*(M) ® H*(F)
is an isomorphism of graded algebras.

REMARK 14.31. Thus in Leray’s theorem (Theorem 14.18) each group E, is
an algebra relative to which d, is an antiderivation; furthermore, if M is
simply connected, E, is isomorphic to H*(M) @ H*(F) as a graded
algebra.

EXAMPLE 14.32 (The ring structure of H*(CP"). Assume for now that n = 2.
In example 14.22, by applying the spectral sequence of the fiber bundle
st s’
' l
CP?,

we computed the additive structure of the graded algebra H*(CP?). We
found that the E,term is

1| R R R
\dk\\d;\

1 2 3 4 5  p

The two d,’s shown are isomorphisms. Let a be a generator of
E)'=H°(CP?) ® H'(S') = H'(S").
Then d, a = x is a generator of
E}°=H*(CP?)® H'(S') = H}(CP?)
andx-aisa genérator of

E}'= HYCP?) ® H'(SY).
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1 ~ .
a\x a\

0 ™~ x \x2

0 1 2 3 4 5 p
Because d,: E3! — E%° is an isomorphism, a generator of E}'° =
H*CP?)is
dy(x - a)=x-dya=x2
So as a ring,
H*(CP? = R[x]/(x).
In general, the same argument yields the ring structure of CP" as
' HY(CPY) = RIx)/(x"*Y),

where x is an element in dimension 2.

The Gysin Sequence

The spectral sequence of a fiber bundle is essentially a way of describing the
complicated algebraic relations among the cohomology of the base space,
the fiber, and the total space of the bundle. In certain special situations the
spectral sequence simplifies to a long exact sequence. One such special case
is the cohomology of a sphere bundle. The resulting sequence is called the
Gysin sequence, which we now derive.

Let n: E — M be an oriented sphere bundle with fiber S*. By the orien-
tability assumption, for any good cover U on M, the locally constant pre-
sheaf #* has no monodromy and is the constant presheaf R. Therefore the
E, term of the spectral sequence is

QAL s/

E8 = H'(M) ® HYS". dy sy

N A A S NI,

Let n be any nonnegative integer. Since nothing in E}~%* can get killed
(that is, nothing there lies in the image of d, for r > 2), E%"** is the sub-
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group of E}~** consisting of those elements with dy = d, = --- = 0. Hence
there is an inclusion

O_bE:,—k.l_’ E;—b.k.

This can be extended to an exact sequence
® oqE;—k.k_'E;—k.k::’ Ei+10 o Er10
Il I
H™YM) H**'(M)

where the last map, called an edge homomorphism, exists and is surjective
because every element of E3*!:° survives to E .

Because of the shape of the E, -term, the filtration (14.13) on H*(E)
becomes

H"(E) > E%° > 0;
N~
En—k. k
in other words, there is an exact sequence
**) 0 E%° - H(E) > Ex"* > 0.

The two sequences (*) and (**) may be combined into a single long exact
sequence
dy

"'—’H"(E)—‘DH'_.(M)—”DH'H'l(M)—pPH"'H(E)-*'“.

This is the Gysin sequence of the sphere bundle.
It remains to identify the maps ir the Gysin sequence. Let U be a good
cover on M. The map a is the composition of

projection

HY(E)

EyRY < EjTRE = HNm o, o)
= H""NM) ® HYS") = H""'(M).

In this sequence of maps the first three are the identity on the level of forms
and the last one sends a generator of H¥(S*) to 1 by integration. Therefore a
is integration along the fiber.

Next consider d, , ,. Representing an element of

Eyh* = H{M) ® HY(SY

by (n*w) - (—y), where w is a closed form on M and  is the angular form
on E, we see that

dy11(R*0X ~ V) = d(r*0X —¥)) = (— 1)* " H(n*w) d(—y)
= (=1)""Kn*w)n*e).
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Hence, up to a sign d, ., : H"~%M) - H"*'(M) is multiplication by the Euler

class e. B
Finally the map B is the composition

.

H™ (M) = H* Y1, #°(F)) & H"* a1, #°(F))

projection

=E;+l'° E:;*l,o c H”+1(E).

So B : H**Y(M) — H"*'(E) is the natural pullback map n*.
We summarize this discussion as follows.

Proposition 14.33. Let 7 : E — M be an oriented sphere bundle with fiber S*.
Then there is a long exact sequence

e BB S B0 S B S @ -

in which the maps n,, Ae, and n* are integration along the fiber, multi-
plication by the Euler class, and the natural pullback, respectively.

Exercise 14.33.1. Show that if the sphere bundle comes from a vector
bundle n : ¥V — M, then the long exact sequence in the proposition may be
identified with the relative exact sequence of the inclusion i:V°® — V,
where V° is the complement of the zero section in V. (Compare with
Proposition 6.49.)

Leray’s Construction

We consider now more generally not a fiber bundle but any map
n: X — Y from one manifold to another, and study how the cohomology
groups of X relate to those of Y. Let U be any cover for Y, not necessarily a
good cover. Then n~'U is a cover for X. By the Mayer—Vietoris principle
(Proposition 8.8 or 14.16)

H*(X) = Hp {C*(n~'U, Q%)}.

By Theorem 14.14, if K is the double complex C*(n~'U, Q*) on X, then the
spectral sequence of K has

E, = Hp{C*n™'U, Q*)}
and

EZ® = HE H,{C*n~'U, Q%)}.
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K= [T @'V, ..q)
[1 ¢ 'U,...)

@0 <...<ap

H,(K) = | I HG'U,...) | T1 HY U,

¢,+1)

Here

Hy(K)= [] HYn"'U,...) = C"(U, #9)

@0 <...<ap

where 2 is the presheaf on Y defined by s#%U) = H%x~'U). In summary,
there is a spectral sequence converging to H*(X) with E, term

EZ9 = HP(U, #7).

The main difference between this situation and that of a fiber bundle
(Theorem 14.18) is that the presheaf #? is no longer locally constant on U;

indeed the groups H%rn~'U) will in general be different for different con-
tractible open sets U.

ExampLE 14.34. Consider the vertical projection of a circle S* onto a seg-
ment I. Cover I with three open sets Uy, U,, U, as shown in Figure 14.1.

U,
Figure 14.1
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The presheaf #° attaches a group to each vertex and each edge of the
nerve N(U) in the way indicated below

R RZ R* R? R

H, of the double complex C*(n ™ !U, Q*) is

= C*(U, #°)

s

ROR DR R* @ R?
UO Ul UZ UOl U12

with § given by (b, (cy, ¢3), d) = ((cy — b, ¢; — b), (d — ¢y, d — ¢3)). Thus
ker 6 = {(b, (b, b), b)} and HJ °H,= R. Since im § is 3-dimensional,
H‘;.OH“ = R. SO HJHd is

R R

In this case, then, E, = E, and we get the cohomology of S*.

Let us find a nontrivial 1-cochain in C*(U{, »#°) that represents a gener-
ator of H'(S'). A 1-cochain in C'(U, 5#°) is given by a 4-tuple ((r, s), (t, u)).
Such a 4-tuple is exact if and only if r — s = u — t. Therefore as a generator
of H'(S') we may take ((1, 0), (0, 0)), i.e., the 1-cochain t (see Figure 14.2)

H—>r

UOI ,U12
Figure 14.2
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such that
H(Uoy) =(1,0)
©(U,;) = (0, 0).

Exercise 14.35. Project the sphere S2 to a disc D (Figure 14.3) and compute
H*(5%) by Leray’s method.

Figure 14.3

Exercise 14.36. Let Y be a manifold and U a finite good cover of Y.

Denote by Bp the number of nonempty ( p + 1)-fold intersections Uao.ua,'
Show that x(Y)= Y (—1)?8,..

Exercise 14.37. Let n: X —» Y be any may and U a finite good cover of Y.
Show that

=Y Y (=1r*idim H"(u“U,,,...,).
P.q a0<-:-<ap ’
Deduce that if n: X — Y is a fiber bundle with fiber F, Y admits a finite good
cover and F has finite-dimensional cohomology, then

2(X) = x(F) x(Y).

§15 Cohomology with Integer Coefficients

An element in a Z-module is said to be torsion if some integral multiple of it
is zero. Since the de Rham theory is a cohomology theory with real coeffi-
cients, it necessarily overlooks the torsion phenomena. For applications to
homotopy theory, however, it is essential to investigate the torsion. The
goal of this section is to replace the differential form functor Q* with the
singular cochain functor S*, define the singular cohomology, and show that
the preceding results on spectral sequences carry over to integer coeffi-
cients. The key as before is the Mayer-Vietoris sequence for countably
many open sets. The natural setting for the singular theory is the category
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of topological spaces and continuous maps, rather than the more restrictive
category of differentiable manifolds and C® maps of de Rham theory.
Unless otherwise indicated, from here till the end of Section 18 we will

work in the continuous category. We begin with a review of the basic
definitions of singular homology.

Singular Homology

Via the map
(xh ceey xn) — (xl’ coey xna 0)
each Euclidean space R” is naturally included in R"*!. Viewing each R" as a
subspace of R"*! in this way we consider the union
R = (J R"
nz0
Denote by P; the i-th standard basis vector in R®; it is the vector whose

i-th component is 1 and whose other components are all 0. Let P, be the
origin. We define the standard g-simplex A, to be the set

q 9
Aﬁ{Z B Y = 1"120}-
Jj=0 Jj=0

If X is a topological space, a singular g-simplex in X is a continuous map
s: A;— X and a singular g-chain in X is a finite linear combination with
integer coefficients of singular g-simplices. Collectively these g-chains form
an Abelian group S,(X). We define the i-th face map of the standard g-
simplex to be the function

a:,: Aq_ 1 Aq
given by (see Figure 15.1)

A = i-1
j=0 ji=0 j=i+l

Po . LH
Figure 15.1
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The graded group of singular chains,
5,0 = @ 5,

q20

can be made into a differential complex with boundary operator

o: Sq(x)_’ Sq—l(x)

ds = z': (—1)'so o,

i=0

It is easily checked that 3> = 0. The homology of this complex is the
singular homology with integer coefficients of X, denoted H(X) or
H,(X; Z). By taking the linear combination of simplices to be with coeffi-
cients in an Abelian group G, we obtain similarly singular homology with
coefficients in G, H (X ; G).

The degree of a 0-chain Y’ n, P, is by definition )’ n;. Suppose X is path
connected. If — P and Q are in a 0-chain on X, then any path from P to Q
is a 1-simplex with boundary Q — P. Hence a O-chain on a path-connected
space is the boundary of a 1-chain if and only if it has degree 0. This gives
rise to a short exact sequence

.

0— 8 Sy(X)— So(X) 3 Z 0,

from which it follows that if X is path connected, Ho(X) = Z. In general,
rank Hy(X) = the number of path components of X.

The Cone Construction

The goal of this section is to compute the singular homology of R". If s in
S,(R") is a g-simplex in R", we define the cone over s to be the (q + 1)-
simplex Ks.in S, (R") given by

a+1
KS(;;) ‘JPJ> =(1- ‘.+1)S( -1, )

This is the cone in R" with vertex the origin and base the simplex s. To
make sense of the formula, we view the last coordinate ¢t ., as “time”; as
time goes from O to 1, the cone Ks moves from s to the origin. For the
singular simplex s pictured in Figure 15.2, the cone Ks is the “tetrahedron”
and

0Ks = Oth face — 1st face + 2nd face — s
Kds = Oth face — 1st face + 2nd face.
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s(P,)

P; = Origin

Figure 15.2

In general we have the following.

Proposition 15.1. Let K: S (R")— S, + 1(R") be the cone construction. Then
0K — Ko =(—1)y*!
on S,(R") for g > 1.

ProoF. The geometrical idea is clear from Figure 15.2. The proof itself is a
routine matter of unravelling the definitions. We leave it to the reader. (O

In other words, the cone construction K is a homotopy operator between
the identity map and the zero map on S, (R"), ¢ > 1. Consequently,

0 g=>1

me={; 12

The Mayer-Vietoris Sequence for Singular Chains

Let U = {U,},., be an open cover of the topological space X. Just as for
differential forms on a manifold, the sequence of inclusions

L
o, <a,

x<lu, eI v, £...

induces a Mayer-Vietoris sequence. However, for technical reasons which
will become apparent in the proof of Proposition 15.2 (to show the surjec-
tivity at one end of the Mayer-Vietoris sequence), we must consider here the
group S4(X) of U-small chains in X ; these are chains made up of simplices
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each of which lies in some open set of the cover U. The inclusion

i1 S4X)— 5,(X)
is clearly a chain map, ie., it commutes with the boundary operator 4.
Indeed, it is a chain equivalence. The proof of this fact is tedious and we
will omit it (Vick [1, Appendix I, p. 207]), but the idea behind it is quite
intuitive: to get an inverse chain map, subdivide each chain in X until it
becomes U-small. In any case the upshot is that to compute the singular
homology of X it suffices to use U-small chains: H(S (X)) = H(S¥(X)).
Define the Cech boundary operator

d: @ S$qUsgg.ca) = @D S;(Uagap_y)

@ g <<,y

by the “alternating sum formula”
(0C)ag - ap-r = 2Caao - ap-1
a

Here, as always, we adopt the convention that interchanging two indices in
Ca0 - a, iNtroduces a minus sign. The fact that 8% = 0 is proved as in Prop-
osition 12.12. The boundary operator é on @ S,(U,,) — S,(X) is simply
the sum; we denote this by .

Proposition 15.2 (The Mayer-Vietoris Sequence for Singular Chains). The
following sequence is exact

0« SIX) & D S,(U,) & @ S,(U,,) <« -

a, <a,

Although this sequence bears a formal resemblance to the generalized
Mayer-Vietoris sequence for compact supports (Proposition 12.12), because
we do not have partitions of unity at our disposal now, the second half of
the proof of (12.12) does not apply.

Lemma 15.3. Let
0—-A4A-B-C—-0

be a short exact sequence of differential complexes. If two out of the three
complexes have zero homology, so does the third.

ProoF. Consider the long exact sequence in homology
and Hq(A)_’ Hq(B)_' Hq(C)_’ Hq—l(A)__' B D

'PROOF OF PROPOSITION 15.2. For two open sets the Mayer-Vietoris sequence
is

sum

0« S:(Uo vl «~ Sq(UO) @ sq(Ux) -« Sq(UO.l) <0

(c10, Co1) +— coy
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The exactness of this sequence follows directly from the definition. For
three open sets the sequence is

0= S%Us U U, U Uy) = SUa) @ SU,) @ SU) ———8 (Uo)) @ S{Uop) ® S U 2) = SUoyz) — 0
(€10 + €20+ Cor + €245 Coz + €13) ———————(Coy, Co2, €12)
(C201+ €102+ Cor2) =012

The Mayer-Vietoris sequence for two open sets injects into the one for three
open sets, giving rise to the following commutative diagram with exact
columns

0 0 0
! l !
0 — SYU,u Uy S(U) @ SUy) S(Uoy) 0
! | l !
0« §Uq U U, U Uy) ——S(Ug) @ S(U) @ S(U) —— S(Uoy) D S(U) @ SV, 1) — SUoy;) — 0
l ! ! I
CSWevUioU) | P g : S(Ug)) ® S(Uy;) ———— S(Uoy;) ~ 0
s.(ua v U‘) 2. 02. 12 0112.
l 1 ! 1
0 0 0 0

The U in SY(U, U U,) is the open cover {U,, U,}, while the U in S% (U, U
U, u U,)is the open cover {U,, U,, U,}. So the group

SYUq L U, U U,)/S%U, U Uy)

is generated by the simplices in U, which do not lie entirely in U, ‘or U,
(see Figure 15.3).

U,

B of this is not 0.
U,

U,

B of this is 0.

Figure 15.3
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We now prove the exactness of the rows of the commutative diagram.
The bottom row is almost the Mayer-Vietoris sequence for the open cover
{Uo,, Uy,}; it is exact except possibly at S(U,). Clearly - § = 0. Now if ¢
is in S(U,) and B(c) = 0, then c is a chain in U, whose simplices lie either in
Uy or in Uy, ie, c is in the image of S(Uy,) @ S(U,,). Therefore the
bottom row is exact. Note that each row of the commutative diagram is a
differential complex and the commutative diagram may be regarded as a
short exact sequence of differential complexes. Since the top and bottom
complexes have zero homology, by Lemma 15.3 so does the middle one;
in other words, the middle row is exact. This proves the exactness of the
Mayer-Vietoris sequence for a cover consisting of three open sets. In gen-
eral the Mayer-Vietoris sequence for r open sets injects into the one for
r + 1 open sets. By the above technique and induction, one proves the
Mayer-Vietoris sequence for any finite cover.

Now consider a countable cover U = {U,}. By the definition of the direct
sum, an element ¢ of P S(U,,..,,) has only finitely many nonzero com-
ponents. These components can involve only finitely many open sets. There-
fore if c = 0, by the Mayer-Vietoris sequence for a finite cover, we know
that ¢ = 6b for some b in @ S(U,, ..,,.,). This proves the exactness of the
Mayer-Vietoris sequence for countably many open sets. a

REMARK 15.4. If the coefficients are in an arbitrary Abellan group G, the
same proof holds word for word.

Now suppose the open cover U consists of two open sets U and V.. By
Proposition 15.2, there is a short exact sequence of singular chains

(15.5) 0— S, (Un V)= S,(U) D S,(V)— S§X)— 0.
The associated long exact sequence in homology is the usual homology
Mayer-Vietoris s:quence.

Corollary 15.6 (The Homology Mayer-Vietoris Sequence for Two Open
Sets). Let X = U u V be the union of two open sets. Then there is a long
exact sequence in homology

= H(Un V) HU) @ H (V) H,(X)—> H,_(UnV)—>
Here f is the map induced by the signed inclusion ar+(—a, a) and g is the sum
(a, b)—a + b.
Singular Cohomology
A singular g-cochain on a topological space X is a linear functional on the

Z-module S,(X) of singular g-chains. Thus the group of singular g-cochains
is SYX) = Hom (5,(X), Z). With the coboundary operator d defined by
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(dw)c) = w(dc), the graded group of singular cochains S*(X) = @ SYX)
becomes a differential complex; the homology of this complex is the singu-
lar cohomology of X with integer coefficients. Replacing Z with an Abelian
group G we obtain the singular cohomology with coefficients in G, denoted
H*(X; G). For the rest of this chapter we will reserve H*(X) for the singular
cohomology with integer coefficients and write H3z(X) for the de Rham
cohomology.

A function w on X isa 0-cocyclc if and only if w(dc) = 0 for all paths ¢
in X. It follows that such an w is constant on each path component of X.
Therefore, H)(X) = Z x Z x -*- x Z where there are as many copies of Y4
as there are path components of X.

REMARK. The singular cohomology does not always agree with the Cech
cohomology. For instance,

dim H$,(X) = # path components of X,
but
dim Hcc +(X) = # connected components of X.

We now compute the singular cohomology of R". Define the operator
L: SY(R")— S !(R") to be the adjoint of the cone construction K : if o €
SYR") and ¢ € S, ,(R"),

(Lo)c) = a(Kc).
Then for ¢ € SYR") and ¢ € S, (R"),
((dL — Ld)o)c = (d(La))c — (L(da)Xc)
= (Lo)0c) — (do}Kc)
= ad(Kdc) — 6(dKc)
= g((Kd — dK)c)
= ((—1)**'o)c by Proposition 15.1.
Hence
1=(=1¢"'dL—-Ld) on SYR", g=1,
i.e, L is a homotopy operator between the identity map and the zero map
on the g-cochains, ¢ > 1. It follows that
Z, q=0
0, ¢g>0.

Applying the functor Hom( , Z) to the Mayer-Vietoris sequence for
singular chains we obtain the Mayer-Vietoris sequence for singular cochains

HY(R" = {

(157)  0-SHO)SIS* VDS T S*Wae) > ...
g <ay
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Since the functor Hom( , Z) preserves the exactness of a sequence of free
Z-modules (see Exercise 14.17.3), the Mayer-Vietoris sequence for singular.
cochains is exact.

Exercise 15.7.1. Show that ¢* is the restriction map and §* is the alternating
difference

pt1
(6*0))4,,.1,.. = Z:o(_ l)l war,“.a‘,...a,..

Once we have the Mayer-Vietoris sequence we can set up the double
complex C*(U, S*). Just as in the de Rham theory the double complex
C*(U, S*) computes the singular cohomology of X. This is because by the
exactness of the Mayer—Vietoris sequence, H,. of this complex has a single
nonzero column

'
s¥x)| 0
T
Hy= | Skx)| o
i
syx)| o
0 1

so that the spectral sequence degenerates at the E, term and
H{C*(U, §*)} = H;H,;. = H%(X).

To complete the analogy we will need the existence of a good cover on
the topological space X. This presents no problem if X admits a triangu-
lation,-i.e, a homeomorphism with the support of a simplicial complex,
since the open stars of the vertices of the triangulation form a good cover.
By taking barycentric subdivisions of the triangulation we can refine its star
ad infinitum. Hence just as in the case of manifolds, the good covers on
a triangularizable space X are cofinal in the set of all covers of X. We
note in passing that this gives an alternative proof of the existence of a
good cover on a manifold since it is known that every manifold admits a
triangulation (due to Cairns and Whitney, see Whitney [2, pp. 124-135]).



§15 Cohomology with Integer Coefficients 191

If U is a good cover of a topological space X, then H, of the double
complex C*(U, S*) is

0 0 0
c'N, 2| C'U,2)| Cqu, z)

and H;H, = H*(U, Z) = H{C*(U, S$*)}. So there is an isomorphism between
the singular cohomology and the Cech cohomology of a good cover with
coefficients in the constant presheaf Z:

H*X) ~ H*(1, 2).

Suppose X triangularizable. Since the good covers are cofinal in the set of
all covers of X,

H*X, Z) = H*U, 2)

where H*(X, Z) is the Cech cohomology of X with coefficients in the
constant presheaf Z. Therefore,

Theorem 15.8. The singular cohomology of a triangularizable space X is
isomorphic to its Cech cohomology with coefficients in the constant presheaf
Z. If Wis a good cover of X, then

H*X) ~ H%X, Z) ~ H*({, 2).
Let n: E — X be a fiber bundle with fiber F over a triangularizable
topological space X. Just as in Theorem 14.18, from the double complex

C*(n™'U, S*) on E we obtain a spectral sequence converging to the singular
cohomology H*(E) whose E, term is

E%® = H?(U, #%(F)),

where J#%(F) is the locally constant presheaf #%U) = Hi(zn~'U). If #%(F)
happens to be the constant presheaf Z @ -- - @ Z on U, then

B=HU2) S ®HUD=HNS & HWX)
dim HYF)terms = HY(X) @ HI(F).

The singular cohomology group H*(X; Z) can be given a product struc-
ture as follows. If (4, ... 4,) is a g-simplex in X, we say that(4, ... 4,) is its
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front r-face and (A,_, ... A)) its back r-face. Let w be a p-cochain and n a
g-cochain; by definition their cup product is given by

(159) (@UMNAo... Aprd = Ao ... A)n (A, ... A, )

Exercise 15.10. Show that the coboundary operator d is an antiderivation
relative to the cup product:

dw v n) =(dw) un+(=1)3° 0w v dny

By arguments analogous to (15.2) and (15.7) there is also a Mayer-
Vietoris sequence for singular cochains with coefficients in a commutative
ring A. Using the cup product (15.9) in place of the wedge product, the
spectral sequence of the Cech-singular complex C*(U, S*) can bé given a
product structure just as in (14.24). The arguments in Section 14 carry over
mutatis mutandis. Hence the results on spectral sequences remain true for
singular cohomology with coefficients in 4. Note however in (14.18) and
(14.30) the E, term of a fiber bundle n: E — M with fiber F over a simply
connected base space M is the tensor product H*(M; A) ® H*(F; A) only
if the cohomology of F is a free A-module. In summary we have the follow-
ing.

Theorem 15.11 (Leray’s Theorem for Singular Cohomology with Coeffi-
cients in a Commutative Ring A). Let n : E — X be a fiber bundle with fiber
F over a topological space X and U an open cover of X. Then there is a
spectral sequence converging to H*(E; A) with E, term '

EZ-9 = HP(U, #%(F; A)).

Each E, in the spectral sequence can be given a product structure relative to
which the differential d, is an antiderivation. If X is simply connected and has
a good cover, then '

E% %= HY(X, HY(F; A)).
If in addition H*(F; A) is a finitely generated free A-module, then
E; = H%X; A) @ H*F; A)
as algebras over A.
Exercise 15.12 (Kiinneth Formula for Singular Cohomology). If X is a space
having a good cover, e.g., a triangularizable space, and Y is any topological

. space, prove using the spectral sequence of the fiber bundlen: X x Y —» X
that

H'X x Y)= @ HAX, H(Y)).

pta=n
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We examine briefly here how some of the theorems in de Rham theoty
carry over to the singular theory. Both the Mayer-Vietoris argument of
Section 5 and the tic-tac-toe proof of Section 9 for the Leray-Hirsch the-
orem go through for integer coefficients, with the singular complex C*(U,
S*) in place of C*(U, Q*). However, since there may be torsion in H*(F), the
Kiinneth formula in the form H¥M x F) = H*(M) ® H*(F) is not true
with integer coefficients; the Mayer-Vietoris argument fails because ten-
soring with H*(F) need not preserve exactness, and the tic-tac-toe proof
fails because H*(F) @ C*U, S*) may not be simply a finite number of
copies of C*(U, S*). These difficulties do not arise in the case of the Leray-
Hirsch theorem, since in its hypothesis the cohomology of the fiber H*(F) is
assumed to be a free Z-module.

REMARK 15.13. Given any Abelian group A4, let F be the free Abelian group
generated by a set of generators for 4 and let R be the kernel of the natural
map p: F— A. Then

(15.13.1) 0>R > FA 450

is a short exact sequence of Abelian groups. As a subgroup of a free gr'oup,
R is also free (Jacobson [1, §3.6]). An exact sequence such as (15.13.1), in
which F and R are free, is called a free resolution of A. Let G be an Abelian
group. By Exercise 14.17.4, the two sequences

(15.13.2) 0— Hom(4, G)— Hom(F, G)-> Hom(R, G)

and -
(15133) R®G—""2F® G- A®G——0

are exact.

Definition.

Ext(4, G) = coker i* = Hom(R, G)/im i*.
Tor(4,G)=keri ® 1.
Thus Ext and Tor measure the failure of the two exact sequences
(15.13.2) and (15.13.3) to be short exact. It is not hard to show that the
definition of Ext and Tor is independent of the choice of the free resolution.

For the elementary properties of these two functors see, for instance,
Switzer [1, Chap. 13].

Exercise 15.13.4. If m and n are positive integers, we denote their greatest
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common divisor by (m, n). Verify the tables

Ext z Z, Tor 4 z,

Y4 0 0 z 0 0

z, | Z, |Zmo| |, Z, 0 |Znn
For example,

Ext(Z,,, Z) = Z,,.

In terms of these completely algebraic functors, one finds the following
description of the dependence of the singular theory on its coefficient group.
For a proof see Spanier [1, pp. 222 and 243].

Theorem 15.14 (Universal Coefficient Theorems). For any space X and
Abelian group G,

(a@) the homology of X with coefficients in G has a splitting:
H(X; G)~ H(X)® G ® Tor(H,_,(X), G);
(b) the cohomology of X with coefficients in G also has a splitting:
HYX; G) ~ Hom(H (X), G) ® Ext(H,_ (X), G).

Applying Part (b) with G = Z yields the following formula for the integer
cohomology in terms of the integer homology.

Corollary 15.14.1. For any space X for which H (X) and H,_(X) are finitely
generated Z-modules,

H(X)~F, @ T,-y,
where F_ is the free part of H(X) and T, _, is the torsion part of H,_ 1(X).

REMARK. The splittings given by the universal coefficient theorems cannot
be arranged to be compatible with the induced homomorphisms of maps.
They are therefore often said to be unnatural splittings.

ExaMPLE 15.15 (The cohomology of the unit tangent bundle of a sphere).
The unit tangent bundle S(Ts;) to the 2-sphere in R® is a fiber bundle with
fiber S*:

St — S(Ts2)

{
sz,
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By (15.11) the E, ternr of the spectral sequence is
E% = H?(S?) @ HY(S")

q
1| Z Z
d
0olz| *|z
1 p
For dimensional reasons d3 =d, = --- =0, so E; = E,,. By Remark 14.20

the differential d, in the diagram defines the Euler class of the circle bundle

S(Ts2). Since the Euler class of S(Ty.) is twice the generator of H*(S?) (Exam-
ple 11.18), this d, is multiplication by 2. Thus

Z in dimensions 0 and 3
H*S(Ts;) = § Z, in dimension 2

0 otherwise.

Exercise 15.15.1. Compute the cohomology of the unit tangent bundle
S(Tsx).

A point in §(T,) is specified by a unit vector in R® and another unit
vector orthogonal to it. This can be completed to a unique orthonormal
basis with positive determinant. Therefore S(Ts:) = SO(3) and we have com-
puted above the cohomology of SO(3).

REMARK 15.15.2. The special orthogonal group SO(3) comes in a different
guise as RP3, as follows. We can think of SO(3) as the group of all rotations
about the origin in R3. Each such rotation is determined by its axis and an
angle —7 < 0 < n. In this way SO(3) is parametrized by the solid 3-ball D3
of radius 7 in R?: a point in this 3-ball determines a unique axis and a
unique angle of rotation, the axis being the line through the point and the
origin, and the angle being the distance of the point from the origin. Since
rotating through the angle —n has the same effect as through =, any pair of
antipodal points on the boundary of D® parametrize the same rotation. So
SO(3) is homeomorphic to RP>.

Exercise 15.16 (The Cohomology of SO(4)). The special orthogonal group
SO(n) acts transitively on the unit sphere $"! in R" with stabilizer
SO(n — 1). Therefore SO(n)/SO(n — 1) = §"~!, A group with a differentiable
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structure relative to which the group operations, namely multiplication and
inverse, are smooth is called a Lie group. GL(n, R) and SO(n) are examples
of Lie groups (see Spivak [1, Ex. 33, p. 83]). It is a fact from the theory of
Lie groups that if H is a closed subgroup of a Lie group G, i.., H is a Lie
subgroup and a closed subset of G, then n: G— G/H is a fiber bundle with

fiber H (Warner [1, Th. 3.58, p. 120]). Apply the spectral sequence of the
fiber bundle

SO(3)— SO(4)
!
SS
to compute the cohomology of SO(4).

Exercise 15.17 (The Cohomology of the Unitary Group). The unitary group
U(n) acts transitively on the unit sphere $2"~! in C" with stabilizer
U(n — 1). Hence U(n)/U(n — 1) = §?"~*. Apply the spectral sequence of the
fiber bundle

U(n — 1)— U(n)
l

S2n—l

to compute the cohomology of U(n).

The Homology Spectral Sequence

Although in this book we are primarily concerned with cohomology, for
applications to homotopy theory it is frequently advantageous to use the
homology spectral sequence of a fibering. Since the construction of such a
spectral sequence is analogous to that for cohomology, the discussion will
be brief. ‘

Using the singular chain functor S, in place of the differential form
functor Q* we get a double complex C,(U,.S,) with differential operators 2
and 4. Define D to be § + (—1)P0.

al
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As in Section 14 this double complex gives rise to a spectral sequence {E'}
which converges to the total homology Hp{C,({, S,)}. Because of the di-
rections of the arrows d and J, the differential " goes in the opposite
direction as the differential of a cohomology spectral sequence; more pre-
cisely,

I r
d: Ep"—" Ep—r,q‘l"r-l'

By the exactness of the Mayer-Vietoris sequence (15.2) the spectral sequence
is degenerate at the E2 term and

E* = H,H; = H (X).
Hence we have the following.

Proposition 15.18. For any cover U of X the double complex C (Y, S,)
computes the singular homology of X :

Hp{C, Y, S,)} = H (X).

To avoid confusion with the cohomology spectral sequence, we write r as
a superscript and p and q as subscripts in the homology spectral sequence:
E;.q' .

Now suppose U is a good cover of X. Interchanging the roles of d and
gives another spectral sequence which also converges to Hp{C, (!, S,)}.
This time

(15.19) E® = E*=H,H, = H (U, Z)
*

where Z is the constant presheaf with group Z. Comparing (15.18) with
(15.19) gives the isomorphism of the singular homology to the Cech homol-
ogy H, (U, Z) of a good cover. Along the line of Theorem 14.18, if
n: E— X is a fiber bundle with fiber F, and X is a simply connected space
with a good cover, then there is a spectral sequence converging to the
singular homology H (E) with E2 , = H (X, H,(F)). If in addition H(F) is a
free Z-module, the E? term is isomorphic to the tensor product
H,(X)® H(F) as Z-modules. Unlike the cohomology spectral sequence,
there is in general no product structure in homology.

§16 The Path Fibration

Recall again that through §18 we work in the category of topological spaces
and continuous maps. Unless otherwise noted all cohomology groups will
be assumed to have integer coefficients. Let #: E— X be a fiber bundle
with fiber F over a topological space X that has a good cover U. We have
shown that there is a spectral sequence converging to the cohomology
H*(E) of the total space, with E, term

E% ¢ = H"(U, H%(F)),
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where J#9(F) is the presheaf that associates to every open set U in U the
group H%n~'U) ~ HY(F). Now suppose n: E— X is simply a map, not
necessarily locally trivial. One can still obtain a spectral sequence by con-
sidering the double complex of singular cochains K = C*xn~'U, $*) on E.
As long as the map n : E— X has the property that

(16.1) H%(n~'U) ~ HY(F) for some fixed space F and for any contractible
open set U,

then E, = H; H{K) will be the same as for a fiber bundle. Since the spectral
sequence is a purely algebraic way of going from Hy;H, to Hp, which is
isomorphic to H*(E), the spectral sequence of this double complex will
again converge to H*(E). An example of such a map is the path fibration. As
will be seen in the next few sections, Serre’s application of the spectral
sequence in this unexpected setting has far-reaching consequences in homo-
topy theory.

The Path Fibration

Let X be a topological space with a base point » and [0, 1] the unit interval
with base point 0. The path space of X is defined to be the space P(X)
consisting of all the paths in X with initial point #:

P(X) = {maps p: [0, 1] X | u(0) = }.

We give this space the compact open topology; i.e., a sub-basic open set in P(X)
consists of all base-point preserving maps u: [0, 1]— X such that
U(K) = U for a fixed compact set K in [0, 1] and a fixed open set U in X.
There is a natural projection 7 : P(X)— X given by the endpoint of a path:
n(u) = p(1). The fiber at p of this projection consists of all the paths from » to
p (see Figure 16.1).

Figure 16.1

We now show that the map = : P(X)— X has the property (16.1). Let U
be a contractible open set containing p. There is a natural inclusion

i:n Y(p)—n " YU).
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Figure 16.2

(See Figure 16.2.) Using a contraction of U to p, we can get a map
¢:n" (U)—n"'(p)

It is readily checked that ¢ and i are homotopy inverses. Furthermore, if p
and g are two points in the same path component of X, then a fixed path
from p to g induces a homotopy equivalence 7~ '(p) ~ n~!(q). Thus all
fibers have the homotopy type of ™ !(+), which is the loop space QX of X :

QX = {u:[0, 11— X |u(0) = (1) = +}.
So the map n: P(X)— X has the property H*(n !U) ~ H*QX) for any
contractible U in X.
A more general class of maps satisfying (16.1) are the fiberings or fibra-

tions. A map n: E— X is called a fibering or a fibration if it satisfies the
covering homotopy property :

(16.2) given a map f : Y— E from any topological space Y into E and a
homotopy f, of f=n o fin X, there is a homotopy f; of fin E which
covers f;; that is, m o f, = f,.

The covering homotopy property may be expressed in terms of the diagram

y v—L
0,0 Yxi I x.

Such a fibering is sometimes called a fibering in the sense of Hurewicz, as
opposed to a fibering in the sense of Serre which requires only that the
covering homotopy property be satisfied for finite polyhedra Y. If X is a
pointed space with base point *, we call 7 !(«) the fiber of the fibering, and
for any x in X, we call F, = n~}(x) the fiber over x. As a convention we will
assume the base space X of a fibering to be path-connected. It is clear that the
map n: PX — X is a fibering with fiber QX, for a homotopy in X naturally
induces a covering homotopy in PX. This fibering, called the path fibration
of X, is fundamental in the computation of the cohomology of the loop
spaces. Its total space PX can be contracted to the constant path:
[0, 1] =.
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We prove below two basic properties of a fibering, from which it will
follow that (16.1) holds for a fibering.

Proposition 16.3.(a) Any two fibers of a fibering over an arcwise-connected
space have the same homotopy type.

(b) For every contractible open set U, the inverse image n~'U has the
homotopy type of the fiber F,, where a is any point in U.

PROOF. (a) A path y(t) from a to b in X may be regarded as a homotopy qf
the point a. Let §: F, x I— X be given by (y, t) — y(t), where I is the unit
interval [0, 1]. So we have the situation depicted in Figure 16.3. By the

y FEC— »
l x
7’
g// T
- F,
s
e
(y,0) Fa X1 —_— X
g
a.'\-, b
] m
O, ) p———y(t) 7(0) (D)
Figure 16.3

covering homotopy property, there is a map g which covers g. The re-
striction g, = g |, « (1 is then a map from F, to F,. Thus a path from a to b
induces a map from the fiber F, to the fiber F,,.

We will show that homotopic paths from a to b in X induce homotopic
maps from F, to F,. Let u be a path from a to b which is homotopic to 7,
h a covering homotopy of y, and h, the induced map from F, to F,. Define
Z by (see Figure 16.4)

Z=F,xIx{0}UF, xIx]I,
where [ = {0} U{1},and f:Z — E by
Slexix©o: 8, 0) =y
Slrax =1, 0, ) = g(y, 1)

SlEaxiy a1, 8) = hiy, ¢).

We regard the homotopy between y and u in X as a homotopy G of = o f.
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—f.. F, Fy,
m
mn
p
Figure 16.4

By the covering homotopy property there is a covering map G from
F, x I x I, which is homotopic to Z x I, into E. The restriction of G to
F, x I x {1} has image in F,. Since G|, «(0)x(1) = g1 and G
hy, G|r, x1x(1) 18 @ homotopy in F}, between g, and h,.

Given two points a and b in X and a path y from a to b, letu: F,— F,
be a map induced by y and v : F,— F, a map induced by y~!. Then v o u:
F,— F, is a map induced by y~'y. Since y !y is homotopic to the constant
map to a, the composition vewu is homotopi¢ to the identity on F,.
Therefore, F, and F, have the same homotopy type.

(b) Lety:U x I— U be a deformation retraction of U to the point a. By
the covering homotopy property, there is amap g :n~'U x I—n~'U such
that the following diagram is commutative.

Fax(1)x{1} =

identity

n U —= n U
‘7 ) ///
// .4
-
//
//
U x I UxI U

We will show that g gives a deformation retraction of n~'U onto the fiber
F,. Let g, be the restriction of g to n~'U x {t}. By identifying x~'U with
n U x {t}, we may regard g as a family of maps g, :n~*U—n~'U vary-
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ing with ¢.in the unit interval I. At ¢t = 0,
go:n U x {0} > n~'U
is the identity and at t = 1,
g1:n U x {1}»n"tU

has image in the fiber F,. Hence, g, may be factored as g, = i o ¢:
-1 ¢ -1
n'Ux{1} - F, o n~'U

So via g the composition i o ¢ is homotopic to the identity. To show that
¢ o i: F,— F,is homotopic to the identity, consider the following diagram

i -1 identity -1
F,= n U — U
-
===,
/// //g
’// //
F,xIe—n'UxI » U x 1 U

Note that ¢oi=gojlg,« is induced from the constant path
I—{a} € X, since y o m o j(y, t) = a for all t. (The deformation retraction y
fixes a at all times.) By the proof of (a), ¢ o i is homotopic to the identity. (O

REMARK 16.4. If we replace F, with any space Y, the argument in (a) proves
that in the covering homotopy property (16.2), homotopic maps in X
induce homotopic covering maps in E.

Generalizing the fact that a simply connected space cannot have a con-
nected covering space of more than one sheet, we have the following.

Proposition 16.5. Let n : E— X be a fibering. If X is simply connected and E
is path connected, then the fibers are path connected.

PROOF. Trivially the E3'° term of the fibering survives to E,, . Hence
E3°=Ex°=H(E)=1,
since E is path connected. On the other hand,
E3° = H(X, H(F)) = H(F).
Therefore H(F) = Z. O
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The Cohomology of the Loop Space of a Sphere

As an application of the spectral sequence of the path fibration, we compute
here the integer cohomology groups of the loop space Q8" n = 2.

EXAMPLE 16.6 (The 2-sphere). Since S2 is simply connected, the spectral
sequence of the path fibration

QS P§?
i
sZ
has E, term
E& = H”(S%, HY(QS?)).

So the zeroth column E2? = H°(S?, HYQS?)) = HYQS?) is the cohomology
of the fiber. By Proposition 16.5, H%(QS?) = Z, so the bottom row Hg° =
HP(S%, H(QS?)) = H?(S?, Z) is the cohomology of the base.

N
N

By the universal coefficient theorem (15.14), all columns in-E, except p =0
and p =2 are zero. Hence all the differentials d,, d,, ... are zero and
E%* = EPf Because the path space PS? is contractible,

Epa — {Z @ 9)=(0,0)
® 0 otherwise.

Thus d, : E3"* — E3° must be an isomorphism. It follows that H(QS?) = Z.
But then :

E}' = HY(S, H'QS?) = HYS%, 2) = 1.

Since d, : E3'*— E}'! is an isomorphism, H*QS?) = Z. Working our way
up, we find HY(QS?) = Z in every dimension q.
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ExAMPLE 16.7 (The 3-sphere). In the E, term of the fibering

q
Qs*— pPS?

RN

z ~Z
\\Q

z I~z

o 1 2 P

the nonzero columns are p =0 and p = 3. For dimension reasons d, =0

and d, =ds =--- = 0. Because the total space is contractible, d; is an
isomorphism except at E3 °. Therefore,

Z in even dimensions
* 3 —
H*@sS") {0 otherwise.

Similarly we find that in general

HYQS") = Z in dimensions 0, n — 1, 2(n — 1), ...
1o otherwise.

Next we examine the ring structure of H*(QS"). We start with QS2. Let
u be a generator of E2'° = H%(S?) and let x be the generator of H'(QS*)
which is mapped to u by d,. For simplicity we occasionally write d for d, .
By Example 16.6, the differential d, is an isomorphism. Note that x com-

mutes with u because E, is the tensor product H*(QS?) ® H*(S?). (x is
actually x® land uis 1 ® u.)

ez
4172
3| ex exu
2| e eu
1 x\\‘ xu
0f 1 ™u
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Since dy(x%) =(d,;x)  x —x - dyx =ux — xu =0, we have x2=0. Thus
the generator e in H*(QS?) which maps to xu is algebraically independent of
x. Since d(ex) = eu, the product ex is a generator in dimension 3. Similarly,
d(e®) = 2exu so that €?/2 is a generator in dimension 4; d((e%/2)x) = (e*/2)u
so that (e%/2) - x is a generator in dimension 5. By induction we shall prove

— is a generator in dimension 2k

k!
and
k
R is a generator in dimension 2k + 1.
PRrOOF. Suppose the claim is true for k — 1. Since

ek ek—l ek—l
M- kDI~ k- ™

which is a generator of E32*~!  the element ¢*/k! is a generator of
H?QS?). Similarly, since

P sy ot ok
d(Ex)=-—(k_ l)!xu-x+E—!u=Eu,

which is a generator of E3 2% the element (e*/k!)x is a generator of

HZk + 1(932) 0

By definition the exterior algebra E(x) is the ring Z[x]/(x?) and the
divided polynomial algebra Z (e) with generator e is the Z-algebra with
additive basis {1, e, €?/2!, €%/3!, ...}. Hence

H*(QS?) = E(x) ® Z fe),
where dim x = 1 and dim e = 2.
Now consider H*(QS") for n odd. Let u be a generator of H(S") and e
the generator of H"~}(QS") which maps to u under the isomorphism d,.
Since d,(e?) = 2eu, €*/2 is a generator in dimension 2(n — 1). In general if
€*/k! is a generator in dimension k(n — 1), then d,(e***/(k + 1)!) = (e*/k!)u
so that e**!/(k + 1)! is a generator in dimension (k + 1)}(n — 1).

%\\
N

™ eu

N
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This shows that for n odd,
H*QS") = Z (e), dime=n-1.
By a computation similar to that of H*(QS?), we see that for n even,

H*QS") =E(x)®ZJe),. dimx=n—1, dime=2n-]1)

§17 Review of Homotopy Theory

To pave the way for later applications of the spectral sequence, we give in
this section a brief account of homotopy theory. Following the definitions
and basic properties of the homotopy groups, we compute some low-
dimensional homotopy groups of the spheres. The geometrical ideas in this
computation lead to the homotopy properties of attaching cells. A space
built up from a collection of points by attaching cells is called a CW
complex. To show that every manifold has the homotopy type of a CW
complex, we make a digression into Morse theory. Returning to the main
topic, we next discuss the relation between homotopy and homology, and
indicate a proof of the Hurewicz isomorphism theorem using the homology
spectral sequence. The homotopy groups of the sphere, 7,(S"), ¢ <n, are
immediate corollaries. Finally, venturing into the next nontrivial homotopy
group, m3(S?), we discuss the Hopf invariant in terms of differential forms.
Some of the general references for homotopy theory are Hu[1], Steenrod
[1], and Whitehead [1].

Homotopy Groups

Let X be a topological space with a base point ». For ¢ > 1 the gth
homotopy group n,(X) of X is defined to be the homotopy classes of maps
from the g-cube I9 to X which send the faces J% of I to the base point of X.
Equivalently 7,(X) may be regarded as the homotopy classes of base-point
preserving maps from the g-sphere S? to X. The group operation on 7, (X)
is defined as follows (see Figure 17.1). If « and # are maps from I to X,

representing [a] and [f] in 7 (X), then the product [«][f] is the homotopy
class of the map

(t )_{a(Zt,,tz,...,t,,) for 0<t, <%
b YT BR — 1,1, ...,t) for <t <.

We recall here some basic properties of the }xomotopy groups.
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Figure 17.1

Proposition 17.1. (a) (X x Y) = n(X) x m(Y).
(b) n(X) is Abelian for q > 1.

PROOF. (a) is clear since every map from [? into X x Y is of the form
(f1, f2) where £ is a map into X and f; is a map into Y. Furthermore, since
(f1, f2)(&1, 82) = (f181, f282), the bijection in (a) is actually a group iso-

morphism. To prove (b), let [«] and [] be two elements of m(X). We
represent aff by

. @y, 1y, ..., t,) for 0<t, <4
- Ly ovny ) =
o B ug ) {ﬁ(zr_,—l,tz,...,tq) for 4<t, <1

af is homotopic ta the map 6 from I to X given by

((@(2ty,2t; = 1, 13, ..., t,),

‘| 0<n<% 4<n,<],
oty ..n t) =< B2ty — 1,285, ..., 1),
t<n<1, 0s1n,<4,
,L. otherwise.
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4 is in turn homotopic to

o
B ,
* o
B | =1,
and finally to
B a
O

Proposition 17.2. 7,_ ,(QX) = n(X), ¢ > 2.

SKETCH OF PrROOF. Elements of n,(X) are given by maps of the square 2
into X which send the boundary I? to the base point «. Such a map may be
viewed as a pencil of loops in X, i.e., a map from the unit interval into QX.
Therefore, n,(X) = n,(QX). The general case is similar; we view a map
from I to X as a map from "~ ! to QX. a

It is often useful to introduce mo(X), which is defined to be the set of all
path components of X. It has a distinguished element, namely the path
component containing the base point of X. This component is the base
point of ny(X). For a manifold the path components are the same as the
connected components (Dugundji [1, Theorem IV.S5.5, p. 116]).

Recall that a Lie group is a manifold endowed with a group structure
such that the group operations—multiplication and the inverse operation—
are smooth functions. Although ny(X) is in general not a group, if G is

a Lie group, then ny(G) is a group. This follows from the following
proposition.

Proposition 17.3. The identity component H of a Lie group G is a normal
subgroup of G. Therefore, no(G) = G/H is a group. .

PROOF. Let a, b be in H. Since the continuous image of a connected set is
connected, bH is a connected set having a nonempty intersection with H.
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Hence bH < H. It follows that abH — aH < H, so ab is in H. Similarly
a™'H is a connected set having a nonempty intersection with H, since 1 is
in a™'H; so a 'Hc< H and a™! is also in H. This shows that H is a
subgroup of G.

Let g be an element of G. Since gHg ™! is a connected set containing 1,
by the same reasoning as above, gHg~* < H. Thus H is normal.

Because multiplication by g is a homeomorphism, the coset gH is
connected. Since distinct cosets are disjoint, G/H consists of precisely the
connected components of G. Therefore, 74(G) = G/H. O

Let #: E— B be a (base-point preserving) fibering with fiber F. Then
there is an exact sequence of homotopy groups, called the homotopy se-
quence of the fibering (Steenrod [1, p. 91]):

(174) - (F) > nfE) 2 B) L, (F)—--
s+ —mo(E) — mo(B) — 0.

In this exact sequence the last three maps are not group homomor-
phisms, but only set maps. The kernel of a set map between pointed sets is
by definition the inverse image of the base point. Exactness in this context is
given by the same condition as before: “the image equals the kernel.” The
maps i, and =, are the maps induced by the inclusion i: F— E and the
projection n : E— B respectively. Here we regard F as the fiber over the
base point of B. To describe d we use the covering homotopy property of a
fibering. For simplicity consider first ¢ = 1. A loop a : I' — B from the unit
interval to B, representing an element of n,(B), may be lifted to a patha in
E with &{0) being the base point of F. Then d[a] is given by d&{1) in mo(F).
More generally let J9~! < I be the inclusion

(t1s oes tqm1) > (t1s -ons tg—1, 0).

A map a: I"— B representing an element of n(B) may be regarded as a
homotopy of a|,n—n in B. Let the constant map #: I*"! — E from I"! to
the base point of F be the map that covers a|pe-1: (ty, ..., t;—s, 0)— B. By
the covering homotopy property, there is a homotopy upstairs @: I9— E
which covers « and such that & | ;-1 = », Then d[a] is the homotopy class of
themapa: (ty, ..., t,—y, 1)— F. By Remark 16.4, d[«] is well-defined.

EXAMPLE 17.5. A covering space 7 : E— B is a fibering with discrete fibers.
By the homotopy sequence of the fibering,

T(E) = n(B) for g=>2
and
ny(E) & my(B).
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WARNING 17.6 (Dependence on base points). Consider the homotopy
groups =, (X, x) and =, (X, y) of a path-connected space X, computed rela-
tive to two different points x and y. A path y from x to y induces by
conjugation a map from the loop space Q, X to the loop space Q, X:

A > yly~'  for any 1in Q, X.

This in turn induces a ﬁlap of homotopy groups
Vi T t(@e X, B 71D, X, 5),
I I
7, (X, x) n (X, )

where X and y are the constant maps to x and y. The map y,, is clearly an
isomorphism, with inverse given by (y ), .

We can describe y, explicitly as follows. Let [a] be an element of
n,(X, x). Define a map F to be « on the bottom face of the cube I*** and y
on the vertical faces (Figure 17.2 (a)); more precisely, if (u, t)e I" x I =
1% then

F(u, 0) = a(u) for all u in I
and
F(u, t) = y(t) for all u in 0I°.

Figure 17.2(a)

By the box principle from obstruction theory (which states that a map from
the union of all but one face of a cube into any space can be extended to
the whole cube), the. map F can be extended to the entire I9*!. Its re-
striction to the top face represents y,[a].

One checks easily that y, depends only on the homotopy class of y
amongst the paths from x to y, so that when we take x = y, the assignment
y+—7, may be thought of as an action of n,(X, x) on n (X, x). Only if this
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action is trivial, can one speak unambiguously of 7, (X) without reference to
a base point. In that case one can also identify the free homotopy classes of
maps [8% X] with = (X); here by a free homotopy we mean a homotopy
that does not necessarily preserve the base points. In general, however,
[S% X] is not a group and its relation to n,(X) is given by the following.

Proposition 17.6.1. Let X be a path-connected space. The inclusion of base-
point preserving maps into the set of all maps induces a bijection

(X, x)/my(X, x) > [S%, X7, .

where the notation on the left indicates the equivaleﬁce relation [a] ~ y,[o]
Jor [y in my(X, x). '

ProoF. Let h: m (X, x)— [S% X] be induced by the inclusion of base
point preserving maps into the set of all maps. If [«] € 7, (X, x) and
[¥] € n (X, x), it is laborious but not difficult to write down an explicit free
homotopy between a and y,a (see Figure 17.2 (b) for the cases ¢ =1 and
q =2). Hence h factors through the action of ny(X, x) on =, (X, x) and

[0
Y4 \* x|/ Av

v a Y

]

|

'

]

]

|

+ v
)

]

]

]

(

v4 ’ !
,/,7 Y .
,1 [+
4
.0 " Y

Figure 17.2(b)



212 III  Spectral Sequences and Applications

defines a map
H: m (X, x)/my(X, x)— [S% X].

Figure 17.2(c)

Since X is path connected, any map in [S% X] can be deformed to a
base-point preserving map. So H is surjective. To show injectivity, suppose
[2] in = (X, x) is null-homotopic in [S? X]. This means there is a map
F: I9*' — X such that

Fllophu =a,

"Flbouoml‘w: =X,

and F is constant on the boundary of each horizontal slice (Figure 17.2 (c)).
Let y be the restriction of F to a vertical segment. Then a = y(x). There-
fore, H is injective. O

- The Relative Homotopy Sequence

Let X be a path-connected space with base point », and A a subset of X (See
Figure 17.3). Denote by Q4 the space of all paths from * to A. The endpoint
map e: Q4 — A gives a fibering

QX - Q4
!
A.

The homotopy sequence of this fibering is
e 1 (A) = Ty y(QX) —> Ty ( Q) — 7 (A) =

te— no(Q:) - 7(0(.4) —0.
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Figure 17.3

We define the relative homotopy group n(X, A) to be n,,_,(n:). Then the
sequence above becomes the relative homotopy sequence of A in X :

(U77) o — mfA) — 1 fX) —> m (X, A) —> Tq_y(A) —++-
- —s 1y (X, A) — no(4) —0.

Observe that n (X, A) is an Abelian group for ¢ 2 3, n,(X, 4) is a group
but in general not Abelian, while =,(X, A4) is only a set. ‘

Some Homotopy Groups of the Spheres .
In this section we will compute 7,(S") for g < n. Although these homotopy
groups are immediate from the Hurewicz isomorphism theorem (17.21), the
geometric proof presented here is important in being the pattern for later
discussions of the homotopy properties of attaching cells (17.11).

Proposition 17.8 Every continuous map f : M — N between two manifolds is
continuously homotopic to a differentiable map.

PrOOF. We first note that if f : M — R is a continuous function and ¢ a
positive number, then there is a differentiable real-valued function h on M
with | f — h| < &. This is more or less clear from the fact that via its graph, f
may be regarded as a continuous section of the trivial bundle M x R over
M; in any e-neighborhood of f there is a differentiable section h and because
the e-neighborhood of f may be continuously deformed onto f, h is con-
tinuously homotopic to f (see Figure 17.4). Indeed, to be more explicit, this
differentiable section h can be given by successively averaging the values of f
over small disks.

Next consider a continuous map f : M — N of manifolds. By the Whit-
ney embedding theorem (see, for instance, de Rham [1, p. 12]), there is a
differentiable embeddingg : N —» R". If

gof:M— g(N) =R
is homotopic to a differentiable map, then so is
f=g7'c(gef): M- N.
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M
Figure 17.4

So we may assume at the outset that N is a submanifold of an Euclidean
space R". Then the map f is given by continuous real-valued functions (f;,
..., f-). As noted above, each coordinate function f; can be approximated by
a differentiable function h; to within ¢, -and f; is continuously homotopic to
h;. Thus we get a differentiable map h: M — R" whose image is in some
tubular neighborhood T of N. But every tubular neighborhood of N can be
deformed to N via a differentiable map k: T — N (Figure 17.5). This gives
a differentiable map k « h: M — N which is homotopic to f. a

T —

Figure 17.5

Corollary 17.8.1. Let M be a manifold. Then the homotopy groups of M in the
C™ sense are the same as the homotopy groups of M in the continuous sense.

Proposition 17.9. #.(5") = 0, for g < n.

PROOF. Let f be a continuous map from I? to S", representing an element of
n/(S"). By the lemma above, we may assume f differentiable. Hence Sard’s
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theorem applies. Because g is strictly less than n, the images of f are all
critical values. By Sard’s theorem f cannot be surjective. Choose a point P
not in the image of f and let ¢ be a contraction of S — {P} to the antipodal
point Q of P (Figure 17.6):

¢, :8"—{P} - s"—{P},te[0, 1]
¢o = identity
¢, = constant map Q.

Then ¢, o f is a homotopy between f and the constant map Q. Therefore,
n(S") =0forq <n. a

Figure 17.6
Proposition 17.10. n,(S") = Z.

We will indicate here the main ideas in the geometrical proof of this
statement, omitting some technical details.

Recall that to every map from S" to S" one can associate an integer
called its degree. Since the degree is a homotopy invariant, it gives a map
deg : n,(S") — Z. There are two key lemmas.

Lemma 17.10.1. The map deg : n,(S") — Z is a group homomorphism; that is,
deg(Cf[g]) = deg[f] + deglg].

Lemma 17.10.2 Two maps from S" to 8" of the same degree can be deformed
into each other.

The surjectivity of deg follows immediately from Lemma 17.10.1, since if
f is the identity map, then deg([ f1%) = k for any integer k; the injectivity
follows from (17.10.2).

To prove these lemmas we will deform any map f: S" — S” into a
normal form as follows. By the inverse function theorem f is a local diffeo-
morphism around a regular point. By Sard’s theorem regular values exist.
Let U be an open set around a regular value so that f ~!(U) consists of
finitely many disjoint open sets, Uy, ..., U,, each of which f maps diffeo-
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U,
U, . v
gt
U, n=1
f
—_—
SI
n=2

Figure 17.7

morphically onto U (Figure 17.7). Choose the base point * of " to be not in
U. We deform the map f by deforming U in such a way that the com-
plement of U goes into ». The deformed f then maps the complement of
U'f=1 U; to ». Each U; comes with a multiplicity of +1 depending on
whether f'is orientation preserving or reversing on U;. The degree of f is the
sum of these multiplicities. Given two maps f and g from §” to S", we
deform each as above, choosing U to be a neighborhood of a regular value
of both f and g. By summing the multiplicities of the inverse images of U,

we see that deg([f][g]) = deg[f] + deg[g] (Figure 17.8). This proves
Lemma 17.10.1.

To bring a map f: S"— §" into what we consider its normal form
requires one more step. If U; and U; have multiplicities +1 and —1 re-
spectively, we join U; to U; with a path. It is plausible that f can be
deformed further so that it maps U; u U, to the base point », since f wraps
U, around the sphere one way and U; the reverse way. For S ! this is clear.

O\ .
= 00
@ g
@@@

Figure 17.8
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The general case is where we wave our hands. The details are quite involved
and can be found in Whitney [1]. In this way pairs of open sets with
opposite multiplicities are cancelled out. In the normal form, if f has degree
+k, then there are exactly k open sets, U,, ..., U, with all +1 multi-
plicities or all —1 multiplicities. Hence two maps from S* to S" of the same
degree can be deformed into each other.

Attaching Cells

Let " be the closed n-disk and $"~! its boundary. Given a space X and a
map f : S"! — X, the space Y obtained from X by attaching the n-cell &
via f is by definition (see Figure 17.9)

Y=Xu,e"=X1e"/f(uy~uforue s

]

Figure 17.9

For example, the 2-sphere is obtained from a point by attaching a 2-cell
(Figure 17.10):

S2=puei

Figure 17.10

It is easy to show that if f and g are homotopic maps from $"~! to X,
then X U, ¢" and X U, €" have the same homotopy type (see Bott and
Mather [1, Prop. 1, p. 466] for an explicit homotopy). The most fundamen-
tal homotopy property of attaching an n-cell is the following.

Proposition 17.11. Attaching an n-cell to a space X does not alter the homo-
topy in dimensions strictly less than n — 1, but may kill elements in ,_(X);
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more precisely, the inclusion X ¢, X U e" induces isomorphisms
T (X) X n(X U €) forg<n-1
and a surjection

Ty 1(X) = 7,y (X L €).

PROOF. Assume g <n—1 and let f: S?— X U ¢" be a continuous base-
point preserving map. We would like first of all to show that f'is homotopic
to some map whose image does not contain all of ¢". If f is differentiable
and X U, " is a manifold, this follows immediately from Sard’s theorem. In
fact, as long as f is differentiable on some submanifold of §* that maps into
e", the same conclusion holds. As in the proof of Proposition 17.8 this can
always be arranged by moving the given fin its homotopy class. So we may
assume that f does not surject onto e". Choose a point p not in the image
and fix a retraction c, of (¢" — {p}) to the boundary of ¢". This gives a
retraction ¢, of X u(e" — {p}) to X. Via ¢, o f, the map f is homotopic in
X U €" to a map from §? to X (Figure 17.11). Hence n (X)— n (X U €") is
surjective forg < n — 1.

s

Figure 17.11

Now assume g < n — 2. To show injectivity let f and g be two maps
representing elements of n(X) which have the same image in n (X U €).
Let F: ST x I - X U ¢" be a homotopy in X U " between f and g. Since
the dimension of $? x I is less than n, again we can deform F so that its

JBY /By ]

The homotopy F The homotopy ¢, o F
Figure 17.12
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image does not contain all of ”. Reasoning as before, we find maps
GoF:S'xI—-Xvue

such that ¢; o F:87 x {1}— X is a homotopy between f and g which lies in
X (Figure 17.12). Therefore [ f] = [g] as elements of n(X). 0

As for homology we have the following:

Proposition 17.12. Attaching an n-cell to a space X via a map f does not alter
the homology except possibly in dimensions n — 1 and n. Writing X, for
X Uy €', there is an exact sequence

0— H(X)— H{X ) Z-L-H,_,(X)> H,_,(X)—0

where f, : H,_(S""')— H,_(X) is the induced map. So the inclusion X <
X, induces a surjection in dimension n — 1 and an injection in dimension n.

"PROOF. Let U be X, — {p} where p is the origin of ¢", and let V be {x € ¢"|
lxll <4}. Then U is homotopic to X, V is contractible, and {U, V} is an
open cover of X . By the Mayer-Vietoris sequence (15.6), the following is
exact

r o H(S" Yo H(X) @ H(V)— H{X )= Hyy(8" -
Sofor g #n — 1orn, H(X,) = H(X). For q = n, we have

0— Hy(X)— H(X)— H, (8" ) L H,_,(X)— H,_,(X)—0. O

A CW complex is a space Y built-up from a collection of points by the
successive attaching of cells, where the cells are attached in the order of
increasing dimensions; the topology of Y is required to be the so-called
weak topology: a set in Y is closed if and only if its intersection with every
cell is closed. (By a cell we mean a closed cell.) The cells of dimension at
most n in a CW complex Y together comprise the n-skeleton of Y. Clearly
every triangularizable space is a CW complex. Every manifold is also a CW
complex; this is most readily seen in the framework of Morse theory, as we
will show in the next subsection.

For us the importance of the CW complexes comes from the following
proposition.

Proposition 17.13. Every CW complex is homotopy equivalent to a space with
a good cover.

Hence the entire machinery of the spectral sequence that we have developed
applies to CW complexes. This proposition follows from the nontrivial fact
that every CW'complex has the homotopy type of a simplicial complex (Gray
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[1, Cor. 16.44, p. 149 and Cor. 21.15, p. 206] or Lundell and Weingram [1,
Cor. 4.7, p. 131]), for the open stars of the vertices of the simplicial complex
form a good cover.

Digression on Morse Theory

Using Morse theory, it can be shown that every differentiable ;nanifold has
the homotopy type of a CW complex (see Milnor [2, p. 36]). The goal of
this section is to prove this for the simpler case of a compact differentiable
manifold.

Let f be a smooth real-valued function on a manifold M. A critical point
of fis a point p where df =0; in terms of local coordinates x;, ..., X,
centered at p, the condition df (p) = Y. (9f/0x(p) dx; = 0 is equivalent to the
vanishing of all the partial derivatives (6f/0x,Xp). The image f(p) of a critical
point is called a critical value. Note that the definition of a critical point
given here is a special case of the more general definition preceding Theo-
rem 4.11 for a map between manifolds. A critical point is nondegenerate if
for some coordinate system x,, ..., x, centered at p, the matrix of second
partials, ((02f/dx; 0x,;)(p)), is nonsingular; this matrix is called the Hessian of
S relative to the coordinate system x4, ..., x, at p. The notion of a nondege-
nerate critical point is independent of the choice of coordinate systems, for
if yy, ..., y, is another coordinate system centered at p, then

I s ¥y
6y, j dxj 6y,

and

oy _ *f % a_xl _Qf_ 625c!
Oyx 0y, i, jaxi axj Oyy 0y, j axj Oy, 0y, )
At p, 9f/ox; = 0, so that
Pf o O iy
a)'h dy, i) ox, a,xj Oy 0y, '

In matrix notation
H(y) = J'H(x)J

where H(x) is the Hessian of f relative to the coordinate system x,, ..., X,,
and J is the Jacobian (0x/dyy). Since the Jacobian is nonsingular,
det(0%f/dy, dy,) + 0 if and only if det(9*f/dx; dx;) # 0. The index of a nonde-
generate critical point is the number of negative eigenvalues in the Hessian
of f. By Sylvester’s theorem from linear algebra, the index is independent of
the coordinate systems. It may be interpreted as the number of independent
directions along which fis decreasing.
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ExaMPLE 17.14. Consider a torus in 3-space sitting on a plane as shown in
Figure 17.13. Let f(p) be the height of the point p above the plane. Then as
a function on the torus f has four critical points A, B, C, and D, of indices 0,
1, 1, and 2 respectively.

Figure 17.13

We outline below the proofs of the two main theorems of Morse theory.
For details the reader is referred to Milnor [2, §3] or Bott and Mather [1,
pp. 468—472].

Theorem 17.15. Let f be a differentiable function on the manifold M, and M,
the set f ~([—o0, a)). If f~'([a, b)) is compact and contains no critical
points, then M, has the same homotopy type as M, .

OUTLINE OF PROOF. Choose a Riemannian structure { , > on M. Then
away from the critical pomts of f, the gradient Vf of a differentiable func-
tion fis defined: it is the unique vector field on M such that for all vector
fields Y on M,

(Vfp, V) = df(Y))

Let X be the unit vector field — Vf/|| Vf|. Because f has no critical points on

Figure 17.14
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£~ Y([a, b)), X is defined on f~*([a, b]). As in vector calculus on R" the
gradient of a function points in the direction of the fastest increase, so X
points in the direction of the fastest decrease. Extend X to a vector field on
M. The flow lines of X give a deformation retraction of M, onto M, (Figure
17.14).

O

Theorem 17.16. Suppose f ~'([a, b]) is compact and contains precisely one
critical point in its interior, which is nondegenerate and of index k. Then M,
has the homotopy type of M, U é*.

To prove this theorem we need the following.
Morse lemma. If p is a nondegenerate critical point of f of index k, then there
is a coordinate system x,, ..., x, near p such that
f=f(P)—xf_"'—xf+Xf+1 + o+ x.

The Morse lemma may be proved by the method used to diagonalize
quadratic forms (see Milnor [2, p. 6]).

OUTLINE OF A PROOF OF THEOREM 17.16. Let ¢ = f(p) be the critical value
and ¢ a small positive number. By Theorem 17.15, M, has the homotopy
type of M. ., , and M, that of M__,, so it suffices to show that M., has the
homotopy type of M._, U €.

Figure 17.15
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On a neighborhood U of p where the Morse lemma holds,

My, nU={-x}— - —=xt+xt,+ - +x2<¢
Moo nUs={-x{— " —xi+xs+ " +x;<—¢

These regions are illustrated in Figure 17.15 for k =1 and n = 2. The set
M., is the shaded portion. (We choose ¢ small enough so that U meets the
level sets f ~!(c + ¢) and f ~(c — ¢).)

Let C be the subset of U defined by

C={f<c+ext+ - +xt<é},

where & is a small positive number, say smaller than ¢2. Note that C is
homotopically equivalent to the cell &. Set B = M., — C. B is the shaded
region in the picture in Figure 17.16. From the picture it is plausible that B
can be contracted onto M,_, by moving along the vector field —Vf. Since
M., is obtained from B by attaching C, up to homotopy

M,,~M,_, ué.

Figure 17.16 O

A smooth real-valued function on a manifold all of whose critical points
are nondegenerate is called a Morse function. It follows from the two pre-
ceding theorems that there is a very close relation between the topology of
a manifold and the critical points of a Morse function. We next show that
there are many Morse functions on any manifold. Our proof is taken from
Guillemin and Pollack [1, pp. 43-45].

Lemma 17.17. Let U be an open subset of R" and f any smooth real-valued
function on U. Then for almost all a = (ay, ..., a,) in R", the function f(x) =
f(x) + a;xy + -+ + a,x, is a Morse function.

ProoF. Recall that we denote the Jacobian matrix of a function h by D(h).
Define g(x) = (df/0x;, ..., 8f/dx,). Note that the Hessian of f is precisely the
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Jacobian of g, and x is a nondegenerate critical point of f if and only if
g(x) = 0 and D(gXx) is nonsingular. Let g,(x) = (9f./0x,, ..., df,/0x,). Then
g4(x) = g(x) + a and D(g,) = D(g). In this setup x is a critical point of f, if
and only if g(x) = —a; it is nondegenerate if and only if in addition D(g)Xx)
is nonsingular, i.e., a is a regular value of g. By Sard’s theorem almost all a
in R" are regular values of g. For any such g, the function f, will be a Morse
function on U. a

Proposition 17.18. Let M be a manifold of dimension n in R". For almost all
a=(ay,...,a,)in R, the function f(x) = a,x, + --- + a,x,is a Morse func-
tion on M.

PROOF. Let x,, ..., x, be the coordinate functions on R’. Every point x in M
has a neighborhood U in M on which some n of x4, ..., x, form a coordi-
nate system. (Proof: Since T, M — T, R’ is injective, T*R" — T*M is surjec-
tive, so dx;, ..., dx, restrict to a spanning set in the cotangent space T*M.
If dx;,, ..., dx; is a basis for T¥M, then x,, ..., x;_ is a set of local coordi-
nates around x.) Because a manifold is by definition second countable, M
can be covered by a countable number of such open sets, M = Ue, U
Suppose x4, ..., x, form a local coordinate system on U,. Fix (a,+y, ... a,)
and define f(x) =a,+X,+; + " +a,x, on U;. By Lemma 17.17, for
almost all (ay, ..., a,), the function f(x) + a;x, + - + a,x, is a Morse
function on U;. It follows that for almost all a = (a,, ..., a,) in R", the
function f(x) = a,x;, + - - + a, x, is a Morse function on U;. Let

A; = {a € R"| f(x) is not a Morse function on U}.

Ifae R"— Uf‘;l_ A;, then f(x) is a Morse function on M. Since | J2, 4;
has measure zero, the proposition is proved. a

Theorem 17.19. Every compact manifold M has the homotopy type of a finite
CW complex.

PROOF. By Whitney’s embedding theorem (see de Rham [1, p. 12]), we may
assume that M is a submanifold of some Euclidean space. Let f be a Morse
function on M (the existence of f is guaranteed by Proposition 17.18). By
the Morse lemma, the critical points of f are isolated. Since M is compact, f
can have only finitely many critical points on M. Furthermore, for any real
number a, the set M, = f ~ ([ — o0, a]) is compact, as it is a closed subset of
a compact set. Let p,, ..., p, be the critical points of index 0. By the two
main theorems of Morse theory (Theorems 17.15 and 17.16), up to homo-
topy M is constructed from py, ..., p, by attaching cells, a cell of dimension
k for each critical point of index k > 0. The only question that remains is:
are the cells attached in the order of increasing dimensions? Suppose not.
Then at some point there is a cell e* which is attached to a finite CW
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complex X via an attaching map f: S¥~! » X whose image does not lie
entirely in the (k — 1)-skeleton of X. If n> k —1, then f cannot surject
onto an n-cell of X, so for each such n-cell " we can choose a point P in
e"—f(S*~1) and deform f to the boundary of e”. In this way f can be
deformed so that its image lies in the (k — 1)-skeleton of X. Thus up to
homotopy the cells of M can be attached in the proper order and M has
the homotopy type of a finite CW complex.

The Relation between Homotopy and Homology

The relation between the homotopy and the homology functors is a very
subtle one. There is of course a natural homomorphism

i:n(X)— H/(X),
defined as follows: fix a generator u for H(S) and send [f] in n(X) to
f,(u). In general i is neither injective nor surjective. We have seen that H, is
relatively computable. On the other hand, =, is not; there is no analogue of

the Mayer-Vietoris principle for z,. For this reason, the following theorems
are a cornerstone of homotopy theory.

Theorem 17.20. Let X be a path-connected space. Then H,(X) is the
Abelianization of n,(X), i.e., if [®(X), n,(X)] is the commutator subgroup of
ny(X), then H(X) = n,(X)/[n(X), 7((X)]. '

We will assume this theorem as known. Its proof may be found in, for
instance, Greenberg [1, p. 48]. The higher-dimensional analogue is

Theorem 17.21 (Hurewicz Isomorphism Theorem). Let X be a simply con-
nected path-connected CW complex. Then the first nontrivial homotopy and
homology occur in the same dimension and are equal, i.e., given a positive
integer n > 2, if n(X) =0 for 1 <q<n, then H(X)=0 for 1 <q<nand
H(X) = n(X).

ProOF. To start the induction, consider the case n = 2. The E? term of the
homology spectral sequence of the path fibration

QX - PX
!
X
is
q
1 H,(QX) !
0 Y4 0 Hy(X)
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Thus
H,(X) = H,(QX) because PX has no homology
= m,(QX) because x,(QX) = n5(X) is Abelian
= ﬂz(x ).

Now let n be any positive integer greater than 2. By the induction
hypothesis applied to QX,

HQX)=0 forg<n-1
and
H,_,(QX) = n,_,(QX) = n(X).

The E, term of the homology spectral sequence of the path fibration is

n—1{H,_ QX<

\
0 \
;‘ﬁ\ T~

~ ~ H{(X)

Since PX has trivial homology,

H(X)=H,_ ,(QX)=0 forl<g<n
and

H(X) = H,_(QX) = n,(X).
‘ a

REMARK 17.21.1. A careful reader should have noticed that there is a sleight
of hand in this deceptively simple proof: because we developed the Leray
spectral sequence for spaces with a good cover (Theorem 15.11 and its
homology analogue), to be strictly correct, we must show that both X and
QX have good covers. By (17.13), the CW complex X is homotopy equivalent
to a space with a good cover. Next we quote the theorem of Milnor that the
loop space of a CW complex is again a CW complex (Milnor [1, Cor. 3,
p. 276)). So, at least up to homotopy, QX also has a good cover.

Actually the Hurewicz theorem is true for any path-connected topologi-
cal space. This is a consequence of the CW-approximation theorem which,
in the form that we need, states that given any topological space X there is a
CW complex K and a map f: K — X which - induces isomorphisms
fo: 7 (K) > 7 (X)andf,: H(K) > H,(X) in all homotopy and homology
(Whitehead [1, Ch. V, Section 3, p. 219]). Thus, in the Hurewicz isomor-
phism theorem, we may drop the requirement that X be a CW complex.
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The spectral sequence proof of the Hurewicz isomorphism theorem is
due to Serre [2, pp. 271-274]. Actually, Serre’s approach is slightly differ-
ent; by developing a spectral sequence which is valid in much greater
generality than ours, Serre could bypass the question of the existence of a
good cover on a topological space. Of course, a price has to be paid for this
greater generality; one has to work much harder to establish Serre’s spec-
tral sequence.

As a first and very important example, consider S* again. It follows from
the Hurewicz theorem and the homology of S* that the homotopy groups of
$” in low dimensions are

n(S") =0 forg<n
and
n(S")=2Z.

73(S%) and the Hopf Invariant

Now that we have computed .7 (S") for g <n, the first nontrivial com-
putation of the homotopy of a sphere is 73(S2). This can be done using the
homotopy exact sequence of the Hopf fibration, as follows.

Let S® be the unit sphere {(zo, z,)| | 2o|> + | 2, |> = 1} in C2. Define an
equivalence relation on S° by

(20, 21) ~ (wo, wy) if and only if (zo, z;) = (Awo, Aw,)

for some complex number A of absolute value 1. The quotient S/~ is the
complex projective space CP! and the fibering

st §?

!
s?=CP!
is the Hopf fibration. From the exact homotopy sequence
e o 8o m(SY) > m ) 7y ((§Y) - -

and the fact that n,(S!) = 0 for g > 2 (see Example 18.1(a)), we get m,(S°) =
n,(S?) for g > 3. In particular 73(S%) = Z.

This homotopy group m;(S?) was first computed by H. Hopf in 1931
using a linking number argument which associates to each homotopy class
of maps from S* to S? an integer now called the Hopf invariant. We give
here an account of the Hopf invariant first in the dual language of differ-
ential forms and then in terms of the linking number. Thus the setting for
this section is the differentiable category.

Let f: 83— S? be a differentiable map and let « be a generator of
H2x(S%). Since H3x(S®) =0, there exists a 1-form w on S* such that
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f*a = do. As will be shown below, the expression
H(f) = I oAdo
s3

is independent of the choice of w. We define H(f) to be the Hopf invariant
of f.

More generally the same procedure defines the Hopf invariant for any
differentiable map f:5>*"'— 8" If a is a generator of H%g(S"), then
f*a = dow for some (n — 1)-form @ on $2"~! and the Hopf invariant of f is

H(f) =J wAdw.
S2n-1

Proposition 17.22. (a) The definition of the Hopf invariant is independent of
the choice of w.

(b) For odd n the Hopf invariant is 0.

(c) Homotopic maps have the same Hopf invariant.

PROOF. (a) Let @' be another (n — 1)-form on S2"~! such that f*a = dw'.
Then 0 = d(w — ’). Hence

f co/\dw—j w’/\dw'='[ (0 — 0)Adw
IS2n—-1 S2a—1 S2n-1

=iJ‘z ld((cu—ao')/\w)
=0 :);’ Stokes’ theorem.
(b) Since w is even-dimensional,
wNdw = idw A o).

By Stokes’ theorem, [s2-1 @ Adw = 0.

(c) By (b) we may assume n even. Let F: $2"~* x I — S" be a homotopy
between the two maps f, and f; from $2"~! to §", where I = [0, 1]. Ifi, is
the inclusion '

ig: 8 1Sy =871 x {0} =S ! x1

and similarly for i, then .

Foig =/,

Foiy =f.
Let « be a generator of Hpg(S"). Then F*a = dw for some (n — 1)-form w on
§2"=1 x I. Define i$w = wo and itw = w,. Then

. f3a =dw, and fla=do,.
Note that
wo N dwy = if(w A dw).
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Hence,

H(f)) — H(f,) = J; oy Ndw, — 4[ wo Adwg
22— 1 S2a~-1

= J‘ if(wAdw) - f i$(wAdw)
IS20-1 Is28-1

=J cp/\dw—j oAdw
S1 So

r

wAdw
JO(S2n-1x])
n
= dw A dw by Stokes’ theorem
JSIn-1 kg
= F*@aAa)

JS2n-1x ¢

=0  because aAa € Q*(S").

a

Since homotopy groups can be computed using only smooih maps
(Proposition 17.8.1), it follows from Proposition 17.22(c) that the Hopf
invariant gives a map

H:n,y,_(S)— R.

We leave it as an exercise to the reader to prove that H is in fact a
homomorphism.

Actually the Hopf invariant is always an integer and is geometrically
given by the linking number of the pre-images A = f ~!(p) and B = f ~'(q) of
any two distinct regular values of f. In the classical case where n = 2, these
two submanifolds are two “circles” embedded in S°. To fix the ideas we will
first explain the linking concept for this case.

The linking number of two disjoint oriented circles A4 and B in S* can be
defined in several quite different but equivalent ways.

The Intersection-Theory Definition.

Choose a smooth surface D in S* with boundary 4 such that D intersects B
transversally (Figure 17.17). Set the linking number to be

link(4, B)= ¥ +1.

DnB

Here the sum is extended over the points in the intersection of D with B and
the sign is given by the usual convention: at a point x in D N B, the sign is
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Figure 17.17

+1 or —1 according to whether the tangent space T,S* has or does not
have the direct sum orientation of T,D @ T, B (Guillemin and Pollack
[1, p. 108]).

It of course has to be shown that the linking number as defined is
independent of the choice of D. This is a consequence of the discussion to
follow. '

The Differential-Form Deﬁnit_ioh.

Choose disjoint open neighborhoods W, and W, of 4 and B and choose
representatives 1, and n of the compact Poincaré duals of A and B in
H%(W,) and H%(W;). Because H24(S>) = 0, the extensions of n, and ny by
zero to all of §3, also denoted n, and n, are exact. Thus there are 1-forms
w4 and wg on S such that

dw,=n, and dwg=1g.

In terms of these forms one would expect, naively, that the dual to the
intersection-theory definition is the expression

J‘ wAA"B’
IS3

for if A =0D and n, = dw,, then in some sense D should correspond to
w,. So let this integral be the differential-form definition of the linking
number of A and B. We have to check that it is independent of all the
choices involved. Let ', be some other form with dw’, = n,. Then 0y — w,
is closed. So

J. (Wa—w)Anp= £ I d[(w)y — @4) Awg]
IS3 IS3
=0.
On the other hand, if n is another representative of 5], then
.Mp—np=du
for some u in Q! (W;). Hence,

Iwm(»i.—nz.)= —I d(ﬂ)M#HJ naAu.
S3 : S3 S3
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Both terms on the right vanish: the first by Stokes’ theorem, and the second
because the supports of n, and u are disjoint!

The differential-form definition is quite close to the Hopf invariant. To
bring one into the other, we first choose disjoint neighborhoods U, and U,
of the regular values p and q of fand set W, =f~'(U,) and Wy =f~'(U)).
We next choose forms «, and «, in QU ») and Qf(Uq) representing the
Poincaré duals of p and ¢ and set n, = f*«, and np = f*a,. According to
the differential-form definition the linking number of f~!(p) = A4 and
f ~Y(q) = Bis then given by

'[ o, Ang,
S3

where w, is a form on S* with dw, = ,. On the other hand, as «, gener-
ates H2x(S?), the Hopf invariant is given by

H(f) =‘L waAny,.

Because a, and «, are both representatives for the generator of Hjg(S?),
there is a form B in Q!(S?) such that

Hence,
W A(Ma—np) = w4\ f* dB -
= —d(w A f*B) + (dw)ASf*B.
The last term on the right equals
naAS*B =f*(a, A P).
Buta,AB e Q3(5?) and hence vanishes! By Stokes’ theorem it follows that

f wAAﬂn=I waAn,=H(f),
S3 S3

as was to be shown.

Finally we prove the compatibility of the two definitions of the linking
number. This will then also explain why the Hopf invariant is always an
integer.

To start off one needs certain plausible constructions of differential top-
ology. The first of these is that a surface such as D, which has boundary 4,
can always be extended by a small ribbon diffeomorphic to A x [0, 1].
More precisely, there exists an embedding

p:Ax[-1,1]¢S8°

such that ¢ maps A x [—1, 0] diffeomorphically onto a closed neighbor-
hood of A = D in D, with A x {0} going to A, and such that

D, =D v ¢(4 x[0,1])
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is still a smoothly embedded manifold with boundary. If we set
D_,=D— ¢4 x(-1,0),

this construction exhibits D in a nested sequence of submanifolds with
boundary

D,oD>D_,

with the interior of D, — D _, being diffeomorphic to 4 x (—1, 1). A map ¢
of this type is often called a collar about 3D, and the restriction of ¢ to
A x (—1, 1) an open collar about dD.

Using this parametrization we can clearly construct a smooth function
x4 on D, such that

(1) x, = 0 near dD,, and
(2) x4 =1o0n a neighborhood of D_, in D,.

It follows that dy, is a 1-form with compact support on the open collar
D} — D_,, where Dj is the interior of D,. Furthermore, dy, represents the
compact Poincaré dual of 4 in Q}(DS — D_)).

Next we choose a neighborhood of D, in S°, say W, small enough to
admit a retraction

r-W-D,.

(For & small enough an e-neighborhood of D, relative to some Riemannian
structure on S* will do.) Let T be a tubular neighborhood of D, — dD, in
W — oD, diffeomorphic to the unit disk bundle in the normal bundle of

D, — 0D, in W — aD, and let  represent the Thom class of T in QL(T).
See Figure 17.18.

collar

oD “
«

‘Figure 17.18
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Now consider the 1-form

W = (r*x)wy.

It has many virtues. First of all it has compact support in W and so can be
extended by zero to all of S3. This comes about because w3 has compact

support normal to D} and r*y, vanishes identically near dD,. Secondly, we
see that if we set

Wo=r"'(D} ~D_y),

then dw, € QX(W,) and represents the compact Poincaré dual of A4 there.

We will use this @, in the integral [s, w,Anp to complete the argument
that

I wAng= Y 1.
53

DnB

First choose a small enough neighborhood Wj of B, a small enough collar
for D, and a small enough tubular neighborhood T for D} so that (see
Figure 17.19)

Wen Ter'(D_y).

—

]
'
|
1
v
|
'
I
—/

B e 2 St

-

Figure 17.19
Once this is done w, will equal w5 in the support of ns since onr~*(D_,)

the function r*y, is identically 1. Therefore, our integral can be rewritten in
the form N

* f wy3Ang.
S3 ~3D;
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But now w represents the Poincaré dual of DS in Q!(S* — 4D,) and 7, the
compact Poincaré dual of B in Q}(S* — aD,). In Section 6 we discussed the
relation between the Thom isomorphism, Poincaré duality, and the trans-
versal intersections of closed oriented submanifolds. Although (6.24) and
(6.31) were stated for the closed Poincaré duals, the same discussion applies
to the compact Poincaré duals, provided the relevant submanifolds are
compact. Hence the integral (*) just counts the transversal intersection
number of D, with B. Thus

J W Ang= Y. +1= Y +1,
53

DinB DnB

the last being valid because the extension D, intersects B no more often
than D did. O

REMARK. The arguments of this section of course extend to the higher-
dimensional examples. In particular the two definitions of the linking
number make sense and are equivalent whenever 4 and B are compact
oriented submanifolds of an oriented manifold M satisfying the following
conditions:

(1) A and B are disjoint;

(2) dmA4+dmB=dimM —1;

(3) both 4 and B are bounding in the sense that their fundamental classes
are homologous to zero in H (M)

Linking is therefore not a purely homological concept.
We cannot resist mentioning at this point that there is yet a third defini-
tion of the linking number of two disjoint oriented circles A and B in S°.

The Degree Definition.

Remove a point p from S* not on 4 or B and identify S> — {p} with R>. Let
L: AX B— §?
be the map to the unit sphere in R? given by

X—y
Lx, y) = ——,
Y=
where || || denotes the Euclidean length in R®. Give A x B the product

orientation and S? the standard orientation. Then

link(A4, B) = deg L.

We close this section with two explicit computations of the Hopf in-
variant in the classical case, one using the differential-geometric and the
other the intersection point of view. Just to be sure, if you will.
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ExaMPLE 17.23 (The Hopf invariant of the Hopf fibration). Let S* be the
unit sphere in C? and f : §*— CP! the natural map

f: (zo, zl)_' [ZO’ zl] ’
where we write [zo, z,] for the homogeneous coordinates on CP!. IfCP! is
identified with the unit sphere S? in R, say via the stereographic projection,
then the map f: S*— S? is the Hopf fibration. To compute its Hopf in-
variant, we proceed in five steps:

(a) Find a volume form o on the 2-sphere.

(b) Write down a diffeomorphism g: CP! = 5.

(c) Pull the generator o of H*(S?) via g back to a generator a of H(CP?).
(d) Pull « back to S* via fand find a 1-form w such that f*a = dw on S>.
(e) Compute fgs3 w Adw.

(a) A Volume Form on the 2-Sphere.

Let uy, u,, and u, be the standard coordinates of R?. By Exercise 4.3.1 a
generator of H%(S?) is "

1 .
o= G (uy du, duy — uy duy du, + u;y du, du,).

Since (dr) - ¢ = (r/4n) du, du, du,, which is the standard orientation on
R3, the form o represents the positive generator on S (see the discussion
preceding Exercise 6.32).

Over the open set in S where u; # 0, the form o has a simpler ex-
pression. For if

w+ui+ui=1,
then
uy duy + up duy + uy duy =0,
so that we can eliminate du, from o to get

_ .l_ d“l duz

(17.23.1) =

(b) Stereographic Projection of S* onto CP.

In the homogeneous coordinates [zo, z,] on CP!, the single point [z,, 0] is
called the point at infinity. On the open set z; # 0, we may use z = 2o/z, as
the coordinate and identify the point z = x + iy in CP' — {[1, 0]} with the
point (x, y, 0) of the (u,, u,)-plane in R®. Then the stereographic projection
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from the north pole (0, 0, 1) maps S? onto CP!, sending the north pole to
the point at infinity (Figure 17.20). To find the inverse map g: CP! — S2,
note that the line through (0, 0, 1) and (x, y, 0) has parametric equation
0, 0, 1) + t(x, y, — 1), which intersects the unit sphere when
2+ 2y’ + (11—t =1,
that is,
2
t=0 or T2+
Hence the inverse map g: CP* — S < R? is given by
2x 2y —1+x’+y’)
1+x2+y" 1+ x2+y*" 1+x2+y* )

(17.232) z=x+ iyt-—»(A

0,0,1)

RJ

\
(x,y,0)
Figure 17.20

(c) The Generator of HYCP?!).

By pulling the generator ¢ in H%(S2) back to CP! we obtain a generator g*c
in HYCP"). It follows from (17.23.1) and (17.23.2) that in the appropriate
coordinate patch,

o = 1 du, du, ,
4n  u,
where
2x 2y —1+x>+y
METF 2 T T 2 and uy = 1+x2+y* °

In terms of z = x + iy, the form g*¢ can be written as

1 dxdy i dzdz

g% = — - 3= — S L
n(l+ x*+y%) 2z (1 +|z]%)
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By convention the standard orientation on CP* is given locally by dx dy.
Therefore the positive generator in H(CP") is
e aeg ol _dzdE
T R
Since z = zy/z,, in terms of the homogeneous coordinates,

_ i (Zl dZO — 29 dz,)(z'l dZ-o — 2y dz'l)
" 2n (2o + 12, 1

(17.23.3)

ReMARK. If S? and CP! are given their respective standard orientations,
then the stereographic projection from S2 to CP! is orientation-reversing.

(d) Finding an w such that f*a = dw on S°.

Let z, = x, + ix, and z, = x5 + ix, be the coordinates on C2. Then the
unit 3-sphere S° is defined by

lzo P+ |ziP=x}+x3+x3+xi=1.

Hence Y {_; x; dx; = 0 on S. By a straightforward computation, replacing
2o and z, in (17.23.3) by the x;’s, we find

1 .1
[*a= - (dx, dx, + dx, dx,) = = d(xy dx; + x4 dxg).
Therefore, we may take w to be

o =i(x, dx, + x5 dx,).

(e) Computing the Integral.

The Hopf invariant of the Hopf fibration is

H(f)=J‘ oAdw

53

1
== I Xy dx, dx; dxq + x3 dx, dx, dx,
53 '

== J. x, dx; dx3 dx, by symmetry.
S3
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Using spherical coordinates,

x, = sin ¢ sin ¢ cos 6,

X, = sin ¢ sin ¢ sin 6,

x3 = sin £ cos ¢,

X4 = cOS £,

where0 < ¢ <7 0<¢ <n and 0 < 0 < 2r, the integral becomes

z =z (2=
j Xy dxy dx; dx, = I I f sin* £ sin® ¢ cos? 0 d0 d¢ d¢
S3 0 JO JO

= /2.

Therefore, the Hopf invariant of f'is 1.
Thls Hopf invariant may also be found geometrically, for by 1dent1fymg
— {north pole} with R? via the stereographic projection, it is possible to
visualize the fibers of the Hopf fibration

S“"’ S3
§?=CP!

and to compute the linking number of two tibers. We let zo = x, + ix,,
zy = X3 + ix,4. Then the stereographic projection

p:5*-{(0,0,0, 1)} >R = {x, =0}

is given by

Xy Xz X3
' (Xl: X3, X3, Xg) > ’

l—X4’l“X4 1—x4

This we see as follows. The line through the north pole (0, 0, 0, 1) and the
point (x, x, X3, X4) has parametric equation (0, 0, 0, 1) + t(x,, x,, X3,
x4 — 1). It intersects R® = {x, = 0} at t = 1/(1 — x,), so the intersection

point is
Xy X3 X3 0
I_X4’1_X4,I—X4’ ’

Note that the fiber S, of the Hopf fibration over [1,0] € CP' is {(z,,
0) € C?||zo| = 1} and the fiber S, over [0, 1] is {(0, 0, cos 6, sin ) € R*,
0 < 6 < 2=}, both oriented counterclockwise in their planes. So via the
stereographic projection S, corresponds to the unit circle in the (x,,
x;)-plane while S, corresponds to {(0, 0, cos 6/(1 —sin 6), 0 < 6 < 2r},
which is the x;-axis with its usual orientation. Therefore the linking number

See Figure 17.21.
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R4

R3

( Xy Xz X3 0)
I—x4"1—x4" 1 —x4°

Figure 17.21

of S, and S, is 1. By the geometric interpretation of the Hopf invariant as a
linking number, the Hopf invariant of the Hopf fibration is 1.

Exercise 17.24. (a) Given an integer g, show that for n > q + 2, the natural
inclusion O(n) & O(n + 1) induces an isomorphism 7(O(n)) = 7,(O(n + 1)).
For n sufficiently large, the homotopy group n,(O(n)) is therefore indepen-
dent of n and we can write = (0). This is the g-th stable homotopy group of
the orthogonal group.

(b) Given integers k and g, show that forn >k + q + 2,

7,(0()/O(n — k)) = 0.
(c) Similarly, use the fiber bundle of §2"*! = U(n + 1)/U(n) to show that
for 2n > q + 1, the inclusion U(n) ¢, U(n + 1) induces an isomorphism
n(U(n)) = n(U(n + 1)).
Deduce that for n > (2k + g + 1)/2,
2 (U(m)/U(n — k)) = 0.

§18 Applications to Homotopy Theory

The Leray spectral sequence is basically a tool for computing the homology
or cohomology of a fibration. However, since by the Hurewicz isomorphism
theorem, the first nontrivial homology of the Eilenberg-MacLane space
K(n(X), n) is m(X), if one can fit the Eilenberg-MacLane spaces K(n(X), n)
into a fibering, it may be possible to apply the spectral sequence to compute
the homotopy groups. Such fiberings are provided by the Postnikov ap-
proximation and the Whitehead tower, two twisted products of Eilenberg-
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MacLane spaces which in some way approximate a given space in .
homotopy As examples of how thls works, we compute in this section
74(S>) and n5(S3).

Eilenberg-MacLane Spaces

Let A be a group. A path-connected space Y is an Eilepberg-MacLane space
K(A4, n) if

in dimension n
Y
"( )= {0 otherwise.

(We do not consider n, unless otherwise indicated.) For any group A and
any integer n > 1 (with the obvious restriction that 4 be Abelian if n > 1), it
can be shown that in the category of CW complexes such a space exists and
is unique up to homotopy equivalence (Spanier [1, Chap. 8, Sec. 1, Cor. 5,
p. 426] and Mosher and Tangora [1, Cor. 2, p. 3]). So provided we consider
only CW complexes, the symbol K(A4, n) is unambiguous.

EXAMPLE 18.1. (a) Since = : R! — S given by

1!( x) - ez:ix

is a covering space, n(S') = n(R') = 0 for g > 2 by (17.5). Therefore the
circle is a K(Z, 1).

(b) If F is a free group, then K(F, 1) is a bouquet of circles, one for each
generator (Figure 18.1).

Figure 18.1

(c) The fundamental group .of a Riemann surface S of genus g > 1
(Figure 18.2) is a group n with generators a,, by, ..., a,, b, and a single
relation

a;byar byt oo a bya; bt =1
By the uniformization theorem of complex function theory the universal

cover of a Riemann surface of genus g > 1 is contractible. Hence the Rie-
mann surface S is the Eilenberg-MacLane space K(n, 1).
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a)

b,

a,

by
Figure 18.2

(d) By Proposition 17.2, we see that QK(A4, n) = K(4, n — 1).

(e) The Eilenberg-MacLane space K(Z, n) may be constructed from the
sphere S" by killing all n(S") for ¢ > n. The procedure for killing homotopy
groups is discussed in the section on Postnikov approximation.

(f) By (17.1.a) if A and B are two groups, then

K(A, n) x K(B, n) = K(4 x B, n).

The Telescoping Construction

In this section we give a technique for constructing certain Eilenberg-
MacLane spaces, called the telescoping construction. It is best illustrated
with examples.

ExampLE 18.2 (The infinite real projective space). The real projective space
RP" is defined as the quotient of the sphere S" under the equivalence
relation which identifies the antipodal points of S". There is a natural
sequence of inclusions

{point} & -+ & RP"SG RP™ g -o-,

We define the infinite real projective space RP® by gluing together via the
natural inclusions all the finite real projective spaces

RP® =[] RP* x I /(x, 1) ~ (i(x), 0).

Pictorially RP* looks like an infinite telescope (Figure 18.3).

Since §"— RP" is a double cover, by (17.5) n (RP") = n(S") =0 for
1 <q<n We now show that RP® has no higher homotopy, ie.,
n(RP=) = 0 for q > 1. Take m; s(RP®) for example. Suppose f :S**— RP®
represents an element of n,s(RP®). Since the image f(S'%) is compact, it
must lie in a finite union of the RP* x I’s above. We can slidef(S'%) into a
high RP* x I. If- n> 15, then f(S'%) will be contractible. Therefore
7, 5(RP®) = 0. Thus by sliding the image of a sphere into a high enough
projective space, we see that this telescope kills all higher homotopy groups.
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RP™!
RP"
0 1 \ f(S's)
0 1
0 1
Figure 18.3

Applying the telescoping construction to the sequence of spheres

{point} ¢ ce c‘, S"f.‘. shti, ...
we obtain the infinite sphere
$® =[] 8" x I [(x, 1) ~ (i(x), 0).
n
It is a double cover of RP®. By the same reasoning as above, S® has no

homotopy in any dimension. Therefore n,(RP®) = Z,. This proves that
RP*is a K(Z,, 1).

ExampLE 18.3. (The infinite complex projective space). Applying the tele-
scoping construction to the sequences
o St o gint3d L

sty !
. CP" cCp'*? ey,
we obtain the fibering
Stos>
(18.3.1) !
cp~®

where CP® is gotten by gluing together the CP"’s as in the previous exam-
ple. Since S® has no homotopy in any dimension, it follows from the
homotopy sequence of the fibering that

Z whenk=2
P®) =
m(CP%) {0 otherwise.
Therefore CP* is a K(Z, 2).

Exercise 18.4. By the Hurewicz isomorphism theorem H,;(S“) = 0 except in
dimension 0. Apply the spectral sequence of the fibering (18.3.1) to show
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that the cohomology ring of CP® is a polynomial algebra with a generator
in dimension 2:

H*CP>) = Z[x], dim x = 2.
EXAMPLE 18.5 (Lens spaces). Let S2**! be the unit sphere in C"*!. Since S*

acts freely on §2"*!, so does any subgroup of S'. For example, Z acts on
S2n+l by

e (2o, ..., 2) (€¥*324, ..., ™/32,).

The quotient space of S2"*! by the action of Z is the lens space L(n,5).
Applying the telescoping construction

Stc - c S+l - gin+d c--
Zs) l l
LO,S5)c-~cL(n,S)cLin+1,5c---,

we obtain a five-sheeted covering

Zi—S®

!
L, 5).

Hence
Zs ifk=1
0 ifk>1.

So the infinite lens space L(o0,5) is a K(Zs,1). In exactly the same manner
we can construct L(c, q) = K(Z ,,1) for any positive integer g.

({0, 5)) = {

REMARK 18.5.1. The lens space L(n,2) is the real projective space RP2"*1,
and the infinite lens space L(c0,2) is RP>,

Next we shall compute the cohomology of a lens space, say L(n,5).
Since the lens space L(n,5) is not simply connected, the defining fibration
Z,— S+ 5 L(n,5) s of little use in the computation of the cohomology.
Instead, note that the free action of S* on §2"*! descends to an action on
L(n,5):

(2os --.» 20— (120, ..., Az,), AeS'cC*
with quotient CP*, so that there is a fiber bundle

S'— L(n, 5)

|

cp.
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The E; term of this fiber bundle is

(18.52)
1| a ax ax?
0 Z}‘x }'xz
01 2 3 4 --- 2n

To decide what the differential d, is, we compare with the spectral se-
quence of the fiber bundle S'— S*"*!%, CP". The bundle map p:
$2"*1_, I(n, 5) over CP" induces a chain map on the double complexes

p*: CHm 'Y, Q%) — C*(ns 'Y, Q*),

where U is a good cover of CP". Let a, and a5 be the generators of E3' ! for
these two complexes, and x a generator of H*(CP"). Because p is a map of
degree 5, p*a; = Sag. Hence,

p*(dyay) = d; p*a, = dy5a5 = 5x.

xl

So d,a, =5x in (18.5.2). The cohomology of the lens space L(n,5) is
therefore

Z in dimension 0
Zs in dimensions 2,4, ..., 2n
H*(L(n, 5)) =

Z in dimension 2n + 1

0 otherwise.

REMARK 18.5.3. Another way of determining the differential in (18.5.2) is to
compute H3(L(n, 5)) first. by the universal coefficient theorem (15.14). Since
n,(L(n, 5)) = Zs, H,(I(n, 5)) = Zs and H? = Z; @ free part. Therefore d; a
must be Sx and H? = Z."

In exactly the same way we see that the cohomology of the lens space
L(n,q)is
Z in dimension 0
.."] Z, in dimensions 2,4, ..., 2n
(18.6) H%L(n, q)) = e
Z in dimension 2n + 1

0 otherwise.

Exercise 18.7. Prove that the lens space L(n,q) is an orientable manifold.
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Exercise 18.8. Let q be a positive integer greater than one.
(a) ‘Show that the integer cohomology of K(Z,, 1) is

Z in dimension 0
H*K(Z,, 1); Z) =< Z, in every positive even dimension
0 otherwise.

(b) Using the fibering S' — K(Z,, 1)— CP®, compute H*K(Z,, 1); Z,)
where p is a prime.

Exercise 18.9. Let n and q be positive integers. Show that

Q in dimension 0

H*K(Z,, n); Q) = {o otherwise.

Therefore, by the structure theorem for finitely generated Abelian groups,
the rational cohomology of K(4, n) is trivial for a finitely generated torsion
Abelian group.

Exercise 18.10. Determine the product structures of H*(L(n, g)), H*K(Z,,
1)), and H%(K(Z,, 1); Z,). In particular, show that

H*RP®) = Z[a]/(2a), dima =2,
and

H%RP®; Z,) = Z,[x], dimx=1.

The Cohomology of K(Z, 3)

Since (S%) = 0 for q < 3 and 4(S®) = Z, one may wonder if the sphere §°
is a K(Z, 3). One way of deciding this is to compute the cohomology of
K(Z, 3). We first observe that

QK(Z, 3) = K(Z, 2) = CP~,

whose cohomology we know to be Z[x] from Exercise 18.4. Since by
Remark 17.13, every CW complex has a good cover, we can apply the
spectral sequence of the path fibration

K(Z, 2)— PK(Z, 3)
l {
Kz, 3)

to compute the cohomology of K(Z, 3).
By Leray’s theorem with integer coefficients (15.11), the E, term of the
spectral sequence is

E%* = H(K(Z, 3)) ® HY(CP®)



246 III  Spectral Sequences and Applications

and its product structure is that of the tensor product of H*(K(Z, 3)) and
H*(CP®).

6 a"\k

5 \3\

4 az\\ \az{\\

IR TN

E,=E;= 2 |a as | \\as2

1 \\ \\ \\

o{1]ofJoTs|o oy [ ol
0 1 2 3 4 5 6 7 8

Since the total space PK(Z, 3) is contractible, the E_, term is 0 except for
E%°. The plan now is to “create” elements in the bottom row of the E,
picture which would sooner or later “kill off” all the nonzero elements of
the spectral sequence. There can be no nonzero elements in the bottom row
of columns 1 and 2, for any such element would survive to E,. However
there must be an element s in column 3 to kill off a. Thus

d;a=s
and
ds(a%) = 2ady a = 2as.

There must be an element y in column 6 to kill off as for otherwise as would
survive to E_. Therefore HS(K(Z, 3)) # 0. This proves that S* is not a
K(Z, 3). Equivalently, it shows the existence of nontrivial higher homotopy
groups for 3. Later in this section we will compute n, and 75 of S°.

As for the cohomology ring of K(Z, 3), we can be more precise. First,
note that y = dy(as) = (d,a)'s =.s>. From the picture of E,, it is clear that
HYK(Z, 3)) = Z,. Therefore, 2s> = 0. Now a nonzero element in E}-° =
H'(K(Z, 3)) can be killed only by a® under d,. Since d;(a®) = 3a%s # 0, a®
does not even live to E,. So H'(K(Z, 3)) = 0. Since dy(a’s) = 2as® = 0, a’s
would live to E_, unless ds(a%s) = t + 0. In E, = E,, a*s generates the cyclic
group Z,. Since ¢t is the element that kills a%s in Es, t is of order 3. In
summary the first few cohomology groups of K(Z, 3) are

qg |01 |2]|3|4)15]6]|7]|8

(18.11) H? Z|10|0)|Z|0}| 0]|Z,]0]2Z,

generators | 1 | s s? t
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ExercCISE 18.12. Show that H*(K(Z, n); Q) is an exterior algebra on one
generator of dimension n if n is odd and a polynomial algebra on one
generator of dimension n if n is even. In either case we say that the coho-

mology of K(Z, n) is free on one generator (see Section 19 for the definition
of a free algebra).

The Transgression

Let n: E — X be a fibration with connected fiber F over a simply connected
space with a good cover U. In computing the differentials of the spectral
sequence of E using what we have developed so far, one often encounters
ambiguities which cannot be resolved without further clues. One such clue is
knowledge of the transgressive elements. An element w in

HY(F) o E$'¢ = H°(U, #%(F))
is called transgressive if it lives to E, ., ; that is,
ho=dyo==d,o=0.

An alternative characterization of a transgressive element is given in the
following proposition, which we phrase in the language of differential forms.
Of course by replacing forms with singular cochains, the proposition is
equally true in the singular setting with arbitrary coefficients.

Proposition 18.13. Let n: E— M be a fibration with fiber F in the differ-
entiable category. An element @ in HY(F) is transgressive if and only if it is the
restriction of a global form y on E such that dy = n*t for some form t on the
base M. T

REMARK 18.13.1. Because n* is injective and
n*dt = ddy = 0,

we actually have
dt =0,

so the form 1 defines a cohomology class on M.
PROOF OF PROPOSITION 18.13. Let U be a good cover of M. If w is trans-
gressive, then by (14.12) it can be extended to a cochaina = ag + «** + a,

in the double complex C*(r~'U, Q*) such that Da = n*p for some Cech
cocycle f on M.

do
ay

a, |m*p
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e

By the collating formula (9.5),
(*) Y= Zq: (= 1(D"K); + (—1)** ' K(D"K)*n*B
i=0

is a global form on E corresponding to a. From (*) we see that
dy = (=1 HD"KY* 'n%p = n*,

where 1 = (—D"K)** 18 is by (9.8) a closed global form on M.

Conversely, suppose ¥ is a global g-form on E with dy = n*t for some
(g + 1)-form on M. We will identify global forms on M with 0-cochains in
C*(U, Q*) that vanish under 4. By Remark 18.13.1, 7 defines a cohomology
class on M. Let f € C**'(U, R) be the Cech cocycle corresponding to t under
the Cech-de Rham isomorphism. Then

T= ﬁ + D(‘YO + "1 ++ YQ)E C*(u1n‘)’
where y; € C'(U, Q7). Hence,
Dy = n*t = n*B + D(n*yo + m*y, + -+ + n*y,) € CHn~'U, Q*).

Let a; = —n*y,. Then
(+4) DY + o+, + "+ a) = 1.

Since (Y + ag)lr = (¥ — ©*90)|r = Y|, the cohomology class of |z in H!(F)
can be represented by the cochain Y + «, € E3'%. The existence of a,, ..., &,
in (*+) shows that the cochain ¥ + o, lives to E,,. O

We will now apply the singular analogue of Proposition 18.13 to obtain
one of the most useful vanishing criteria for the differentials of a spectral
sequence.

Proposition 18.14. In mod 2 cohomology, if a is a transgressive, so is o>.

PRrROOF. Let ¢ be the singular cochain on E given by Prop. 18.13. Since y
restricts to « on a fiber, y? restricts to a2. With Z, coefficients,
dy?) = (@) £ ¥ dy =2y dj =0,

because —1 = +1 (mod 2). Therefore, by Prop. 18.13 again; a? is transgres-
sive. O

Exercise 18.15. Compute H*(K(Z,, 2); Z,) and H*K(Z,, 2); Z) up to di-
mension 6.

Exercise 18.16. Compute H*(K(Z,, 3); Z,) and H*K(Z,, 3); Z) up to
dimension 6.

Exercise 18.16.1. Compute the homology H,(K(Z,, 4); Z) up to dimen-
sion 6.
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Basic Tricks of the Trade

In homotopy theory every map f: A— B from a space A to a path-
connected space B may be viewed as either an inclusion or a fibering. We
can see this as follows.

(18.17) Inclusion
Applying the telescoping idea just once, we construct the mapping cylin-
der of f (see Figure 18.4):

M;=(AxI)u B/(a 1)~ f(a).

M;

om -y

4

( fA) )

Figure 18.4

It is clear that the mapping cylinder M, has the same homotopy type as B
and that 4 is included in M,. Indeed the following diagram is com-
mutative: '

A—f——->B

Il homotopy equivalence

A————M,.

(18.18) Fibering

Let f: A —» B be any map, with B path connected. By (18.17) we may
assume that f'is an inclusion, i.e., A is a subspace of B (Figure 18.5). Define
L to be the space of all paths in B with initial point in A. By shrinking every

Figure 18.5
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path to its initial point, we get a homotopy equivalence
L ~ A.

On the other hand by projecting every path to its endpoint, we get a
fibering

Qi L~A

|
B

whose fiber is Q4, the space of all paths from a point * in B to A. So up to
homotopy equivalence, f : A — B is a fibering.

Postnikov Approximation

Let X be a CW complex with homotopy groups n(X) = m,. Although X
has the same homotopy groups as the product space [| K(m,, g), in general
it will not have the same homotopy type as [] K(r,, g). However, up to
homotopy every CW complex can be thought of as a “twisted product” of
Eilenberg-MacLane spaces in the following sense.

Proposition 18.19 (Postnikov Approximation). Every connected CW complex
can be approximated by a twisted product of Eilenberg-MacLane spaces;
more precisely, for each n, there is a sequence of fibrations Y,— Y,_, with the
K(m,, q)’s as fibers and commuting maps X — Y,

K(x2, 2)

L Y Y,

I
K(my, 1)

X

such that the map X — Y, induces an isomorphism of homotopy groups in
dimensions < q.

Such a sequence of fibrations is called a Postnikov tower of X. In view of
(18.18) that every map in homotopy theory is a fibration, this proposition is
perhaps not so surprising,

We first explain a procedure for killing the homotopy groups of X above
a given dimension. For example, to construct K(x,, 1) we kill off the homo-
topy groups of X in dimensions > 2 as follows. If 2 : $— X represents a
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nontrivial element in n,(X), we attach a 3-cell to X via a:
X\‘Je3=X]_]e’/x~a(x), xeS?.

This procedure does not change the fundamental group of the space—by
Proposition 17.11 attaching an n-cell to X could kill an element of =, _,(X)
but does not affect the homotopy of X in dimensions < n — 2. For each
generator of n,(X) we attach a 3-cell to X as above. In this way we create a
new space X, with the same fundamental group as X but with no =,.
Iterating this procedure we can kill all higher homotopy groups. This
gives Y;.

PROOF OF PROPOSITION 18.19. To construct Y, we kill off all homotopy of X
in dimensions > n + 1 by attaching cells of dimensions >n + 2. Then

0, k=2n+1
m(Y,) = {n,, k=12 ...,n

Having constructed Y,, the space Y,_, is obtained from Y, by killing the
homotopy of ¥, in dimension n and above. By (18.18), the inclusions

AXCY.CX‘_lC"‘Cyl

may be converted to fiberings. From the exact homotopy sequence of a
fibering we see that the fiber of Y,— Y,_, is the Eilenberg-MacLane space
K(m,, 9). O

Computation of 74(S%)

This computation of m, = n,(S>) is based on the fact that the homotopy
group 7, appears as the first nontrivial homology group of the Eilenberg-
MacLane space K(n,, 4). If this Eilenberg-MacLane space can be fitted into
some fibering, its homology may be found from the spectral sequence. Such
a fibering is provided by the Postnikov approximation.

Let Y, be a space whose homotopy agrees with S* up to and including
dimension 4 and vanishes in higher dimensions. To get such a space we kill
off all homotopy groups of $* in dimensions >5 by attaching cells of
dimensions >6. So

Y,=S*uvefu...

By Proposition 17.12, H(Y,) = Hs(Y;) = 0. The Postnikov approximation
theorem gives us a fibering

K(ns, 9— Y

{
K(Z, 3).
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The E? term of the homology spectral sequence of this fibering is

1t4‘
K(ng, 4) \\
N\
\\
z z Z,
01234 56

O NWH W

K(Z, 3)

where the homology of K(Z, 3) is obtained from (18.11) and the universal
coefficient theorem (15.14). Since H(Y,) = Hs(Y,) =0, the arrow shown
must be an isomorphism. Hence n4(S°) = Z,.

More generally since ¥, = §*> U e#*2 U ..., by (17.12),

H{Y) = Hy\ () = 0.
Hence from the homology E? term of the fibration

K(ng, 9— Y, q| m,

!

) A

T, (%)
q+1

we get
(18.20) (8% = Hys1(Y,_ ).
The Whitehead Tower

The Whitehead tower is a sequence of fibrations, dual to the Postnikov
approximation in a certain sense, which generalizes the universal covering
of a space. It is due independently to Cartan and Serre [1] and to George
Whitehead [2]. Unlike the Postnikov construction, where we kill succes-
sively the homotopy groups above a given dimension, here the idea is to kill
at each stage all the homotopy groups below a given dimension.

Up to homotopy the universal covering of a space X may be constructed
as follows. Write n, = n (X). By attaching cells to X we can kill all n, for
g=>2asin(18.19). Let Y = X U e® U - - - be the space so obtained; Y is a
K(m,, 1) containing X as a subspace. Consider the space QX of all paths in
Y from a base point + to X (Figure 18.6). The endpoint map: Q}— X is a
fibration with fiber QY = QK(r,, 1) = K(=, 0). From the homotopy exact
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Figure 18.6

sequence of the fibering
K(ny, 0)— Qf

l
b ¢

we see that 7,(QF) = 0. Hence X, = QF is the universal covering of X up to
homotopy.

We will now generalize this procedure to obtain a sequence of fibrations

N

such that

(a) X, is n-connected, i.e., 7 (X,) = O for all ¢ < n;

(b) above dimension n the homotopy groups of X, and X agree;

(c) the fiber of X, — X,_, is K(n,, n — 1).
This is the Whitehead tower of X. To construct X, from X, _,, we first kill
all m(X,_,), g 2 n + 1, by attaching cells to X, _,. This gives a

K, m=X,_.,uet?u...

Next let X, = QX! be the space of all paths in K(r,, n) from a base point
» to X, _,. The endpoint map: X, — X, _, has fiber QK(x,, n)=K(=,, n—1).
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From the homotopy exact sequence of the fibering
K(r,,n—1)— X,

l
Xn-l

it is readily checked that m(X,) = n(X,_,) for g2 n+1; and n(X,) =0
for ¢ < n — 2; furthermore,

(1821)  0— m(X,)— m(X,-1)> 7, (QK(%,, n)— 7,_(X,)— 0

is exact. Here n(X,_,) = n, by the induction hypothesis, and the problem
is to show that @ : n(X,_,)— =, _,(QK(n,, n)) is an isomorphism. Now the
inclusion X,_, < K(z,, n) = X,_, v €"*? U - - induces by (17.11) an iso-
morphism

) nn(xu— l) x> n,(K(n,,, n))‘

Moreover, the definition of the boundary map
a : nn(xn— 1)_’ Ty - I(QK(nn ’ n))

(see (17.4)) is precisely how n,(K(r,, n)) was identified with =,_,(QK(r,, n))
in Proposition 17.2. Therefore 4 is an isomorphism and #n,(X,)=n,_,(X,)=
0 in (18.21). This completes the construction of the Whitehead tower.

As a first application of the Whitehead tower we will prove Serre’s
theorem on the homotopy groups of the spheres. We call a sphere " odd or
even according to whether n is odd or even. ‘

Theorem 18.22 (Serre). The homotopy groups of an odd sphere S" are torsion
except in dimension n; those of an even sphere S" are torsion except in
dimensions n and 2n — 1.

Proor. We will need to know that all homotopy groups of S” are finitely
generated. This is a consequence of Serre’s mod € theory, with € the class
of finitely generated Abelian groups (see Serre [2] or Mosher and Tangora

(1, Prop. 1, p. 95]). Assuming this, the essential facts to be used in the proof
are the following:

(a) in the Whitehead tower of any space X, n 4 ,(X) = H,.,(X,); hence,
n¢+ I(X) ® 0 = Hq+ I(Xq; Q);

(b) the rational cohomology ring of K(, n) is trivial for a torsion finitely
generated Abelian group = and is free on one generator of dimension n for
n = Z (Exercises 18.9 and 18.12). ’

Since $” is (n — 1)-connected and n,(S") = Z, the Whitehead tower begins
with

K@Z,n-1)—-X,
(18.22.1) !
s
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For the rest of this proof we write n, for 7,(S”). First consider the case
where n is odd. We will assume n > 3. Then the rational cohomology of
K(Z, n — 1) is a polynomial algebra on one generator of dimension n — 1
and the cohomology spectral sequence of the fibration (18.22.1) has E, term

2n—-1) | Q Q
n—-1 |Q

Q Q

' " n

(Here we are using the cohomology spectral sequence to take advantage of
the product structure) The bottom arrow is an isomorphism because
H,_y(X,; Q) = 0; the other arrows are isomorphisms by the product struc-
ture. From the spectral sequence we see that X, has trivial rational coho-
mology, hence trivial rational homology. By Remark (a) above, &, is
torsion. Now consider the next step of the Whitehead tower:

K(mys 1, 0)—= Xpiy

!
X,.

Since both X, and K(r, , , n) have trivial rational homolbgy, so does X, 4 1.
By Remark (a) again, n,,, = H,.+(X,+,) is torsion. By induction for all
g = n + 1, X_ has trivial rational homology and =, is torsion.

Now suppose n is even. Then the rational cohomology of K(Z, n — 1) is
an exterior algebra and the E, term of the rational homology sequence of
the fibration (18.22.1) has only four nonzero boxes:

n—1 Q‘\ Q
~

0|Q ~Q

0 n

The arrow shown is an isomorphism because X, is n-connected. So

Q in dimensions 0, 2n — 1

H (X, Q) = {0 otherwise.

Suppose n > 2. Then n + 1 < 2n — 1. By Remark (a), n,,, = H,+(X,) is
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torsion. Since H (K(x, +, n); Q) is trivial, from the fibration

Ky, )= X, 4y

)

X,
we conclude that X, ., has the same rational homology as X, . This sets the
induction going again, showing that =, is torsion, until we hit n,,_, =
H,,_(X,,-2), which is not torsion. In fact, n,,_, has one infinite cyclic

generator and possibly some torsion generators. At this point we may
assume n > 2. By Remark (b), the rational ‘cohomology ring

H‘(K(NZl—h 2n — 2): Q)

is a polynomial algebra on one generator, so the cohomology E, term of
the fibration

K("Zn—l’ 2n — 2)-" X2n-l

!
XZn—-Z
is
4n —4 Q‘\ Q
nl
2n—2 Q\ ~SQ
‘K\rﬂ
2n—1

Since H,,_(X,,-1) =0, the arrows shown must all be isomorphisms. It

follows that the rational cohomology groups of X, are trivial for all

q > 2n — 1 and the homotopy groups (S") are torsion for all ¢ > 2n — 1.
m}

Exercise 18.23. Give a proof of Theorem 18.22 based on the Postnikov
approximation.

Computation of n5(S3)

If we try to compute 75(S>) using the Postnikov approximation, we very
quickly run up against an ambiguity in the spectral sequence. For by
(18.20), n5(S) = H¢(Y,), but to compute He(Y,) from the homology spectral
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sequence of the fibering
- 6|2,

5 \\

4|2, 'z,
K(Z;,4—- Y, 3

i
2
-K(Z,3)
0|z y 4 Z,10

0 12 3 4 5 6

we will have to decide whether the arrow shown is the zero map or an
isomorphism. With the tools at our disposal, this cannot be done. (For the
homology of K(Z,, 4) and K(Z, 3) see (18.16.1) and (18.11).)

In this case the Whitehead tower is more useful. Since S is 2-connected,
the Whitehead tower up to X, is

- K(mg, 3)— X,

i
K(Z,2)— X,

)
s
From the construction of the Whitehead tower and the Hurewicz isomor-
phism, n4(S3) = n5(X,) = Hs(X,). So we can get ns by computing the hom-
ology of X,. This method also gives n,(S3), which is H (X 3).
The cohomology of X; may be computed from the spectral sequence of
the fibration K(Z, 2)— X;— S°, whose E, term is

4 |x?
3 N
cp® 2 x| \xu
1| N
\‘
0]1 u
01 2 3
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Since d, is clearly zero, E;, = E;. Next dy: E3'2— E3'° is an isomorphism
because X5 is 3-connected. By the antiderivation property of the differential
ds, which we will write as d here,

d(x™ = nx""! dx = nx""u.

Hence the integral cohomology and homology of X are

g |01 234 5 6 7 8 9 10 11
H(X)|Z 0 000 Z, 0 Z, 0 Z, 0 Zs
H(X;)|Z 000 2Z, 0 2, 0 Z, 0 Zs 0 |,

where the homology is obtained from the cohomology by the universal
coefficient theorem (15.14.1)..

The homology spectral sequence of the fibration K(n,, 3)— X,— X,
has E, term

7[4 \ d6
NN

\

1 \~\\

0({Z[0]0(0]|Z,|0]Z,
01 2 3 456

5

4 ~
A

3

2

which shows that n, = Z,, since X, is 4-connected.

By Exercise 18.16, H(K(Z,, 3)) = 0 and Hs(K(Z,, 3)) = Z,. Since the
only homomorphism from Z, to Z, is the zero map, dg in the diagram
above is zero. Hence Hy(X,) = Z, and n5(S%) = ns(X4) = Hy(X,) = Z,.

Exercise 18.24. Given a prime p, find the least q such that the homotopy
group m,(S°) has p-torsion.

§19 Rational Homotopy Theory

By some divine justice the homotopy groups of a finite polyhedron or a
manifold seem as difficult to compute as they are easy to define. For a
simple space like S3, already, the homotopy groups appear to be completely
irregular. The computation of 7,(S%) and 7n4(S%) in the preceding section
should have given the reader some idea of the complexity that is involved.
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However, if one is willing to forego the torsion information, by considering,
for instance, the rational homotopy groups n(X) ® Q, then some general
theorems are possible. One such result is Serre’s theorem on the homotopy
groups of the spheres (Th. 18.22). In the late sixties Dennis Sullivan shed
new light on the computation of rational homotopy by the use of differ-
ential forms. This section is a brief introduction to Sullivan’s work. Al-
though Sullivan’s theory, with an appropriate definition of the rational
differential forms, is applicable to CW complexes, we will consider only
differentiable manifolds. As applications we derive again Serre’s theorem

and also compute some low-dimensional homotopy groups of the wedge
s2vsi ;

Minimal Models

Let A= @;»0 A’ be a differential graded commutative algebra over R;
here the differential is an antiderivation of degree 1:

d(a - b) = (da) - b + (—1)™q - db;

and the commutativity is in the graded sense:
a-b= (_l)dlmn~dlmbb -a.

In this section we will consider only finitely generated differential graded
commutative algebras. Such an algebra is free if it satisfies no relations
other than those of associativity and graded commutativity. We write A(x,,
..., X;) for the free algebra generated by x,,..., x,; this algebra is the
tensor product of the polynomial algebra on its even-dimensional gener-
ators and the exterior algebra on its odd-dimensional generators. An el-
ement in A is said to be decomposable if it is a sum of products of positive
elements in 4,ie,ae A* - A*, where A* = @,>, A" A differential graded
algebra # is called a minimal model for A if: '

(a) A is free;

(b) there is a chain map f : # — A which induces an isomorphism in
cohomology;

(c) the differential of a generator is either zero or decomposable (a differ-
ential graded algebra satisfying this condition is said to be minimal).

A minimal model of a manifold M is by definition a minimal model of its
algebra of forms Q*(M).
Examples of Minimal Models

EXAMPLE 19.1. The de Rham cohomology of the odd sphere $2"~! is an
exterior algebra on one generator. Hence a minimal model for $2"~* is A(x),
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dim x = 2n — 1 and dx = 0, with

f : x> volume form on §2"~!,

ExaMPLE 19.2. The de Rham cohomology of the even sphere S** is
R[a)/(a®), dim a = 2n. To construct a minimal model, we need a generator
x in dimension 2n to map onto a and a generator y in dimension 4n — 1 to
kill off x2. Since dim y is odd, y> = 0. So the complex A(x, y), dx =0,
dy = x? can be visualized as the array

4n —1 yxylx&jﬁy x4y
1 xN\x? k«x‘
0 2n 4n O6n

which shows that the cohomology of A(x, y) is R[x]/(x?). The minimal
model of $2" is A(x, y), and the map f : A(x, y)— Q*(S>") is given by

f : x+»volume form w on §2*
y+=0.

ExaMPLE 19.3. Since the de Rham cohomology of the complex projective
space CP" is R[x]/(x"*"), dim x = 2, by reasoning similar to the preceding
example, a minimal model is A(x, y), dim y =2n + 1,dx = 0,dy = x"*.

A differential graded algebra A is said to be 1-connected if H(A) = R
and H'(4) = 0.

Proposition 19.4. If the differential graded algebra A is 1-connected and has
finite-dimensional cohomology, then it has a minimal model.

PROOF. Let a,, ..., a, be the 2-dimensional cocycles in A which represent a
basis of the second cohomology H?(4). Define ;= A(a,,...,a),
where dim a; = 2 and daq; = 0, and set

¢ f‘: vdz—'A
ai—a;.

At this stage f induces an isomorphjsm in cohomology in dimensions less
than 3 and an injection in dimension 3, because A(a,, .., a)) has nothing in
dimension 3. We will prove inductively that for any n there is a minimal free
algebra .#, together with a chain map f : .#,— A4 such that

(a) the algebra .4, has no elements in dimension 1 and no generators in
dimensions greater than n;

(b) the map f induces an isomorphism in cohomology in dimensions less
than n + 1 and an injection in dimension n + 1.
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So suppose this is true for n = ¢ — 1. By hypothesis there are exact se-
quences

0— HY(#,_,)— HYA)— coker HY(f)— 0
and
0— ker H**!(f)— H"“(Jt,,_l)—v H*Y(A).

Let {[b,]}i.s be a basis of coker HY(f) and {[x;]} a basis of ker H**!(f),
with b, in A? and x; in 42}, where #4*] denotes the elements of degree
q + 1in .#,_,. The x;’s are decomposable because the generators of #,_,
are all of dimension < g — 1. The idea is to introduce new elements in
M ,_, to kill both coker HY(f) and ker H**'(f). Define

M,=M_ ®ANDb, &), dim by =dim & =gq.
A , is again a free minimal algebra, with differential
dm®1)=(dm®]1,
d1®b)=0,
d1®¢)=x;® 1
Weextend f: #,_,— Atof : #,— Aby
Sm® 1) =f(m),
f1®b)= b,
f(l ® é;) =a,

where a; is an element of A such that f(x;) = da;. It is easy to check that
this new f'is again a chain map.
We now show that HY(f): H.# )— H%(A) is an isomorphism. Suppose

z=Y um®D+Y L1®b)+ Y n(1®¢E)

is a cocycle in #,. Then

2vdm + 3 pyx;=0.

Since the classes [x,j are linearly independent, all y; = 0. If in addition
z € ker HY(f), then

z ka(m.)+z Alb‘=0.

Since the [b,] form a basis of the cokernel of HY(f): HY(.#,_,)— H(A), all
4; = 0. Therefore, all the cocycles in .#, that map to zero come from .4, _,.
By the induction hypothesis these cocycles are exact. This proves the injec-
tivity. The surjectivity follows directly from the definition of the b;.

Finally, because .#,_, has nothing in dimension 1, the elements of di-
mension ¢+ 1 in #,_,®Ab;, &) all come from 4, ,; ie,
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M= M1 @ 1. Hence ker H**'(f) is spanned by x; ® 1. Since all of
these elements are exact in .#, (they are the differentials of 1 ® &;), H**'(f)
is injective. ]

The Main Theorem and Applications

We will not prove the main theorem stated below. For a discussion of the
proof, see Sullivan [1] and [2] and Deligne, Griffiths, Morgan and Sullivan
(11

Theorem 19.5. Let M be a simply connected manifold and M its minimal
model. Then the dimension of the vector space n(M)® Q is the number of
generators of the minimal model # in dimension q.

To make this theorem plausible, we will say a few words about the
computation of the rational cohomology of M. The idea is to compute it
from the Postnikov towers of M, whose fibers are the Eilenberg-MacLane

spaces K(r,, q). Now there are two things to remember about the rational
cohomology of K(r,, g):

(a) a free summand Z in ©, contributes a generator of dimension g to the
rational cohomology H*(K(r,, q); Q);

(b) a finite summand in =, contributes nothing,

In other words, the rational cohomology of K(=,, q) is a free algebra with
as many generators as the rank of n, (see 18.9 and 18.12). As far as the
rational cohomology is concerned, then, the finite homotopy groups in the
Postnikov towers have no effect. If the minimal model of M is to be built
step by step out of its Postnikov towers, it makes sense that a generator
appears in the model precisely when a rational homotopy element is in-
volved. Hence it is not unreasonable that the dimension of the rational
homotopy group =, (M) ® Q is equal to the number of generators of the
minimal model in dimension q. However, to make these arguments precise,
considerable technical details remain to be resolved. In fact, at this writing
there is no truly satisfactory exposition of rational homotopy theory avail-
able.

From this theorem and Examples 19.1 and 19.2 we have again Serre’s
result (18.22) that the homotopy groups of an odd sphere S" are torsion except
in dimension n, where it is infinite cyclic; for an even sphere S",the excep-
tional dimensions are n and 2n — 1.

ExaMPLE 19.6. The wedge of the spheres S” and S™ is the union of S” and S™
with one point in common, written S"V S™. As an application of Sullivan’s
theory we will compute the ranks of the first few homotopy groups of
§2V S§2. Since S2V S? has the same homotopy type as R* — P — Q, where P
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and Q are two distinct points of R?, it suffices to construct a minimal model
M for Q*R® — P — Q).

At this stage we exploit the geometry of the situation to construct two
closed 2-forms X and y on R®— P — Q that generate the cohomology
H3:(R* — P — Q) and that satisfy

X} =Xy =y =0.

For this purpose choose small spheres Sp and S, about P and Q respec-
tively. Let wp be a bump form of mass | concentrated near the north pole of
Sp and let @, be a similar form about the south pole of S;. The projection
from P defines a natural map

nPZR3—P—Q—>Sp;

2

similarly the projection from Q defines a map
ng:R*—P—-Q—8S,.
Then
X=npwp and j=mnw,

are easily seen to have the desired properties.

The minimal model is now constructed in a completely algebraic way as
follows. First of all, the minimal model .# must have two generators x and
y in dimension 2 mapping to X and y. To kill x2, xy, and y?, we need three
generators a, b, ¢ in dimension 3 with (see Figure 19.1)

da = x?
db = xy
dc =y

The map f : # — Q*R® — P — Q) up to this point is given by x+— X, y— ,
a, b, c—0.

The differentials of the elements in dimension 5 are

d(ax) = x3

d(ay) = xy
d(bx) = x2y
d(by) = xy*
d(cx) = xy?
d(cy) = y*.

Hence d(ay — bx) = 0 and d(by — cx) = 0. To kill these two closed forms,
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1
Z
ab
6] bc
ac
5| par .
ex,ey
41 eg 8X,8y
ax,ay ax?,axy,ay?
3] abc bx,by bx2? bxy,by?
cx,cy cx?,cxy,cy?
2
1
0 x3,xy,y? x,x?y,xy?y? x4, x3y,xty? xy?,y?
0 1 2 3 4 5 6 7 8 -

Figure 19.1

there must be two elements ¢ and g in dimension 4 such that
de = ay — bx

dg = by — cx.
To find the generators in dimension 5 we need to know the closed forms
in dimension 6. By looking at the differentials of all the elements in dimen-
sion 6:

d(ex) = axy — bx?
d(ey) = ay* — bxy
d(gx) = bxy — cx?
d(gy) = by* — cxy
d(ab) = bx? — axy
d(bc) = cxy — by?
d(ac) = cx? — ay?,

it is readily determined that ex + ab, gy + bc, and ey + gx + ac are closed.
Since the existing elements of dimension 5 do not map to these, we need
three generators p, g, r in dimension 5 with

dp=ex+ab
dq =gy + bc
dr = ey + gx + ac.
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The reader is invited to continue this process one step further and show
that in dimension 6 there are six generators.
In summary the generators in dimensions <6 are

dim 2 3 4 5 6

generators | x,y a,b,c eg p,qr stuv,wz

By Sullivan’s theorem the rank of n(S?V §?) is

q 123456
dim n(S?VS)®Q|0 2 3 2 3 6

This agrees with Hilton’s result on the homotopy groups of a wedge of
spheres (Hilton [1]), since by Hilton’s theorem

n(S2VS§?) = n‘(sz) + 1 (S?) + n(S3) + 7(5*) + n (%)
+ Y mn8+ Y n(S% + m, of spheres of dimension >7.

3 copies 6 copies



CHAPTER IV
Characteristic Classes

After the excursion into homotopy theory in the previous chapter, we
return now to the differentiable category. Thus in this chapter, in the ab-
sence of explicit qualifications, all spaces are smooth manifolds, all maps
are smooth maps, and H*(X) denotes the de Rham cohomology.

In Section 6 we first encountered the Euler class of a C* oriented rank 2
vector bundle. It is but one of the many characteristic classes—that is,
cohomology classes intrisically associated to a vector bundle. In its modern
form the theory of characteristic classes originated with Hopf, Stiefel, Whit-
ney, Chern, and Pontrjagin. It has since found many applications to topol-
ogy, differential geometry, and algebraic geometry.

In its most rudimentary form the point of view towards the Chern classes
really goes back to the old Italian algebraic geometers, but in Section 20 we
recast it along the ideas of Grothendieck. We introduce in Section 21 the
computational and proof technique known as the splitting principle. This is
followed by the Pontrjagin classes, which may be consideréd the real ana-
logue of the Chern classes. We also include an application to the embedding
of manifolds.

In the final section the Chern classes are shown to be the only complex
characteristic classes in the following sense: any natural transformation
from the complex vector bundles to the cohomology ring is a polynomial in
the Chern classes. An added dividend is a classification theorem for com-
plex vector bundles. With its aid we fulfill an earlier promise (see the
remark following Prop. 11.9) to show that the vanishing of the Euler class
of an oriented sphere bundle does not imply the existence of a section.

For the Euler class of a rank 2 bundle we had in (6.38) an explicit
formula in terms of the patching data on the base manifold M. Elegant as
the Grothendieck approach to the Chern classes is, it is not directly linked
to the geometry of M, for it gives no such patching formulas. In the con-
cluding remarks to this chapter we describe without proof a recipe for

266
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constructing the Chern classes of a complex vector bundle n: E— M out of
the transition functions of E and a partition of unity on M relative to some
trivializing good cover for E.

§20 Chern Classes of a Complex Vector Bundle

In this section we will study the characteristic classes of a complex vector
bundle. To begin with we define the first Chern class of a complex line
bundle as the Euler class of its underlying real bundle. Applying the Leray-
Hirsch theorem, we then compute the cohomology ring of the projectiviza-
tion P(E) of a complex vector bundle E and define the Chern classes of E in
terms of the ring structure of H*(P(E)). We conclude with a list of the main
properties of the Chern classes.

The First Chern Class of a Complex Line Bundle

Recall that a complex vector bundle of rank n is a fiber bundle with fiber
C" and structure group GL(n, C). A complex vector bundle of rank 1 is also
called a complex line bundle. Just as the structure group of a real vector
bundle can be reduced to the orthogonal group O(n), so by the Hermitian
analogue of (6.4), the structure group of a rank n complex vector bundle can
be reduced to the unitary group U(n). Every complex vector bundle E of
rank n has an underlying real vector bundle Eg of rank 2n, obtained by
discarding the complex structure on each fiber. By the isomorphism of U(1)
with SO(2), this sets up a one-to-one correspondence between the complex
line bundles and the oriented rank 2 real bundles. We define the first Chern
class of a complex line bundle L over a manifold M to be the Euler class of
its underlying real bundle Lg: ¢,(L) = e(Lg) € H{(M).

{ Ig L and L are complex line bundles with transition functions {g,,} and

as}>

gaﬁs g;} : Ua g Uﬂ_’ C"

then their tensor product L ® L is the complex line bundle with transition
functions {g,s - g\s}. By the formula (6.38) which gives the Euler class in
terms of the transition functions, we have

(20.1) ci(L ® L) = cy(L) + c(L).

Let L* be the dual of L. Since the line bundle L ® L* = Hom(L, L) has
a nowhere vanishing section given by the identity map, L ® L* is a trivial
bundle. By (20.1), ¢;,(L) + ¢,(L*) = ¢;(L ® L*) = 0. Therefore,

(20.2) , r(I?) = —cy(L).
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ExaMpLE 20.3 (Tautological bundles on a projective space). Let V be a
complex vector space of dimension n and P(V) its projectivization:

P(V) = {1-dimensional subspaces of V}.

On P(V) there are several God-given vector bundles: the product bundle

P = P(V) x V, the universal subbundle S, which is the subbundle of ¥ de-
fined by

S={¢,v)e P(V)x V|vet},

and the universal quotient bundle Q, defined by the exact sequence
(20.4) 0->S>V-0-0.

The fiber of S above each point ¢ in P(V) consists of all the points in Z,
where / is viewed as a line in the vector space V. The sequence (20.4) is

called the tautological exact sequence over P(V), and S* the hyperplane
bundle.

Consider the composition
6:So PV)x VoV

of the inclusion followed by the projection. The inverse image of any point v
is

o™w) = {¢, v)v € £}.

If v+ 0, 0~'(v) consists of precisely one point (¢, v) where ¢ is the line
through the origin and v; if v = 0, then ¢ ~(0) is isomorphic to P(V). Thus S
may be obtained from V by separating all the lines through the origin in V.
This map o : S— V is called the blow-up or the quadratic transformation of
of V at the origin. Over the real numbers the blow-up of a plane may be
pictured as the portion of a helicoid in Figure 20.1 with its top and bottom
edges identified. Indeed, we may view the (x, y)-plane as being traced out by
a horizontal line rotating about the origin. In order to separate these lines
at the origin, we let the generating line move with constant velocity along
the z-axis while it is rotating horizontally. The resulting surface in R? is a
helicoid. :

We now compute the cohomology of P(V). Endow V with a Hermitian
metric and let E be the unit sphere bundle of the universal subbundle S:

E={¢ vlves vl =1}

Note that 6~1(0) is the zero section of the universal subbundle S. Since
S — ¢~ }(0) is diffeomorphic to ¥ — {0}, we see that E is diffeomorphic to
the sphere S2"~! in V and that the map = : E— P(V) gives a fibering

sl - sIZu—l
i
P(V).
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s SV

Figure 20.1

By a computation similar to (14.32), the cohomology ring H*(P(V)) is seen
to be generated by the Euler class of the circle bundle E, i.e., the first Chern
class of the universal subbundle S. It is customary to take x = ¢,(S*) =
—¢,(S) to be the generator and write

(20:5) H*(P(V)) = R[x]}/(x"),  where n = dim¢ V.

We define the Poincaré series of a manifold M to be
P(M) = E dim H'(M) ¢
i=0

By (20.5) the Poincaré series of the projective space P(V) is

l_th
1-¢"

P(PV)=1+1t*4 - 42V

The Projectivization of a Vector Bundle

Let p:E— M be a complex vector bundle with transition functions g, :
U, n Ug— GL(n, C). We write E, for the fiber over p and PGL(n, C) for the
projective general linear group GL(n, C)/{scalar matrices}. The projectiviza-
tion of E, n: P(E)— M, is by definition the fiber bundle whose fiber at a
point p in M is the projective space P(E,) and whose transitidn functions
gap : U, 0 Ug— PGL(n, C) are induced from g,,. Thus a point of P(E) is a
line £, in the fiber E,. .

As on the projectivization of a vector space, on P(E) there are several
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tautological bundles: the pullback n~!E, the universal subbundle S, and the
universal quotient bundle Q.

0-S—»n'E-»Q—-0
| E

M

The pullback bundle n~'E is the vector bundle over P(E) whose fiber at / »
is E,. When restricted to the fiber =~ !(p) it becomes the trivial bundle,

n"'E|pg, = P(E), x E,,

since p : E,— {p} is a trivial bundle. The universal subbundle S over P(E) is
defined by

S={¢,, vy en 'Elve,}.

Its fiber at £, consists of all the points in ¢,. The universal quotient bundle
Q is determined by the tautological exact sequence

0-S—>nlE-Q—0.

Set x = c,(S*). Then x is a cohomology class in H*(P(E)). Since the
restriction of the universal subbundle S on P(E) to a fiber P(E,) is the
universal subbundle § of the projective space P(E,), by the naturality pro-
perty of the first Chern class (6.39), it follows that cl(S) is the restriction of —x
to P(E,). Hence the cohomology classes 1, x, ..., x"~" are global classes on
P(E) whose restrictions to each fiber P(E,) freely generate the cohomology
of the fiber. By the Leray-Hirsch theorem (5.11) the cohomology H*(P(E)) is
a free module over H*(M) with basic {1, x, ..., x"~!}. So x" can be written
uniquely as a linear combination of 1, x,..., x"~! with coefficients in
H*(M); these coefficients are by definition the Chern classes of the complex
vector bundle E:

(206) X"+ EX" 4+ +c(E)=0, c(E) e H¥(M).

In this equation by c;(E) we really mean n*c;(E). We call c;(E) the ith Chern
class of E and

o(E)y=1+c(E)+ -+ c,(E) € H¥M)

its total Chern class. With this definition of the Chern classes, we see that
the ring structure of the cohomology of P(E) is given by

(20.7) H*(P(E)) = H¥M)[x)/(x" + ¢ (E)x"~! + - + c,(E)),
where x = ¢(5*) and n is the rank of E. Since additively

H*(P(E)) = H¥M) ® H*(P"™"),
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where P""! is the complex prbjective space P(C"), the Poincaré series of P(E) is

1 — ¢
(20.8) P(P(E)) = P(M) 17

We now have two definitions of the first Chern class of a line bundle L:
as the Euler class of Lg, and as a coefficient in (20.6). To check that these
two definitions agree we will temporarily reserve the notation c¢,( ) for the
second definition. What must be shown is that e(Lg) = c,(L).

(20.9) n 'L

| ,
o~

For a line bundle L, P(L) = M, n~ 'L = L and the universal subbundle S on
P(L) is L itself. Therefore, x = ¢(S§) = —e(Sg) = —e(Lg). So the relation
(20.6) is x + e(Lg) = 0, which proves that c,(L) = e(Lg).

If E is the trivial bundle M x V over M, then P(E)= M x P(V), so
x" = 0. Hence all the Chern classes of a trivial bundle are zero. In this sense
the Chern classes measure the twisting of a complex vector bundle.

Main Properties of the Chern Classes

In this section we collect together some basic properties of the Chern
classes.

(20.10.1) (Naturality) If f is a map from Y to X and E is a complex vector
bundle over X, then c(f ~'E) = f*c(E).

fE E
|
Y—— X

PRrOOF. Basically this property follows from the functoriality of all the con-
structions in the definition of the Chern class. To be precise, by (6.39) the
first Chern class of a line bundle is functorial. Write Sg for the universal
subbundle over PE. Now f~'PE = P(f“'E) and f~'S§ = S}_.g, so if
Xg = ¢4(S¥), then

Xg-1g = €1(S$-16) = ¢;(f T1SE) = f*x;.
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Applying f* to
xt+ ey (ExE '+ - +c(E) =
we get
X}-1g + (BN Tlg + o + £ (E) = 0.
Hence

clf T'E) = f*c(E). a

It follows from the naturality of the Chern class that if E and F are
isomorphic vector bundles over X, then o(E) = ¢(F).

(20.10.2) Let V be a complex vector space. If S* is the hyperplane bundle over

P(V), then c,(S*) generates the algebra H*(P(V)).
This was proved earlier (20.5).

(20.10.3) (Whitney Product Formula) (E' @ E") = o(E')(E").

The proof will be given in the next section.

In fact, these three properties uniquely characterize the Chern class
(Hirzebruch [1, pp. 58-60]). For future reference we list below three more
useful properties.

(20.10.4) If E has rank n as a complex vector bundle, then c;(E) = 0 for i > n.
This is really a definition.

(20.10.5) If E has a nonvanishing section, then the top Chern class c(E) is
zero.

PROOF. Such a section s induces a section § of P(E) as follows. At a point p
in X, the value of §'is the line in E, through the origin and s(p).
P(E)
s'I ln
X

Then §~'S; is a line bundle over X whose fiber at p is the line in E,
spanned by s(p). Since every lire bundle with a nonvanishing section is
isomorphic to the trivial bundle, we have the tautology

§™'Sg ~ the trivial line bundle.
It follows from the naturality of the Chern class that
§*cy(Sg) =
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which implies that
§s*x =0.
Applying §* to
X"+ x" '+, =0,
we get

§*c, =0.

By our abuse of notation this really means s*n*c, = 0. Therefore c, = 0.

O

(20.10.6) The top Chern class of a complex vector bundle E is the Euler class
of its realization : h

c(E) = e(Eg), where n =rank E.

This proposition will be proved in the next section after we have es-
tablished the splitting principle.

§21 The Splitting Principle and Flag Manifolds

In this section we prove the Whitney product formula and compute a few
Chern classes. The proof and the computations are based on the splitting
prineiple, which, roughly speaking, states that if a polynomial identity in the
Chern classes holds for direct sums of line bundles, then it holds for general
vector bundles. In the course of establishing the splitting principle we intro-
duce the flag manifolds. We conclude by computing the cohomology ring of
a flag manifold.

The Splitting Principle

Let t: E—~ M be a C* complex vector bundle of rank n over a manifold M.
Our goal is to construct a space F(E) and a map o : F(E)— M such that:

(1) the pullback of E to F(E) splits into a direct sum of line bundles:
c'E=L® - ®L,;

(2) o* embeds H*(M) in H*(F(E)).
Such a space F(E), which is in fact a manifold by construction, is called a
split manifold of E.

If E has rank 1, there is nothing to prove.
If E has rank 2, we can take as a split manifold F(E) the projective
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bundle P(E), for on P(E) there is the exact sequence

0+ Sg—0"'E— Qz—0;
by the exercise below, ¢ “'E = Sy @ Q;, which is a direct sum of line bun-
dles. :

Exercise 21.1. Let 0> A —- B— C— 0 be a short exact sequence of C*®
complex vector bundles. Then B is isomorphic to 4 ® C as a C* bundle.

Now suppose E has rank 3. Over P(E) the line bundle Sg splits off as
before. The quotient bundle Qz over P(E) has rank 2 and so can be split
into a direct sum of line bundles when pulled back to P(Qf).

B 'Sk ® So, ® Qo

!
Se® Q¢ s
!
E

P(Q¢)
P(E)

e

Thus we may take P(Q;) to be a split manifold F(E). Let x, = p*c,(S) and
X2 = ¢,(Sg,). By the result on the cohomology of a projective bundle (20.7),

H*F(E)) = H¥(M)[xy, x3)/(x} + cy(E)x} + ca(E)x, + ¢c5(E),
x3 + ¢1(Qe)x2 + ¢2(Qg)-

The pattern is now clear; we split off one subbundle at a time by pulling
back to the projectivization of a quotient bundle.

(212) Sle"'esu—1®sn-legn—l
50500 ‘
P(Q,_;) =F
5,00, l (Qu-2) = F(E)
E ! P(Q,)
I P(E)
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So for a bundle E of any rank n, a split manifold F(E) exists and is given
explicitly by (21.2). Its cohomology H*(F(E)) is a free H*(M)-module having
as a basis all monomials of the form

(21.3) XPxP oo xtla<n—1,a,<n-2,...,a,_, <1,
ai, ..., a,_4 nonnegative,

where x; = ¢,(S?¥) in the notation of the diagram.

More generally, by iterating the construction above we see that given
any number of vector bundles E, ..., E, over M, there is a manifold N and
a map o : N— M such that the pullbacks of Ey, ..., E, to N are all direct
sums of line bundles and that H*(M) injects into H*(N) under ¢*. The
manifold N is a split manifold for E, ..., E,.

Because of the existence of the split manifolds we can formulate the
following general principle.

The Splitting Principle. To prove a polynomial identity in the Chern classes of
complex vector bundles, it suffices to prove it under the assumption that the
vector bundles are direct sums of line bundles.

For example, suppose we want to prove a certain polynomial relation
P(c(E), o(F), ¢(E ® F)) = 0 for vector bundles E and F over a manifold M.
Let 0 : N— M be a split manifold for the pair E, F. By the naturality of the
Chern classes

a*P(c(E), (F), {E® F)) = P((c " 'E), clo™ 'F), {(c " 'E) ® (™ 'F))),

where ¢ 'E and ¢~ !F are direct sums of line bundles. So if the identity
holds for direct sums of line bundles, then

o*P(A(E), c(F), (E® F)) = 0.
By the injectivity of 6* : H*(M)— H*(N),
P(c(E), c(F), (E ® F)) = 0.

In the next two subsections we give some illustrations of this principle.

Proof of the Whitney Product Formula and the Equality of the Top
Chern Class and the Euler Class

We consider first the case of a direct sum of line bundles:
E=L & --®L,.
By abuse of notation we writt n 'E=L, ® - ® L,, for the pullback of E
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to the projectivization P(E). Over P(E), the universal subbundle S splits off
from n~!E.

Scn ‘E
!
E P(E)

L

Let s; be the projection of S onto L,. Then s; is a section of Hom(S, L)) =
S* ® L;. Since at every point y of P(E), the fiber S, is a 1-dimensional
subspace of (x~'E),, the projections s, ..., s, cannot be simultaneously
zero. It follows that the open sets

Ui={y e P(E)|si(y) # 0}

form an open cover of P(E). Over each U, the bundle (S* ® L,)|U, has a
nowhere-vanishing section, namely s;; so (S* ® L))|y, is trivial. Let £, be a
closed global 2-form on P(E) representing c,(S* ® L,). Then &y, = dw, for
some 1-form w; on U;. The crux of the proof is to find a global form on
P(E) that represents c,(S* ® L;) and that vanishes on U,; because w, is not
a global form on P(E), £, — dw; won’t do. However, by shrinking the open
cover {U}} slightly we can extend ¢; — dw, to a global form. To be precise
we will need the following lemmas.

Exercise 21.4 (The Shrinking Lemma). Let X be a normal topological space
and {U;},.; a finite open cover of X. Then there is an open cover {¥}; s
with

‘_,‘ c U‘.
Exercise 21.5. Let M be a manifold, U an open subset, and A a closed

subset contained in U. Then there is a C® function f which is identically 1
on A and is 0 outside U.

It follows from these two lemmas that on P(E) there exists an open cover
{V} and C* functions p, satisfying

@ VU _
(b) p,is 1 on ¥ and is 0 outside U,.

Now p, w; is a global form which agrees with w, on ¥, so that
§i — d(p, ;)

is a global form representing c,(S* ® L;) and vanishing on V. In summary,
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there is an open cover {V;} of P(E) such that c,(S* ® L,) may be represented
by a global form which vanishes on V. ,

Since {V;} covers P(E), []7-1 ci(S* ® L) = 0. Writing x = ¢,(S*), this
gives by (20.1)

[Mx+cL)=x"+0x" '+ +0,=0
i=1

where g, is the ith elementary symmetric polynomial of ¢,(L,), ..., ¢;(L,).
But this equation is precisely the defining equation of ¢(E). Thus

o, = ¢;(E)
and
oE) =[] + ey(L)) =] L)

So the Whitney product formula holds for a direct sum of line bundles. By
the splitting principle it holds for any complex vector bundle. As an illustra-
tion of the splitting principle we will go through the argument in detail. Let
E and E’ be two complex vector bundles of rank n and m respectively and
let n: F(E)—= M and n': F(n~'E)— F(E) be the splitting constructions.
Both bundles split completely when pulled back to F(n~'E’) as indicated in
the diagram below.

Lie-®L,OLSD DL,
L& ®L®n'E |

® F(rn~'E)
/

E®FE

}4 - F(E)

Leto =n' o n. Then
*(E@E)=c(c (E®E)=cL;®  ®L,OL,® - DL})

=T aL)dL)
= 6*c(E)o*(E’) = 6*c(E)(E)).

Since ¢* is injective, o(E @ E") = ¢(E)c(E’). This concludes the proof of the

Whitney product formula.

ReMARK 21.6. By Exercise (21.1) and the Whitney product formula, when-

ever we have an exact sequence of C* complex vector bundles

0—-A—-B—->C—0,
then c(B) = c(A)c(C).
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As an application of the existence of the split manifold and the Whitney
product formula, we will prove now the relation (20.10.6) between the top
Chern class and the Euler class. Let E be a rank n complex vector bundle
and ¢ : F(E)— E its split manifold. Write 6 'E =L, @ --- ® L,, where the
L/s are line bundles on the split manifold F(E).

o*c(E) = c,(6"'E) by the naturality of c,
=cy(Ly) - cy(Ly) by the Whitney product formula
(20.10.3)

=e((Ly)g) - el(L)w) 'by the definition of the first Chern
class of a complex line bundle

=e((L)g® - D(LY)r) by the Whitney product formula for
the Euler class (12.5)

= e(c™'E)p)

= o*¢(Eg).
By the injectivity of 6* on cohomology, ¢,(E) = e(Eg).

Compu‘tation of Some Chern Classes

Given a rank n complex vector bundle E we may write formally
C(E) = [I—-Il(l + xi)9

where the x;'s may be thought of as the first Chern class of the line bundles
into which E splits when pulled back to the splitting manifold F(E). Since
the Chern classes ¢,(E), ..., c,(E) are the elementary symmetric functions of
Xy, ..., Xy, Dy the symmetric function theorem (van der Waerden [1, p. 99])
any symmetric polynomial in x,, ..., x, is @ polynomial in ¢,(E), ..., c(E);
a similar result holds for power series.

ExaMPLE 21.7 (Exterior powers, symmetric powers, and tensor products).
Recall that if ¥ is a vector space with basis {v,, ..., v,}, then the exterior
power AP V is the vector space with basis {v;, A - - A U"}1<h<...<[’gn. So
if E is the direct sum of line bundles E=L; @ --- @ L,, then

APE = @ (L11®"‘®Ll,)-
1€i <<, &n
Hence

oAPE) =] (1 + (L, ®---®L;) by the Whitney product formula
=[T+x,+-+x,) by (20.1), with x; = ¢,(L,),

where the product is over all multi-indices 1 < i; <--* <i, < n. Since the
right-hand side is symmetric in x;, ..., x,, it is expressible as a polynomial
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Qin ¢y(E), ..., ¢, (E), so
A(APE) = Q(c,(E), ..., c(E)).

By the splitting principle this formula holds for every rank n vector bundle,
whether it is a direct sum or not. It should be pointed out that the poly-
nomial Q depends only on n and p, not on E; for example, the Chern class
of A’E, where rank E = 3, is given by

cA’E) = Q(cy, €3, €3) = (1 + ¢; — x, X1 + ¢y — xz)(1 + ¢4 — X3)
= +c)—ci(1 +c)+c(l +¢y)—cs.

Similarly, if ¥ and W are vector spaces with bases {v,, ..., v,} and {wy, ...,

w,} respectively, then the pth symmetric power S’V of V is the vector
space with basis {v;, ® -+ ® v,,} 1<i<—<i,<n and the tensor product
V ® W is the vector space’ with basis {v; ® WJ}1<‘<,. 1<j<m- By the same
discussion as above, if E is a rank n vector bundle with ¢(E) = []7-; (1 + x))
and F is a rank m vector bundle with ¢(F) = []7-, (1 + y)), then

(21.8) o(STE) = [T Q+x,++x,)

and

(21.9) dE@F) = [] (1+x+y)
1<i<n
1<j<m

In particular if L is a complex line bundle with first Chern class y, then
(21.10) AE®L) =l +y+x)= Y c:(EXL +y)",
i=1 i=0

where by convention we set co(E) = 1.

ExaMpLE 21.11 (The L-class and the Todd class). In the notation of the
preceding example the power series

ll
[od
[
=]
=
X

is symmetric in x4, ..., x,, hence is some power series L in ¢,(E), ..., c,(E).
This power series L(E) = L(c,(E), ..., ¢,(E)) is called the L-class of E. By the
splitting principle the L-class automatically satisfies the product formula

L(E @ F) = L(E)L(F).
Similarly,

L

defines the Todd class of E. By the splitting principle the Todd class also
automatically satisfies the product formula. The L-class and the Todd

_x;-,. = Td(c,(E), ..., c,(E)) = Td(E)
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class turn out to be of fundamental importance in the Hirzebruch signature
formula (see Remark 22.9) and the Riemann-Roch theorem (see Hirzebruch

(1.
ExaMPpLE 21.12 (The dual bundle). Let L be a complex line bundle. By (20.2),
ci(L*) = —c,(L).
Next consider a direct sum of line bundles
E=L,&® DL,
By the Whitney product formula

oE)=c(Ly) --c(L)=(1+ 01(171)) w1+ (L))
On the other hand

E*=Lt® - -®L?

and

A(E®) = (1 —cy(Ly) - -~ (1= c (L)
Therefore '
c{E*) = (—1)c(E).
By the splitting principle this result holds for all complex vector bundles E.

ExaMPLE 21.13 (The Chern classes of the complex projective space). By
analogy with the definition of a differentiable manifold, we say that a
second countable, Hausdorff spacé M is a complex manifold of dimension n
if every point has a neighborhood U, homeomorphic to some open ball in
"'C", ¢,: U, — C", such that the transition functions '
Cl
¢
guﬁ = ¢¢ ° ¢ﬂ-l . ¢’(U. N U,)_’Cu

are holomorphic. Smooth maps and smooth vector bundles have obvious
analogues in the holomorphic category. If u,, ..., u, are the coordinate
functions on C", then z; = u; o ¢,, i = 1, ..., n, are the coordinate functions
on U,. At each point p in U, the vectors 0/0z,, ..., 8/dz, span over C the
holomorphic tangent bundle of M. It is a complex vector bundle of rank n.
The Chern class of a complex manifold is defined to be the Chern class of
its holomorphic tangent bundle.

The complex projective space CP" is an example of a complex manifold,
since, as in Exercise 6.4, the transition functions g relative to the standard
open cover are given by multiplication by z;/z;, which are holomorphic
functions from ¢,(U; n U)) to ¢,(U; N Uj). Recall that there is a tauto-
logical exact sequence on CP*

0->S—C"*"'5Q-0,

where C"*! denotes the trivial bundle of rank n + 1 over CP". A tangent
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/ | 2
Figure 21.1

vector to CP" at a line ¢ in C"*! may be regarded as an infinitesimal
motion of the line ¢ (Figure 21.1). Such a motion corresponds to a linear
map from ¢ to the quotient space C"*!/¢, which may be represented by the
complementary subspace of # ii C"*! (relative to some metric). Thus, de-
noting the holomorphic tangent L.undle by T, we have

T ~ Hom(S, Q) = Q ® S*.
We will compute the Chern class of T in two ways.
(1) Tensoring the tautological sequence with S*, we get
0-CHS*®RC"*'55*®0—0.
By the Whitney product formula
AT)=S*® Q) = cS* ®C"*!) = c(S* @+ ®S%) = (1 + 0",

where x = ¢,(S*).
(2) From the tautological exact sequence and the Whitney product formula
' 1 1 ‘
c(Q)=—=——_—x= L+x+-+x"

since x"*! = 0 in H*(CP"). By (21.10)

dCP)=cdQ®S*) = Zcr(Q)(l +x) = Zx‘(1+x)"
=( +x)".§o (1+x)i
-aeaf (1= (25) ) (-5
= +x)~“[1 —(I:X)m]

~

=(L+ Pt —xrt
=(1+x*.
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Exercise 21.14. Chern classes of a hypersurface in a complex projective space.
Let H be the hyperplane bundle over the projective space CP* (see (20.3)),
and H®* the tensor product of k copies of H. The line bundle H is in fact
more than a C® complex line bundle; because its transition functions are
holomorphic, it is a holomorphic line bundle. The total space of a holomorp-
hic bundle over a complex manifold is again a complex manifold, so that
the notion of a holomorphic section makes sense. The zero locus of a holo-
morphic section of H®* is called a hypersurface of degree k in CP". If the
section is transversal to the zero section, then the hypersurface is a smooth
complex manifold. Compute the Chern classes of a smooth hypersurface of
degree k in CP". (Hint: apply Prop. 12.7 to get the normal bundle of the
hypersurface.)

Flag Manifolds

Given a complex vector space V of dimension n, a flag in V¥ is a sequence of
subspaces A, = A, < :-- < 4, = V, dim¢ 4; = i. Let FI(V) be the collection
of all flags in V. Clearly any flag can be carried into any other flag in V by
an element of the general linear group GL(n, C), and the stabilizer at a flag
is the group H of the upper triangular matrices. So as a set FI(V) is isomor-
phic to the coset space GL(n, C)/H. Since the quotient of a Lie group by a
closed subgroup is a manifold (Warner [1, p. 120]), FI(V) can be made into
a manifold. It is called the flag manifold of V.

Given a vector bundle E, just as one can form its projectivization P(E),
so one can form its associated flag bundle F)E). The bundle FI(E) is ob-
tained from E by replacing each fiber E, by the flag manifold FI(E,); the
local trivialization ¢,:E|y, = U, x C" induces a natural trivialization
FIE)|y, =~ U, x FIC"). Since GL(n, C) acts on FI(C"), we may take the
transition functions of FI(E) to be those of E, but note that FI(E) is not a
vector bundle.

Proposition 21.15. The associated flag bundle FIE) of a vector bundle is the
split manifold F(E) constructed earlier.

ProOOF. We first show this for E = V a vector space of dimension 3, viewed
as a rank 3 vector bundle over a point.

Sy @ So, ® Qoy
5/ ® 0y |
v | P, bt
l P(V)
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In what follows all lines and planes go through the origin. A point
in P(V) is a line L in V. A point of P(Qy) is a line L in ¥V and a lineL in
V/L. L may be regarded as a 2-plane in V containing L. Thus F(V) =
P(Qy) = {A, = A, c V,dim 4; = i} = F(V).

Now let E be a vector bundle of rank n over M. The split manifold F(E)
is obtained by a sequence of n — 1 projectivizations as in (21.2). A point of
P(E) is a pair (p, ¢), where p is in M and ¢ is a line in E,. By introducing a
Hermitian metric on E, we may regard all the quotient bundles Q,, ...,
Q,_ in (21.2) as subbundles of E. Then a point of P(Q,) over(p, ¢,) in P(E)
is a triple (p, ¢4, ¢,) where Z, is a line in the orthogonal complement of ¢,
in E,. A point of P(Q,) over (p, ¢y, ¢,) in P(Q,) is a 4-tuple (p, 4, £2, ¢3)
where ¢/ is a line in the orthogonal complement of #; and ¢, in E,. Thus,
more generally, a point in the split manifold F(E) = P(Q,-,) may be ident-
ified with the flag

(ptll C{{h {2} < {(19 (2’ (3} < CEp)

This proves the equality of the split manifold F(E) and the flag bundle
FUE). O
From now on the notations F(E) and FI(E) will be used interchangeably.
The formula (21.3) gives one description of the vector space structure of
the cohomology of a flag bundle. To compute its ring structure we first
recall from (20.7) that if E is a rank n complex vector bundle over M, then
the cohomology ring of its projectivization is

H*(P(E)) = H¥M)[x]/(x" + ¢,(E)x"~* + -* + ¢,(E)), where x = c,(S*).

NoTtATION. If A4 is a graded ring, and a, b, c, f € A4, then (a, b, ¢) denotes
the ideal generated by q, b, and ¢, while (f = 0) denotes the ideal generated
by the homogeneous components of f.

There is an alternate description of the ring structure which is sometimes

very useful. We write H*(M)[(S), Q)] for H*(M)[cy(S), ¢1(Q); ..., - 1(Q)],

where S and Q are the universal subbundle and quotient bundle on P(E).

0-+S—>a*E—-Q—0
E
P(E)\l
M

Proposition 21.16. H*(P(E)) = H*(M)[(S), c(Q)]/(c(S)(Q) = n*c(E)).

ProoF. The idea is to eliminate the generators cy4(Q), ..., c,-1(Q) by using

the relation c(S)c(Q) = n*c(E). Let x = ¢,(S*), y: = c{Q), and c; = n*c{E).
Equating the terms of equal degrees in

A=xl+y +-+y)=l+c + +c,,
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we get

Y1 —X=¢y,

Y2 — Xy =¢,,

Y3 — Xy, =¢s,

Yn-1 = XYp-2 =Cp_y,
= XYp—1 = Cp.

By the first n — 1 equations, y,, ..., y,_; can be expressed in terms of x
and elements of H*(M), and so can be eliminated as generators of

H*M)[(S), c(@)]/(c(S)c(Q) = =*c(E)). The last equation —xy,_, = ¢, trans-

lates into
(*) X"+cyx" 4o 4c,=0.
Hence H*(M)[c(S), c(Q)1/(c(S)c(Q) = n*c(E)) is isomorphic to the poly-

nomial ring over H*(M) with the single generator x and the single relation
(*)- O

By (21.2) and (21.15) the flag bundle FI(E) is obtained from a sequence of
n — 1 projectivizations. Applying Proposition 21.16 to (21.2), we have
H*(P(Qy))

= H*P(E)[c(S2), c(@2)INcS2)e(@2) = (@)

= H(M)[c(S)), d@1), AS2), Q@2 e(S)e(Qy) = elE), c(S2)(@2) = ()

= H¥M)[c(S,), o(S2), AQ2)INc(S1)cA(S2)c(Q2) = AE)).
By induction

H*(P(Q,-2))
= H*M)[c(Sy), .-, ASa-1), Q- )IAS 1)+ cASa-1)AQn- 1) = AE)).

Writing x; = ¢,(S),i=1,...,n — 1, and x, = ¢,(Q,-,), the cohomology ring
of the flag bundle FI(E) is :

H*(FIE)) = H¥M)[x,, ..., x,,]/( .]:"Il(l + x;) = c(E)).

Specializing this theorem to a complex vector space V, considered as the
trivial bundle over a point, we obtain the cohomology ring of the flag
manifold

H*(FUV)) = R[xy, ..., x,,]/( ﬁ(l +x) = l).

i=1

As for the Poincaré polynomial of the flag manifold we note again that
the flag manifold is obtained by a sequence of n — 1 projectivizations (21.2).
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By (20.8) each time we projectivize a rank k vector bundle, the Poincaré
polynomial is multiplied by (1 — t2%)/(1 — t?). So the Poincaré polynomial
of the flag manifold FI(V) is
1
1

t2n. 1 =22 1—1¢2
e 1-1 11—’

P(FIV)) =

This discussion may be summarized in the following proposition.

Proposition 21.17. Let V be a complex vector space of dimension n. The
cohomology ring of the flag manifold FI(V) is

H*FIV)) = R[xy, ..., x,,]/( ¢ +x)= 1).

i=1

It has Poincaré polynomial

_ == (1 -t
P,(FI(V))— (I—tle—tz)"'(l—tz) :

REMARK 21.18. Similarly, if E is a rank n complex vector bundle over a
manifold M, then the cohomology ring of the flag bundle FI(E) is

H*(FIE)) = H¥M)[x,, ..., x.]/( I!Il(l +x) = C(E)),

i=

and the Poincaré series is

(L= 21— 19 - (1 — 1™
A—1-1) - (1-t3)

P(FI(E)) = P(M)

REMARK 21.19. Since projectivization does not introduce any torsion el-
ement in integer cohomology, the integer cohomology ring of the flag mani-
fold FI(V) is torsion-free and is given by the same formula as (21.17) with Z
in place of R. The integer cohomology ring of a flag bundle is given by the
same formula as (21.18). In fact, with a little care, the entire discussion can
be translated into the Cech theory.

§22 Pontrjagin Classes

Although the Chern classes are invariants of a complex bundle, they can be
used to define invariants of a real vector bundle, called the Pontrjagin
classes. In this section we define the Pontrjagin classes, compute a few
examples, and as an application obtain an embedding criterion for differ-
entiable manifolds.



286

1V Characteristic Classes

Conjugate Bundles

Let V be a complex vector space. If z € C and v € V, the formula
zZ*xv=2v

defines an action of C on V. The underlying additive group of ¥ with this
action as scalar multiplication is called the conjugate vector space of V,
denoted V. The conjugate space ¥ may be thought of as V with the op-
posite complex structure; as a vector space, ¥ is anti-isomorphic to V. A
linear map f: ¥ — W of two complex vector spaces V and W is also a linear
map of the conjugate vector spaces f: ¥ — W; we denote both by f as they
are represented by the same matrix.
Given a complex vector bundle E with trivialization

¢.: E

we construct the conjugate vector bundle E by replacing each fiber of E by
its conjugate. The trivialization of E is given by

u.: Uu X C",

¢ E|ly, 32U, x C",
which is the composition

E

—n conjugation

e
v, 3 U, xC

U, x C".

In terms of transition functions, if the cocycle {g,s} defines E, then its
conjugate {g,,} defines E.

As in (6.4), by endowing a complex vector bundle on a manifold with a
Hermitian metric, we can reduce its structure group to the unitary group.
Since unitary matrices g, satisfy g,5 = (g%) ", we see that the conjugate
bundle E and the dual bundle E* have the same transition functions and
hence are isomorphic. So by Example 21.12, if o(E) =[] (1 + x;), then
B =TT (1 - x).

Realization and Complexification

By simply forgetting the complex structure, we can regard a linear map of
complex vector spaces L: C"— C" with coordinates z,, ..., z, as a linear
map of the underlying real vector spaces Lg : R*"— R?*" with coordinates
Xy, ..., X3, Where z; = X3, + ix3,. Conversely, via the natural embedding
of R" in C", a linear map of real vector spaces L : R"— R" gives rise to a
map L@®C:C"—C" The first operation is called realization and the
second, complexification. The complexification of a real matrix is the matrix
itself, but with the entries viewed as complex numbers. The realization of a
complex matrix is described in Examples 22.2 and 22.3 below. In terms of
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matrices these two operations give a sequence of embeddings

Un)o O0@2n) < U@2n)
N N N
(22.1) GL(n, C) & GL(2n, R) ¢, GL(2n, C)
A~ Az —Ag®C.
ExAMPLE 22.2. Let L: C— C be given by multiplication by the complex
number 4 = a + if. Since

(@ + if)xy + ix;) = (ax; — Bx,) + i(fxy + ax3),
as a linear map from R? to R?, Ly is given by

9l )]

wriva=(5 8.

ExampLE 22.3 Let L: C?>— C? be given by the complex matrix (}} 12)

where A, = a, + if,. A little computation shows that Lg : R* — R* is given
by

Thus

Xy @ =B ax —p Xy
X2 — B a B, 7} X2

. X3 a3 —Py ay —Ba X3
X4 Bs a3 Pa o4 X4 )

Thus
(i %) ()
j'3 14 R (A%)R U%)R

It is clear from these two examples what the realization of an n by n
complex matrix should be.

Lemma 22.4. Let A be an ;l by n complex matrix. There is a 2n by 2n matrix
B, independent of A, such that Ag ® C is similar to (§ %) via B.

Proor. In the 1 by 1 case, this is a matter of diagonalizing

(«+ifa®C =(; ‘5)
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Corresponding to the eigenvalues a + if and a — if are the eigenvectors
(2,) and (}). Therefore, B= (1, }).
Now consider the 2 by 2 case:

(A A2 _ .
A_(),3 )“), J..—a,‘+lﬁ,‘

A A ow —Pp
Ag®C = ( ) where A4, = ( .
" A A, * B« o

Note that
‘ : 1 Al l 0 * % 11
Ay A\ [ =i Y _ [ —id — —i 0 = = As
A3 A‘ 0 - A3 0 l * * 0
0 —ilg 0 —i * % 0
1 010 1 010 M Ay
A, A, —-i 0 i O0) (-1 0 i00 ,13).4__
Ay A, 0O 10 1] 0O 1 01 {1 ):2
: 0 -1 0 l 0 —i 0 1 13 ).4
So
1 010
—-i 0 i 0
B={ 0 101
0 —i 0 i
For the n by n case, we can take B to be
1 1
—i i
1 1
—i i
1 1
—i i

O

If E is a complex vector bundle of rank n with transition functions {g,},
then Eq ® C is the complex vector bundle of rank 2n with transition func-
tions {(g,p)r ® C}. By Lemma 224,

(22.5) Eq®C~EQ®E
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This result may be seen alternatively as follows. On the complex vector
space Eq ® C, multiplication by i is a linear transformation J satisfying
J? = —1. Therefore, the eigenvalues of J are +i and Eq ® C accordingly
decomposes into a direct sum

Eg ® C = (i-eigenspace) @ ((—i)-eigenspace).
On the i-eigenspace, J acts as multiplication by i, hence

(i-eigenspace) o E.
Similarly, .
((—i)-eigenspace) o E.

It follows by reasons of dimension that

En®c=E$E_.

The Pontrjagin Classes of a Real Vector Bundle

By their naturality property the Chern classes of a C® complex vector
bundle are C* invariants of the bundle. For a real vector bundle E similar
invariants may be obtained by considering the Chern classes of its com-
plexification E ®g C; these are the Pontrjagin classes of E. More precisely,
if E is a rank n real vector bundle over.M, then its total Pontrjagin class is

PE) =1+ py(E) + -+ + p,(E)
=l+c1(E®C)+--'+c,,(E®C)eH‘/(M).

It follows from the corresponding properties of the total Chern class that
the Pontrjagin class is functorial and satisfies the Whitney product formula

PE @ E) = p(E)p(E).

The Pontrjagin class of a manifold is defined to be that of its tangent
bundle.

REMARK 22.6. Let E be a real vector bundle. Because the transition func-
tions of E® C are the same as those of E, they are real-valued, and
therefore E® C is isomorphic to its conjugate E® C. It follows that
¢, (E®C) = ¢;(EQC)=(—1)'c;,(E®C). For an odd i, then, 2¢,(EQC)=0.
Thus the odd Pontrjagin classes, as we have defined them, are zero in the
de Rham cohomology, and torsion of order 2 in the integral cohomology.
The usual definition of the Pontrjagin classes in the literature (see, for
instance, Milnor and Stasheff [1, p. 174]) ignores these odd Chern classes
and defines p, (E) to be

(=1eu(E®C).
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EXAMPLE 22.7. (The Pontrjagin class of the sphere). Since the sphere S" is
orientable, its normal bundle N in R"*! is trivial. From the exact sequence

0— Tg.“’ Tn.ﬂ Is-_’ N— 0;
we see by the Whitney product formula that
PSNPN) = P(Tias1 |s0)-

Therefore,

p(s) = 1.
ExaMpLE 22.8 (The Pontrjagin class of a complex manifold). The Pontrjagin
class of a complex manifold M is defined to be that of the underlying real

manifold M. Let T be the holomorphic tangent bundle to M. Then the
tangent bundle to My, is the realization of T and

PM) = p(T) = (Ta® C) = (T & T) = (T)A(T).

So if the total Chern class of the complex mamfold MiscM) =[] (1 + x),
then the Pontrjagin class is p(M) = [] (1 — x?).

ReMARrk 22.8.1. If we had followed the usual sign convention for the Pontr-
jagin classes (see Remark 22.6), the Pontrjagin class of a complex manifold
would be p(M) = [] (1 + x?), where the x,’s are defined as above. To have
only positive terms in this formula is one of the reasons for the sign in
(—1)'c3;(E ® C) in the usual definition of the Pontrjagin class.

REMARK 22.9. Let M be a compact oriented manifold of dimension 4n. By
Poincaré duality the wedge product A : H*(M) ® H>(M)— R is a nonde-
generate symmetric bilinear form and hence has a signature; this is called
the signature of M. Recall that the signature of a symmetric matrix is the
number of positive eigenvalues minus the number of negative eigenvalues.
Hirzebruch proved that the signature is expressible in terms of the Pontrja-
gin classes.

Hirzebruch signature formula’:
signature of M = (—1)" f L(p,(M), ..., p{M)),
M
where L is the polynomial defined in Example 21.11. For a proof of the
signature formula, see Milnor and Stasheff [1, p. 224].
Application to the Embedding of a Manifold

in a Euclidean Space

Using the Pontrjagin class one can sometimes decide if a conjectured em-
bedding is possible. We illustrate this with the following example.
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EXAMPLE 22.10. Decide if CP* can be differentiably embedded in R®.
By (22.8) and (21.13) the Pontrjagin class of CP* is
P(CP*) = c(Tep)e(Teps) = (1 + x)*(1 — x)* = (1 — x?)°.
If CP* can be differentiably embedded in R®, then there is an exact se-
quence
0— (Tep)r— Taslcpa— N— 0,

where (T¢pd)g is the realization of the holomorphic tangent bundle T¢,. and
N is the normal bundle of CP* in R®. By the Whitney product formula

(22.11) PTrs Icpe) = P(Tep)w)P(N).

Since the restriction Ty |cps is the pullback of Ts to CP* under the em-
bedding i : CP*— R, by the functorizlity of the Pontrjagin class

P(Tgslcps) = i*p(Tgs) = 1.
Therefore, by (22.11)

1 1
A(Terdn) (1 —x?)

Since N is a real line bundle, the top component of p(N) should be in
H?*(CP*). This contradicts the fact that 5x* and 15x* are nonzero classes in
H¥CP*) and H%CP*). Thus CP* cannot be embedded in R®.

From (22.12), if CP* can be embedded in R*, then the normal bundle has
rank at least 4, since the top-degree term of the Pontrjagin class of a rank k
real bundle is in dimension 2k. It follows that CP* cannot be embedded in a
Euclidean space of dimension 11 or less.

(22.12) p(N) = s =1+ 5x2 + 15x4,
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Let f: M — N be a map between two manifolds and E a complex bundle
over N. The pullback f~'E is a bundle over M. If the Chern classes
of E vanish, by the naturality property (20.10.1), so do those of f ~'E.
Taking the Chern classes to be a measure of the twisting of a bundle, we
may assert that pulling back “dilutes” a bundle, i.e., makes it less twisted.
One extreme example is when f is constant; in this case f “'E is trivial.
Another example is the flag construction of Section 21; pulling E back to
the split manifold F(E) splits E into a direct sum of line bundles. One may
wonder if there exists a bundle which is so twisted that every bundle is a
pullback of this universal bundle. Such a bundle indeed exists, at least for
manifolds of finite type; it is the universal quotient bundle on the Grass-
mannian G,(C") for n sufficiently large. We will prove this result and con-
clude from it that every natural transformation from the complex vector
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bundles to the cohomology classes is expi'essible in terms of the Chern
classes, all for manifolds of finite type. We also indicate how the theorems
generalize to an arbitrary manifold.

The Grassmannian

Let V be a complex vector space of dimension n. The complex Grassman-
nian G(V) is the set of all subspaces of complex codimension k in V. We
sometimes call such a subspace an (n — k)-plane in V. Given a Hermitian
metric on V, the unitary group U(n) is the group of all metric-preserving
endomorphisms of V. Clearly U(n) acts transitively on the collection of all
(n — k)-planes in V. Since a unitary matrix which sends an (n — k)-plane to
itself must also fix the complementary orthogonal k-plane, the stabilizer of
an (n — k)-plane in V is U(n — k) x Ulk). Thus the Grassmannian can be
represented as a homogeneous space

U(n)

Gﬂo=wmxum—m'

As the coset space of a Lie group by a closed subgroup, G(V) is a differ-
entiable manifold (Warner [1, p. 120]). Note that G,_,(V) is the projective
space P(V).

Just as in the case of the projective space, over the Grassmannian G(V)
there are three tautological bundles: the universal subbundle S, whose fiber
at each point A of Gy (V) is the (n — k)-plane A itself; the product bundle
¥ = Gy(V) x V; and the universal quotient bundle Q defined by

0-»S—»V—->0-0.

This exact sequence is called the tautological sequence on G(V). Over Gy(V)
the universal subbundle S has rank n — k and the universal quotient bundle
has rank k.

Similarly, if V is a real vector space, one can define the real Grassman-
nian G(V) of codimension k real subspaces of ¥, and the analogous real
universal bundles. The real Grassmannian can also be represented as a
homogeneous space

O(n)

Qm°=mmxom—m'

Proposition 23.1. The cohomology of the complex Grassmannian G(V) has
Qoincaré polynomial

(=1 (1 =17
P(GV)) = (1- t2) s (1= tu’Xl - t’) (1= tl(n—k)) .
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Proor. The flag manifold F(V) may be obtained from the Grassmannian
Gy(V) by a series of flag constructions as follows. Let Q be the pullback of Q
to the flag bundle F(S).

)
SOQ F(Q)
| Rg//
wm//

A point of F(S) is a pair (A, L, = -+ < A) consisting of an (n — k)-plane A
in V together with a flag in A. Therefore a point in F(Q) consists of a point
in F(S), (A, L, = --- = A), together with a flag in V/A, i.e., a point in F(Q) is
given by (A, Lyc - cLy_y-ycAcL, 4+, =< V). So F(Q) is the
flag manifold F(V), and F(V) is obtained from the Grassmannian G(V) by
two flag constructions. By (21.18), the Poincaré polynomials of F(V) and
G(V) satisfy the relation

(1=t (1 =201 — %) - (1 =25
A=) (1=t =) (1-12?

P{F(V)) = P{G{(V))

From (21.17) it follows that
(1=¢})--- (1=t
) o (1L =22070) 1 — ) o (1 =2

As for the ring structure of the cohomology of the Grassmannian Gy(V),
we have the following.

PAGAVY) = = u)

Proposition 23.2. Let V be a complex vector space of dimension n.

(a) Asaring

RLci(S), -.., ca—x(S), €1(Q), ..., c(Q)]
(c(S)(Q) = 1)
(b) The Chern classes c,(Q), ..., ci(Q) of the quotient bundle- generate the
cohomology ring H*(G(V)).
(c) For a fixed k and a fixed i there are no polynomial relations of degree i
among c,(Q), ..., c(Q) if the dimension of V is large enough.

H*GyV)) =

ProoF. In the proof of Proposition 23.1, we saw that the flag manifold F(V)
is obtained from the Grassmannian by two flag constructions

a

0
see | _FO=F®)
[ _F®

GV
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By (21.18) the cohomology ring of the flag manifold is

H‘(GR(V))[xb ceey xn-k’ yl’ ey yk]
MTa+x)=cS, [T +y)=Q)’
On the other hand, we’ve computed the cohomology of F(V) in (21.17) to be

(*) H*F(V) = Rlxy, ., Xpoy Yro oo, WA+ x) [T+ y) =1).

Thus in H*(G,(V)) the Chern classes of S and Q can satisfy no relation other
than ¢(S)c(Q) = 1, for any relation among them would appear as a relation
among the x;’s and y;’s in (). It follows that there is an injection of algebras

RIAS), (Q)]
(@3:2.1) @)@ = 1)

From the digression following this proof, the Poincaré series of

RLcy(S), -5 Ca-iS) €1(Q), -, cl@IN(S)AQ) = 1) is

P(R[c(S). C(Q)]> (L=t} (1 =t

9@ =1/ " (1= (1 = 2By — ) - (1 — 17

But this is also the Poincaré series of H*(G,(V)). Thus the injection (23.2.1)
is an isomorphism. This proves (a).

Writing ¢(S) = 1/¢(Q), we see from the description of the ring structure in
(a) that ¢,(Q), ..., ci(Q) generate the cohomology ring of G(V).

The equation ¢(S) = 1/¢(Q) not only allows one to eliminate ¢,(S), ...,
¢,-«(S) in terms of ¢,(Q), ..., cx(Q), but also gives polynomial relations of
degrees 2(n — k + 1), ..., 2n among ¢,(Q), ..., cx(Q). Thus for a given degree
i, if the dimension n of the vector space V is so large that 2(n — k + 1) > i,
then there are no polynomial relations of degree i among the Chern classes
of Q. O

H*F(V)) =

o HY(GYV))

Digression on the Poincaré Series
of a Graded Algebra

Let k be a field and A = @2, A; a graded algebra over k. The Poincaré
series of A is defined to be

P'(A) = i(dimk A()t‘.
i=0

If A is a graded Z-module, its Poincaré series is defined to be that of the
Q-algebra 4 ®; Q.

EXAMPLE. Let A be the polynomial ring R[x], where x is an element of
degree n. Then

PA)=1+"+t"+ =

1—-¢
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EXAMPLE. Let A and B be two graded algebras. Suppose a basis for 4 as a
vector space is {x;};c; and a basis for B is {y;},.,. Then a vector space
basis for 4 ® Bis {x; ® y;}ic1, js. Therefore

P(A ® B) = P(A)P(B).

ExaMPLE. Let 4 = R[x, y], with deg x =m and deg y =n. Then since
RLx, y] = R[x] ® RLy],

1 1

P(A) = P(R[x])P(R[y]) = 1—¢t ’ 1—¢

We next investigate the effect of a relation on the Poincaré series of a
graded algebra.

Proposition 23.3. Let A = @2, A; be a graded algebra over a field k, and x a

homogeneous element of degree n in A. If x is not a zero-divisor, then
P(A/xA) = P(AX1 —t").

PRrROOF. Because x is not a zero-divisor, multiplication by x is an injection.

Hence for each integer i there is an exact sequence of vector spaces

0— Al:’ Airn— (A/xA)+0— 0.

By the additivity of the dimension,
dim Ai+n = dim A[ + dim(A/xA)‘+n-

Summing over all i,

i (dim A;, )t = i (dim A)e'*" + ‘z dim(A/xA)+, ",

i=-n i=-n {=-n
where we set A; = {0} if i is negative. Hence
P{A) = P{A)" + P{A/xA). m|

ExampLE. If x, y, and z are elements of degree 1, then the Poincaré series of
A =R[x, y, 2)/(*y + y*z* + xy*2) is

P(A4) = P(R[x, y, zZ]N1 — t*)
= (1 —%)/1 - 2.
To generalize Proposition 23.3, we will need the notion of a regular

sequence.

Definition. Let A be a ring. A sequence of elements ay,...,a, in A is a
regular sequence if a, is not a zero-divisor in A4 and for each i > 2, the image
of a;in A/(a,, ..., a;-,) is not a zero-divisor.
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Proposition 23.4. Let A be a graded algebra over a field k and a,, ..., a, a
regular sequence of homogeneous elements of degrees n,, ..., n,. Then

P(A/(a, ..., a)) = P(AX1 — ™) --- (1 —t™).

Proor. This is an immediate consequence of Proposition 23.3 and induction
onr. O

Let I be the ideal in R[x,, ..., x;, Jy, ..., Jix] generated by the homogen-
eous terms of (1 + x; + - + x;)(1 + y, + -** + y;) — 1, where deg x; = 2i
and deg y; = 2i. We will now compute the Poincaré series of R[x,, ..., x;,
Yiseees yk]/'

Lemma 235. Let A be a graded algebra over a field k. If a,, ..., a, is a
regular sequence of homogeneous elements of positive degrees in A, so is any
permutation of a,, ..., a,.

ProoF. Since any permutation is a product of transpositions of adjacent
elements, it suffices to show that a,,...;a,_,, a;+y, 4y, ..., 4, is a regular
sequence. For this it is enough to show that in the ring A/(ay, ..., a;—{), the
images of a; . 4, a; form a regular sequence. In this way the lemma is reduced
to the case of two elements: if a, b is a regular sequence of elements of
positive degrees in the graded algebra 4, so is b, a.

If x is an element of 4, we write x for the image of x in whatever

quotient ring of 4 being discussed. Assume that g, b is a regular sequence in
A.

(1) Suppose bx = 0 in A. Then bx = 0 in A/(a). Since b is not a zero-divisor
in A/(a), x = ax, for some x, in A. Therefore, abx, = 0 in A. Since a is
not a zero divisor, bx, = 0. Repeating the argument, we get x; = ax,,

X3 = ax;, and so on. Thus x = ax, = a’x, = a*x; = ..., showing that
x is divisible by all the powers of a. Since a has positive degree, this is
possible only if x = 0. Therefore b is not a zero-divisor in 4.

(2) Next we show that a is not a zero-divisor in A/(b). Suppose ax = 0 in
A/(b). Then ax = by for some y in A. It follows that by =0 in A/(a).
Since b is not a zero-divisor in A/(a), y = az for some z. Therefore,
ax = abz. Since a is not a zero-divisor in A4, x = bz; hence, X =0 in
A/(b). a

Lemma 236. Ifa,, ..., a,,band a,, ..., a,, c are regular sequences in a ring
A,thensoisay,...,a,, bc.

Proor. It suffices to check that bc is not a zero-divisor in A/(ay, ..., a,). This
is clear since by hypothesis neither b nor c is a zero-divisor in 4/(a,, ..., a,).

0
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Proposition 23.7. The homogeneous terms of
(1 +xl +"'+x])(l+y1+"'+y,‘)—l

form a regular sequence in A = R[xy, ..., X;, y1, ..., )iJ-

Proor. The proof proceeds by induction on j and k. Suppose j =1 and
k = 1. Then R[x,, y,1/(x; + y;) = R[x,] and the image of x,y, in R[x,,
yiJ/(xy + yg) is —x}, which is not a zero divisor. So x; + y,, X,y, is a
regular sequence in R[x,, y,]. For a general j and k, letf; be the homogen-
eous term of degree i in (1 + x; + - + x X1 + y, + - - + y) — 1. We first
show that f, ..., fi+x—1, X; and f}, ..., fi+x—1, Vi are regular sequences. By
Lemma 23.5, fy, ..., fj+x-1, X; is a regular sequence if and only if x;, fy, ...,
Si+x-1 is. Let f; be the image of f; in 4/(x;). Since x; is not a zero-divisor in
A, it suffices to show thatf, ..., f;+x— is a regular sequence in 4/(x)). This
is true by the induction hypothesis, since

A/(xj) = R[xb ceey xj—l) .Yl) ceey .Yh]
and
T4fit ot fimmr =+ + o x X+ g+ + 90

Therefore, fi, ..., fi+x-1, X; is a regular sequence in A. Similarly, fj, ...,
fi+x-1, Yi is also a regular sequence in A. By Lemma 23.6, so is fy, ...,

fj+k— 1 Xj Yk O
By Propositions 23.4 and 23.7, if I is the ideal in
A=RIxy, ..oy Xueis Yis oes Vil
generated by the homogeneous terms of
Q4x + o+ x XL+ y ++y)— 1,
where deg x; = 2i and deg y; = 2i, then the Poincaré series of 4/I is

(1 —t3)--(1 — 2"

P(A/T) = (1 =t3)---(1 = 20=0)] — g2)..-(1 — t2¥)

The Classification of Vector Bundles

Vector bundles over a manifold M may be classified up to isomorphism by
the homotopy classes of maps from M into a Grassmannian. We will discuss

_ this first for complex vector bundles, and then state the result for real vector
bundles.
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Lemma 23.8. Let E be a rank k complex vector bundle over a differentiable
manifold M of finite type. There exist on M finitely many smooth sectlons of
E which span the fiber at every point.

ProoF. Let {U}};; be a finite good cover for M. Since U, is contractible,
E|y, is trivial and so we can find k sections Si.15 ++-» Si,x over U; which form
a basis of the fiber above any point in U;. By the Shrinking Lemma (see
(21.4) and (21.5)), there is an open cover {V;};., with ¥, = U, and smooth
functions f; such that f; is identically 1 on ¥, and identically 0 outside U;.
Then {f;s., ..., fiSi t}1e1 are global sections of E which span the fiber at”
every point. 0

Proposition 23.9. Let E be a rank k complex vector bundle over a differ-
entiable manifold M of finite type. Suppose there are n global sections of E
which span the fiber at every point. Then there is a map f from M to some
Grassmannian G(C" such that E is the pullback under f of the universal
quotient bundle Q; that is, E = f ~'Q.

PROOF. Let sy, ..., s, be n spanning sections of E and let ¥ be the complex
vector space with basis sy, ..., s,. Since s, ..., s, are spanning sections, for
each point p in M the evaluation map

ev,: V—-E,—»0

is surjective. Hence ker ev, is a codimension k subspace of V, and the fiber
of the universal quotient bundle Q at the point kerev, of the Grassmannian
Gy(V)is V/ker ev, = E,. If the map f: M — Gy(V) is defined by

f:ip—kerev,,

then the quotient bundle Q pulls back to E. We can identify ¥V with C", and
G(V) with G(C"). a

This map f : M — G(C") is called a classifying map for the bundle E.

It can be shown that the homotopy class of the classifying map f: M —
G,(C") in the preceding proposition is uniquely determined by the vector
bundle E. This is a consequence of the following lemma, which we do not
prove.

Lemma 23.9.1. Given a manifold M of dimension m, if n>k+% and f
and g: M — G,(C") are two maps such that f~'Q ~ g~'Q, then f and g are
homotopic.

A proof of this lemma based on obstruction theory may be found in Steen-
rod [1, §19] and Husemoller [1, §7.6].
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Writing Vect,(M; C) for the isomorphism classes of the rank k complex
vector bundles over M and [ X, Y] for the set of all homotopy classes of maps
from X to Y, we have the following.

(23.9.2) For n sufficiently large, there is a well-defined map

B : VectdM; C)— [M, GY(CY]

given by the classifying map of a vector bundle.

Theorem 23.10. Let M be a manifold having a finite good cover and let k be a
positive integer. For n sufficiently large, the classifying map of a vector bundle
induces a one-to-one correspondence

Vect(M; C) ~ [M, G,(C"]

between the isomorphism classes of rank k complex vector bundles over M and
the homotopy classes of maps from M into the complex Grassmannian G(C").

ProoF. By the homotopy property of vector bundles (Theorem 6.8), there is
a map

a: [M, G(C"]— Vect(M; C)
given by the pullback of the universal quotient bundle over G(C"):
fef'e.
By (23.9), (23.9.2), and (23.9.3), for n sufficiently large, the map
B : Vecty(M; C)— [M, G(C")],

given by the hbmotopy class of the classifying map of a vector bundle, is
inverse to a. ‘ O

As a corollary of the existence of the universal bundle (23.9), we now
show that in a precise sense the Chern classes are the only cohomological
invariants of a smooth complex vector bundle. We think of Vect,( ; C) and
H*( ) as functors from the category of manifolds to the category of sets.
A natural transformation T between these functors is given by a collec-
tion of maps T, from Vect,(M; C) to H*(M) such that the naturality dia-
grams commute. The Chern classes c,, ..., ¢, are examples of such natural
transformations.

Proposition 23.11. Every natural transformation from the isomorphism classes
of complex vector bundles over a manifold of finite type to the de Rham
cohomology can be given as a polynomial in the Chern classes.
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PROOF. Let T be a natural transformation from the functor Vect,( ; C) to
the functor H*( ) in the category of manifolds of finite type. By Proposition
23.9 and the naturality of T, if E is any rank k complex vector bundle over
M and f : M — G(C") a classifying map for E, then

T(E)=T(f~'Q) =f*T(Q).

Because the cohomology of the Grassmannian G,(C") is generated by the
Chern classes of Q (Prop. 23.2(b)), T(Q) can be written as

T(Q) = Pr{c4(Q), ---, c(Q))

for some polynomial Py depending on T. Therefore
T(E) =f*T(Q) = Pr(f*cy(Q), ..., [*ciQ)) = Pr(c\(E), ..., cdE)). O

Recall that we write Vect,(M) for the isomorphism classes of rank k real
vector bundles over M. Of course, there is an analogue of Theorem 23.10
for real vector bundles. A proof applicable to both real and complex
bundles may be found in Steenrod [1, §19]. The result for real bundles is
as follows.

Theorem 23.12. Let M be a manifold of dimension m. Then there is a one-to-one
correspondence

[M, G,(RE*™)] = Vect (M)
which assigns to the homotopy class of a map f : M — G(R**™) the isomorphism
class of the pullback f ~1Q of the universal quotient bundle Q over G(R**™).

We now classify the vector bundles over spheres and relate them to the
homotopy groups of the orthogonal and unitary groups.

Exercise 23.13. (a) Use Exercise 17.24 and the homotopy exact sequence of
the fibration ‘

O(k)— O(n)/O(n — k)

!
G(R")

to show that
T (G(R") = 7m,_,(OKk) if n>k+q+2.
(b) Similarly show that
1 (GCM) = m,_(Uk)) if n=(2k +q+ 1)/2.
Combining these formulas with Proposition 17.6.1 concerning the re-

" lation of free versus base-point preserving homotopies we find that for n
sufficiently large,
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Vect,(S9) = [S9, G(R")]
= 1 (GR")/n,(G(R")
= m,-1(0(K))/mo(O(k)) -

Exactly the same computation works for the complex vector bundles over
S We summarize the results in the following.

Proposition 23.14. The isomorphism classes of the differentiable rank k real
vector bundles over the sphere S? are given by

Vecty(S?) = n,_ ,(OK)/Z
the isombrphism classes of the complex vector bundles are given by

Vect(8%; C) ~ n,_ (U(K)).

REMARK 23.14.1 If G is a Lie group and a € G, then conjugation by a defines
an automorphism h, of G:

h,(g) = aga™?.

Let m be any integer. The map h, induces a map of homotopy groups:
(ha)y : Tp(G)— 7,(G).

If two elements a and b in G can be joined by a path ¥¢) in G, then h, is
homotopic to h, via the homotopy h,,. Consequently (h,), = (hy), . In this
way conjugation induces an action of 7n4(G) on 7,(G), called the adjoint
action.

We know from (17.6) that for any space X with base point x, conjugation
on the loop space Q, X induces an action of 7,(X) on n(X). With a little
more classifying space theory, it can be shown that the action of ny(O(k)) on
7, 1(O(k)) corresponding to the action of 7,(G,(R") on 7 (G(R") under the
identification of n, _,(O(k)) with n (G,(R") is precisely the adjoint action.

REMARK 23.14.2. It is in fact possible to explain the correspondence (23.14)
directly. Let E be a rank k vector bundle over $? with structure group O(k),
and let U, and U, be small open neighborhoods of the upper and lower
hemispheres. Because U, and U, afe contractible, E is trivial over them.
Hence E is completely determined by the transition function

do1 - Uo N Ul'—V O(k).

goy is called a clutching function for E. Then Proposition 23.14 may be
interpreted as a correspondence between the isomorphism classes of vector

bundles over a sphere and the free homotopy classes of the clutching func-
tions.
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Exercise 23.15. Compute Vect,(S'), Vect,(S2), and Vect,(S>).

EXAMPLE 23.16 (An orientable sphere bundle with zero Euler class but no
section). Because S* is simply connected, every vector bundle over S§* is
orientable (Proposition 11.5). For a line bundle orientability implies triv-
iality. Therefore,

Vect, (5% = 0.
By (23.14),
Vecty(S%) = n3(S0Q2))/Z, = n5(8")/Z, =0,
Vect3(S*) = n3(S0(3))/Z, = n5(RP?)/Z,
n3(8%)/2, = Z/Z,.

Consequently there is a nontrivial rank 3 vector bundle E over S*. The
Euler class of E vanishes trivially, since e(E) is in H3(S*) = 0. If E has a
nonzero global section, it would 'split into a direct sum E =L @ F of a line
bundle and a rank 2 bundle. Since Vect,(S*) = Vect,(S*) =.0, this would
imply that E is trivial, a contradiction. Therefore the unit sphere bundle of
E relative to some Riemannian metric is an orientable S2-bundle over §*
with zero Euler class but no section. This example shows that the converse
of Proposition 11.9 is not true.

REMARK 23.16.1 Actually Vecty(S*) ~ Z, because the action of Z, on
73(SO(3)) is trivial. Indeed, by Remark 23.14.1 this action is induced by the
action of —1 € O(3) under conjugation on SO(3). But conjugating by —1
clearly gives the identity map.

In general, by the same reasoning, if k is odd, then the action of no(O(k))
on n(O(k)) is trivial for all g.

The Infinite Grassmannian

We will now say a few words about vector bundles over manifolds not
having a finite good cover. For Theorem 23.10 to hold here the analogue of
the finite Grassmannian is the infinite Grassmannian. Given a sequence of
complex vector spaces

reVelhicehaer dim¢ ¥, =,
there is a naturally induced sequence of Grassmannians
c GV c GV +) =GV v =0

The infinite Grassmannian Gy(V,,) is the telescope constructed from this

sequence. Over each G,(V,) there are the universal quotient bundles Q, and
there are maps

' CQrCQr‘*lch‘FZC”“
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By the telescoping construction again there is a bundle Q of rank k over
Gy(V,)- A point of G(V,,) is a subspace A of codimension k in V,, and the
fiber of Q over A is the k-dimensional quotient space V/A.

Unfortunately the infinite Grassmannian is infinite-dimensional and so is
not a manifold in our sense of the word. Since to discuss infinite-
dimensional manifolds would take us too far afield, we will merely indicate
how our theorems may be extended. By the countable analogue of the
Shrinking Lemma (Ex. 21.4), with the finite cover replaced by a countable
locally finite cover, one can show just as in Lemma 23.8 that every vector
bundle over an arbitrary manifold M has a collection of countably many

spanning sections s;, s;, ... . If ¥V, is the infinite-dimensional vector space
with basis s,, s,,..., there is again a surjective evaluation map at each
point pin M:

ev,: V,— E,—0.
The kernel of ev, is a codimension k subspace of V,,. So the function
f(p) = ker ev, sends M into the infinite Grassmannian Gy(V,;). This map fis
a classifying map for the vector bundle E and there is again a one-to-one
correspondence
Vect(M; €) = [M, GyC=)].

All this can be proved in the same way as for manifolds of finite type. From
Proposition 23.2, it is reasonable to conjecture that the cohomology ring of
the infinite Grassmannian G(C®) is the free polynomial algebra

RLcy (@), ---, Q)]

This is indeed the case. (For a proof see Milnor and Stasheff [1, p. 161] or
Husemoller [1, Ch. 18, Th. 3.2, p. 269].) Hence Proposition 23.11 extends to
a general manifold.

Exercise 23.17. Let V be a vector space over R and V* = Hom(V, R) its
dual.

(a) Show that P(V*) may be interpreted as the set of all hyperplanes in V. .
(b) Let Y = P(V) x P(V*) be defined by
Y ={([v], [H])|H(v)=0,ve V,He V*}.

In other words, Y is the incidence correspondence of pairs (line in V,
hyperplane in V) such that the line is contained in the hyperplane. Compute
H*(Y).

Concluding Remarks
In the preceding sections the Chern classes of a veetor bundle E over M

were first defined by studying the relations in the cohomology ring H*(PE)
of the projective bundle, where the ring was considered as an algebra over
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H*(M). This somewhat ad hoc procedure turned out to yield all characteris-
tic classes of E only after .we learned that all bundles of a given rank were
pullbacks of a universal bundle and that the cohomology ring of the uni-
versal base space (the classifying space) was generated by the Chern classes
of the universal bundle.

From a purely topological point of view one could therefore dispense
with the omgmal definition, for by designating a set of generators of the
cohomology ring of the classifying space as the universal Chern classes, one
can define the Chern classes of any vector bundle simply as the pullbacks
via the classifying map of the universal Chern classes. On the other hand,
from the differential-geometric point of view the projective-bundle defini-
tion is more appealing, starting as it does, with c¢,(S*), a class that we
understand rather thoroughly and that furnishes us with a canonical gener-
ator for H¥(PE) over H*(M). However, this c, is taken on the space P(E)
rather than on M and is therefore not directly linked to the geometry of M.
The question arises whether one can write down a form representing c,(E)
in terms of the following data:

(1) a good cover U = {U,} of M which trivializes E;
(2) the transition functions

gep: Uy N Ug— GL(n, C)
for E relative to such a trivialization;
(3) a partition of unity subordinate to the open cover U.

The answer to this question is yes and the reader is referred to Bott [2]
for a thoroughgoing discussion. Here we will describe only the final recipe,
for to understand it properly, we would have to explore the concepts of
connections and curvature, which are beyond the scope of this book.

Observe first that we are already in possession of the desired formula for
the first Chern class of a complex line bundle L (see (6.38)). Indeed, if g,5 is
the transition function for L, the element

i
ctt =5 d 10g g.s
in the Cech-de Rham complex C* (U, Q*) is both d- and é-closed. By the
collating formula (9.5), once a partition of unity is selected, this cocycle
yields a global form. The cohomology class of this global form is ¢,(L).

In the general case one can construct a cocycle L¥Zjc*~#**9, with
ck-ek*ta jn Ck1(U, Q**9), that represents the k-th Chern class c,(E) by
the following unfortunately rather formidable “averaging” procedure.

Let I=(ig,...,i,) correspond to a nonvacuous intersection, set

U=Ugn-nU,,

.

and let
9oy * U,o N U"—' GL(", C)
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be the pertinent transition matrix function for E. Consider the expression
S -1
0, = jzotj go; dgo;

as a matrix of 1-forms on U; x R?*!, the t’s being linear coordinates in
R?*!, From 6 one can construct the matrix of 2-forms
- K I= dBl + * 0?

on U; x R**! and set

c/(E) = det(1 + -2'; K)p.

Our recipe is now completed by the following ansatz. Let
Aq = {(‘h Tty ‘¢+1)|t]2 0, Z t;= 1}-

be the standard g-simplex in R9* !, The 2k-form c¥(E) restricted toU X A,
and integrated over the “fiber A,” yields the desired form on U, :

i ¥ YE) = I CHE).
Aq

In other words, ¢,(E) is represented by the chain
k-1
ekt e CHUL QF).
q=0
Note that for dimensional reasons this chain has no component below the
diagonal and also no component in the zero-th column. This fact has
interesting applications in foliation theory (Bott [1]). In any case, the col-
lating procedure (9.5) now completes the construction of the forms cy(E) in
terms of the specified data.
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is isomorphic to the dual bundle
286 ‘
Conjugate vector space 286
Connected component 2, 189
Constant presheaf 109, 132, 141
on a good cover 143
Contractible 36
Contravariant functor 20
presheaf 109
presheaf on an open cover
142
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Convention
on indices 93
on signs (See Sign convention)
on subscripts and superscripts 92, 197
Convergence of a spectral sequence 160
Covariant functor 20
cohomology with coefficients in 110
Covering homotopy property 199, 202,
209
Covering space 209, 240 (See also
Universal covering)
Coordinate open cover =21
Coulomb potential 8
Critical plant 40, 42, 220
nondegenerate critical point 220
Critical value 40, 42, 220
Cup product 192
Curl 14
CW-approximation theorem 226
CW-complex 219
every manifold has the homotopy- type of
a CW-complex ‘220
good cover 219
has the homotopy type of a simplicial
complex 219
is homotopy equivalent to a space with a
good cover 219
skeleton 219

D-coboundary 96
D-cochaim 96
D-cocycle 95 .
de Rham, George 6
De Rham complex 15, 19
with compact supports 18
De Rham cohomology 15,19 (See also
Singular cohomology)
explicit isomorphism with Cech
cohomology 104
finite-dimensionality of 43, 99
homotopy invariance. 24
in the top dimension 87
is isomorphic to the-Cech
cohomology 98, 167, 175 (See also
Cech—de Rham isomorphism)
of a complex Grassmannian 293

of a complex projective space 172,
173, 177, 269

of a fiber bundle 170 (See also
Leray— Hirsch theorem)

of a flag bundle 285

of a flag manifold 285
of a manifold 87
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DeRham cohomology (cont.)
of a projective bundle 270, 283
of a real projective space 78
of a Riemann surface 5§
of a vector bundle 60, 61
of an infinite complex
Grassmannian 303
of an open Mobius strip 40, 138
of an opensetinR" 15
of an orientable manifold 47, 87
of R" 16, 35
of the circle 24
of the n-sphere 36
twisted de Rham cohomology 85
with compact supports (See Compact
cohomology)
with compact supports in the vertical
direction 61
with values in a flat vector bundle 80
De Rham—Cech isomorphism (See
Cech—de Rham isomorphism)
Decomposable 259
Deformation retraction 36
invariance of de Rham cohomology
under 36
Degenerate at the E_ term
Degree
and Hopf invariant
local 123
of a hypersurface 282
of apropermap (See Degree of a proper
map)
of a O-chain 184
Degree of a proper map
between compact oriented
manifolds 47
between Euclidean spaces 40
between spheres 215
is an integer 41
Density 85
integration of 86
Density bundle 85
transition functions 85

166

234

Derived couple 155
stationary 158
Diagonal

normal bundle is isomorphic to the
tangent bundle 127
Poincaré dual of 127
self-intersection number 128
Difference operator 110 (See also
Alternating difference; Coboundary
operator; Differential operator)
Differentiable function on a manifold 21

Index

Differential in a spectral sequence 162,
164

Differential complex 16, 156

Differential forms (See also Forms)
on a Euclidean space 13
on a manifold 21
with values in a vector bundle 80
with values in a vector space 79

Differential graded commutative

algebra (See Differential graded
algebra)

Differential graded algebra 259
existence of a minimal model
1-connected 260

Differential operator 13, 16
in the Mayer— Vietoris sequence 93
on a double complex 90, 162, 164

Diluting a bundle 291

Dimension of a filtration

Direct limit 112

Direct product
Chern classes of 267, 272
dual is not always a direct sum 46
of vector bundles 56

Direct sum
Chern classes of 279
dual is a direct product 46
of vector bundles 56

Direct sum orientation 66

Direct system of groups 112

Directed set 43

Divergence 14

Divided polynomial algebra 2035

Double complex 90 (See also Cech—de

Rham complex; Cech-singular
complex)
differential operator on 90, 162, 164
filtration on 156
spectral sequence of 165

Dual 56 (See also Dual bundle; Poincaré

dual)

Dual bundle 56
and conjugate bundle 286
Chern classes of 267, 280

260

160

Edge homorphism 178
Edge path group 147
Effective action 48 .
Eilenberg —Steenrod axioms 35
Eilenberg—MacLane space 9, 240,
250
K(Z,1) 240
K(z,2) 242
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K(Z,3) 245
K(Z» 1) 242
K(Zg 1) 243
rational cohomology ring 245
Elementary symmetric functions 278
Embedding a manifold 290
Endpoint map 252
Equivalent cocycles 54
Equivalent oriented trivializations 54
Euclidean space
compact cohomology 39
de Rham cohomology 35
infinite Euclidean space 183
singular cohomology 189
singular homology 185
Euler characteristic 126
is equal to the Euler number
of a fiber bundle 182
Euler class 72, 116
and spectral sequences
and the top Chern class
functoriality 74
in terms of the transition functions
in the Gysin sequence 179
is independent of good covers 118
is Poincaré dual to the zero locus of a
section 125 .
is the pullback of the Thom
class 132
naturality 74
of an oriented S*-bundle 126
of an oriented vector bundle 118
of the normal bundle of CP'in C P2
of the 2-sphere 125
Whitney product formula
Euler number 122
and local degree 124
is equal to the Euler characteristic
is the self-intersection of the
diagonal 128
Evaluation map 298, 303

128

1mn

273

73

133

128

Exact couple 155, 158
Exact forms 15
Exact sequence
of set maps 209
of vector bundles 65
of vector spaces 17
Ext 193-194
Extension principle 147

Extension problem 167
Exterior algebra 205
Exterior differentiation 14
Exterior derivative 14

is an antiderivation 14
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" Exterior power 278
Chern classes of 278, 279

Face map 183
Fiber 47, 48, 199
connectedness 202
homotopy type 200
Fiber bundle 47
cohomology (See Leray—Hirsch

theorem)
spectral sequence of 169
Fibering 199
as a basic trick of the trade 249
in the sense of Hurewicz 199
in the sense of Serre 199

Fibration 199 (See also Fibering)
Filtered complex 156
spectral sequence of 156
Filtration 156
induced filtration 159
length 159
on a double complex
Finite type 42
Finite-dimensionality of de Rham
cohomology 43, 99
Finitely generated Abelian group 9
First homotopy group 1 (See also
Fundamental group; Homotopy
groups)
Five Lemma 44
Fixed-point formula
of Lefschetz 129
Flag 282
Flag bundle 282
cohomology ring 285
is a split manifold 282 .
Poincaré series 285
Flag manifold 282
cohomology ring 284
obtained from the Grassmannian by two
flag constructions 293
Poincaré polynomial 285
Flat vector bundle 80
cohomology with coefficients in
80
Forms with compact support 8, 25
integration of 29
Forms with compact support in the vertical
direction 61
Frame 54
Free homotopy class 211
Free resolution 193
Front r-face 192

156
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Functor 20, 109 (See also Contravariant
functor; Covariant functor)
Functoriality (See Naturality)
Fundamental group 1, 206 (See also
Homotopy groups)
of a Riemann surface 1, 240
of the nerve of a good cover 148
of the support of a simplicial complex is
the edge path group 147

G-bundle 48
General linear group 56
Generator 40
for the cohomology of a circle 24
for the cohomology of a complex
projective space 236
for the cohomology of a sphere 37
for the compact cohomology of a
Euclidean space 40
Geodesically convex neighborhood 43
Global angular form 71, 73, 121, 124
formula for 122 )
God-given set of differential equations 15
God-given vector bundles 268
Good covers 42
are cofinal 43, 190
on a manifold 42
on a topological space 147
on a triangularizable space 190
on the torus 105
Graded algebra (See also Differential
graded algebra)
commutativity 20
Poincaré series 294
Gradient 3, 14, 221
Grassmannian (See Complex
Grassmannian; Infinite complex
Grassmannian; Real Grassmannian)
Griffiths, Phillip A. 262
Grothendieck, Alexander 266
Gysin sequence 177

Helicoid 268
Hessian 220
Hilton, Peter 265
Hirzebruch, F. 280
Hirzebruch— Riemann—Roch
theorem 280

Hirzebruch signature formula 290
Holomorphic section 282
Holomorphic tangent bundle 280
Hom functor 56, 169.

exactness of 169

Index

Homogeneous coordinates 75
Homogeneous space 292
Homology 183 (See also Singular
homology)
relation with homotopy 225
Homology Mayer— Vietoris
sequence 188
Homology spectral sequence 196
Homomorphism of presheaves 109
Homotopy 35
between continuous and differentiable
maps 213
Homotopy axiom for de Rham
~ cohomology 35
Homotopy exact sequence (See
Homotopy sequence)
Homotopy groups 2, 206
higher homotopy groups are
Abelian 207
in the C” sense and in the continuous
sense 214
of a bouquet of circles 240
of a Cartesian product 207
of a Riemann surface 240
of a sphere  (See Homotopy groups of a
sphere)
of a wedge of spheres 265
of an Eilenberg—MacLane space 240
of the circle 240
of the infinite real projective space 241
relation with homology 225
relative homotopy groups - 213
Homotopy groups of a sphere 214, 215
Hurewicz isomorphism 227
mS>) 256
w8 251
wy(S?H) 227
Serre’s theorem 254, 262
Homotopy invariance of de Rham
cohomology §,.24
Homotopy operator 34
for the compact Poincaré lemma 38
for the generalized Mayer— Vietoris
sequence 94
for the Poincaré lemma 34
Homotopy property of vector bundles 57
Homotopy sequence
of a fibering 209
relative homotopy sequence 213
Homotopy type
in the C”sense 36
of a CW-complex 219
of a manifold 220
of the fiber of a fibering 200
Hopf, Heinz 7, 227, 266
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Hopf invariant 228
degree definition 234
differential form definition 230
homotopy invariance 228
Hopf fibration 235
intersection-theory definition 229
of f : ™' 8" is zero for odd n 228
Hopf fibration 227
fiber over » 238
fiber over 0 238
Hopf invariant 235
Hopf index theorem 129
Hurewicz
fibering in the sense of 199
Hurewicz isomorphism theorem 225
Hurewicz, W. 2
Hypersurface in a complex projective
space 282
Chern classes of 282

Incidence comrespondence 303
Inclusion 249
Index
of a nondegenerate critical point
of a zero of a vector field 128
Index theorem
Atiyah—Singer 1
Hopf 129
Indices
convention on 93
Induced filtration 159
Induced map
in cohomology corresponds to pre-image
in geometry 69
in homotopy 210
on the boundary 18
Induced orientation on the boundary 31
Infinite complex Grassmannian 302
cohomology ring 303
Infinite complex projective space 242
cohomology ring 243
Infinite-dimensional manifold 303
Infinite Euclidean space 183
Infinite lens space 243
Infinite real projective space. 241
cohomology ring 245
has no higher homotopy 241
is the infinite Lens space L(x, 2) 243
Infinite sphere 242
has no homotopy 242
Integral 3, 27
Integration
of a density 86
of a differential form 27

220 ;
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Integration along the fiber 37, 6163
commutes withd 38, 62
in the Gysin sequence 179

Invariant form on a sphere 77

Jacobian determinant 28
Jacobian matrix 60, 220, 223, 224

Kernel of a set map 209
Kill
to get killed 177
Killing homotopy groups
Kiinneth formula
algebraic Kiinneth formula 173
finiteness hypothesis 108
for the compact cohomology -50
for the de Rham cohomology 47
for the singular cohomology 192
Mayer— Vietoris argument 47
spectral sequence proof 170
tic-tac-toe proof 106

250

-

L-class 279
Hirzebruch signature formula 290
Lefschetz fixed-point formula 129
Lefschetz number 129
Length of a filtration 159
Lens space 243
cohomology 244
Leray — Hirsch theorem 50
for the singular cohomology 192
Mayer— Vietoris argument 50
spectral sequence proof 170
tic-tac-toe proof 108
Leray, Jean §, 10
Leray’s construction 179
Leray’s theorem
for the de Rham cohomology 170
for the singular cohomology 192
Lie group 196, 208, 292 ’
Line bundle 115
Chern class of the dual line bundle 267
Chern class of a tensor product of line
bundles 267
complex line bundle 267
Line integral 3
Linking number 229
Live to the E, term 163
Local compatibility condition 114
Local degree of a section 123
Local product orientation 61
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Localization principle 53, 67
Locally constant presheaf

on a good cover 143

with group Z, 146
Locally constant sections 80
Locally constant trivialization 80
Locally finite open refinement 58
Long exact sequence 17, 157

coboundary operator in 17

derived couple 157

of homotopy groups 209
Loop space 1, 199

homotopy groups 208

of a sphere (See Loop space of a

sphere) )

of an Eilenberg—MacLane space 241
Loop space of a sphere

integer cohomology 203

ring structure 204

Manifold 4, 20
existence of a good cover on 42
homotopy type of 220, 224
is paracompact 58
of finite type 42
orientable <=> has a global nowhere
vanishing top form 29
orientable <=> tangent bundle is
orientable 55
simply connected => orientable
116
Manifold with boundary 30 (See also
Surface with boundary)
Map between spheres
degree 215
Hopf invariant 227
normal form 216
Mapping cylinder 249
Massey, William 155
Mathematical physics 8
Mayer— Vietoris argument 42
finite-dimensionality of de Rham 43
for the singular cohomology 193
Kiinneth formula 47
Leray-Hirsch theorem 50
Poincaré duality 44—46
Thom isomorphism 52
Mayer— Vietoris sequence 4, 22
for compact supports 26, 139
for countably many open sets 94
for singular chains 186
for singular cochains 189
for two open sets 22, 89
generalized 94

Index

homology Mayer— Vietoris sequence for
two open sets 188
Mayer— Vietoris principle
as a consequence of the tic-tac-toe
lemma 138
generalized 96
spectral sequence proof of 166
Measure zero 41, 42
Milnor, John 220, 221, 222, 226
Minimal model 259
existence of 260
main theorem 262
Mabius band 7 (See also open Mdbius
strip)
Mobius strip  (See open Mabius strip)
Monodromy representation 146
Morgan, John 262
Morphism 20
Morse, A.P. 41
Morse function 223, 224
Morse lemma 222
Morse theory 220
main theorems
Multiplicity
of a fixed point 129
of azero 125

221, 222

Natural transformation 109, 300
Naturality
Chern class 271
Euler class 74
n-connected 253
Nerve of an open cover 100
Nondegenerate critical point 220
Nondegenerate pairing 44
Nonorientable Poincaré duality 87, 141
Nonorientable Thom isomorphism 88,
131
Normal bundle 66 -
of CP'in CP? 75
of the diagonal is isomorphic to the
tangent bundle 127
of the zero locus of a transversal
section 133
Normal form of a map between two
spheres 216

Object 20
Obstruction theory 123
I-connected 261
Open collar 232
Open cover
Cech cohomology of 97, 99, 110
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coordinate open cover 21
good cover 42
Open Mobius strip
compact cohomology 40, 60, 141
de Rham cohomology 40, 138
Orientability
a simply connected manifold is
orientable 171
of a manifold 29
of aspherebundle (See Orientability of
a sphere bundle)
of a vector bundle 115
Orientability of a sphere bundle 114
spectral sequence point of view 171
Orientable manifold 29
Orientable sphere bundle (See Oriented
sphere bundle)
Orientable vector bundle 54 (See also
Oriented vector bundle)
over an orientable manifold 60
Orientation
direct sum orientation 66
local product orientation 61
on a manifold 29
on a sphere bundle 114
on a vector bundle 55
on the normal bundle of an oriented
submanifold 66
on the zero locus of a section 134
product orientation 123
Orientation bundle
of a manifold 84
of a vector bundle 88
Orientation-preserving map 28
Oriented manifold 29

Oriented sphere bundle 114, 171
cohomology 177 ]
Euler class 72, 116, 171

Gysin sequence 177
orientation 114
Oriented vector bundle 54, 60
Euler class 118
Orthogonal group (See also Special
orthogonal group)
reduction to 55
stable homotopy groups of 239

Paracompact space 58

Parallel translation 125

Partition of unity 4, 21

Path components 1, 189, 208
and connected components 208

Path fibration 199, 225

Path space 198
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Physics 8
Poincaré conjecture 147
Poincaré dual 51, 230 (See also Closed
Poincaré dual; Compact Poincaré
dual)
is the Thom class of the normal
bundle 67
localization principle 53, 67
of a circle on a torus 68
of a closed oriented submanifold 51
of a point 68
of a transversal mtersecuon 69
of the ambient manifold 68
of the diagonal 127
of the Euler class 125
of the pullback of a form 69
of the zero locus of a section 125
support of 67
Poincaré, Henri 5, 6
Poincaré duality 44
and the Thom isomorphism 60, 67
nonorientable 87, 141
Poincaré lemma 16, 35
for compact supports 19, 39
for compact vertical supports 63
Poincaré polynomial (See also Poincaré
series)
of a Grassmannian 293
Poincaré series 269, 296, 297
of a complex Grassmannian 292
of a complex projective space 269
of a flag bundle 285
of a flag manifold 285
of a graded algebra 294
of a projective bundle 271
Pontrjagin classes 289
application to the embedding of a
manifold 290
of a sphere 290
sign convention 289, 290
Pontrjagin, Lev S. 8, 266
Positive form 70
Postnikov approximation 250, 251
in the computation of homotopy
groups 9, 10, 256
in the computation of 7(S ) 256, 257
in the computation of w8} 251,
252
Postnikov tower 250
Presheaf 108
cohomology presheaf 109
constant presheaf 109, 141, 177
homomorphism of presheaves 109
locally constant on an open cover 143
locally constant presheaf 109. 141,177
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Presheaf (cont.)
of compact vertical cohomology 131
on an open cover 142
trivial presheaf 109
Product bundle
over a Grassmannian 292
over a projective space 268
Product orientation 123
Product structure
on a tensor product 176
on the Cech complex 174
on the Cech—de Rham complex 174
on the de Rham complex 14
on the singular cohomology 191
Projective general linear group 269
Projective plane )
real projective plane 105
Projective space  (See Complex projective
space; Infinite complex projective
space; Infinite real projective space;
Real projective space)
Projectivization of a vector bundle 269
cohomology ring 270, 283
pullback bundle 270
tautological exact sequence 270
universal quotient bundle 270
universal subbundle 270
Projection formula 63
Proper map 26
degree 40, 41
image is closed 41
not surjective => degree is zero 41
Pullback
commutes withd 19
in the Gysin sequence 179
of a differential form - 19
of a vector bundle 56

Quadratic transformation 268

Rational homotopy theory 259
main theorem 262
Real Grassmannian 292
and the classification of vector bundles
over a sphere 301
as a homogeneous space 292
homotopy groups 300
Real projective plane 105
good cover on 105
Real projective space 77, 241 (See also
Infinite real projective space; Real
projective plane)
de Rham cohomology of 78

Index

Real vector bundle 53
Realization 267, 286

of a complex matrix 287

of a complex vector bundle 267, 286
Reduction of the structure group 54

and orientability 55

to the orthogonal group 55

to the unitary group 267
Refinement 43 .
Regular sequence 295, 296
Regular value 40, 224, 229
Relative de Rham cohomology 79
Relative de Rham theory 78
Relative homotopy group 213
Relative homotopy sequence 213
Restriction 109
Retraction 36
Riemann integral 27
Riemann-Roch theorem 280
Riemann surface 1

as an Eilenberg—MacLane space 240

de Rham cohomology of 5

homotopy groups of 2, 240
Riemannian structure 42

Sard, A. 41
Sard’s theorem 41, 42, 215, 218, 224
Second spectral sequence 166
Section
and the Euler class 119, 302
existence of 122, 272
existencé => zero Euler class 119
partial section 122
singularities of 122
Serre
fibering in the sense of 199
Serre, Jean-Pierre 10, 227
Serre’s theorem on the homotopy groups of
the spheres 254, 262
Short exact sequence 17
Shrinking lemma 276, 303
Sign convention
general principle 174
indices 93
Pontrjagin classes
Signature 290
Signature formula of Hirzebruch 290
Singular chain 183
Singular cochain 188
Singularities of a section 122
local degree 123
Simplex
barycenter 142
barycentric subdivision 142

289, 290
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standard g-simplex 183
Simplicial approximation theorem 147
Simplicial complex 142
good cover on 190, 220
k-skeleton 142
support of 142
Simplicial map 146
Singular cohomology 189
and Cech cohomology 189, 191
of a Euclidean space 189
of a fiber bundle 192
of a flag bundle 285
of a flag manifold 285
of a Lens space 243, 244
of a special orthogonal group
of a unitary group 196
of an Eilenberg—MacLane
space 245-248
of K(Z,3) 245
of the infinite complex projective
space 243
of the infinite real projective space 245
of the loop space of a sphere 203
of the unit tangent bundle of a
sphere 194
Singular homology 184
of a Euclidean space 185
Skeleton-
of a CW-complex 219
of a simplicial complex 142
Spanning sections 298
Special orthogonal group 55, 195
action of 7y on m, 302
and orientability 55
and the classification of vector
bundles 302
identification of SO(3) with RP>
- 195
integer cohomology of SO(4) 195
integer cohomology of SO(3) 195
reduction to 55
Spectral sequence 159
and the Euler class 171
Cech—de Rham isomorphism
convergence 160
differential 161164
exact couples 155
Kiinneth formula 170
Leray — Hirsch theorem 170
Mayer— Vietoris principle 167
product structures 174
of a double complex (See Spectral
sequence of a double complex)
of a fiber bundle 169
of a filtered complex 160

195, 196

167,175
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orientability 171
orientability of a simply connected
manifold 171
Spectral sequence of a double
complex 161

differential 162, 164
. second spectral sequence 166
Sphere

Cech cohomology of 102
cohomology of 36
Euler class of the tangent bundle of 125
generator in the top dimension of 37
homotopy groups 214, 215, 227
invariant form on 77
minimal model 259, 260
Serre’s theorem on the homotopy groups
of 254; 262
tangent bundle (See Tangent bundle of
a sphere)
unit tangent bundle of the 2-sphere is
So(3) 195
volume form on 37, 235
Sphere bundle (See also Oriented sphere
bundle)
orientation 114
structure group 113
Spherical coordinates 238
Split manifold 273, 275
is the flag bundle 283
Splitting
of a G-module 194
of a vector bundle 274
Splitting principle 275
in the computation of Chern
classes 279
in the proof of the Whitney product
formula 277
Stable homotopy groups
of the orthogonal group 239
of the unitary group 239
Star 142, 190, 220
Standard orientation
on a sphere 70
on CP' 237
Standard g-simplex 183
Stationary derived couples 158
Steenrod, Norman 123
Stereographic projection 235
Stiefel, Eduard 266
Stokes' theorem 31
for densities 86
Stone, A. H. 58
Structure group 47
of a complex vector bundle 54, 267
of a fiber bundle 47
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Structure group (cont.)
of a real vector bundle 53
of a sphere bundle 113
of an orientable vector bundle 55
reduction of (See Reduction of the
structure group)
Subcomplex 156
Subdivision
barycentric 142
Sullivan, Dennis 259, 262
Support -
of a form 24
of a function 18
of a simplicial complex
Surface with boundary 231
Sylvester’s theorem 220
Symmetric function theorem 278
Symmetric power 279
Chern classes of 279

142

Tangent bundle 55
holomorphic tangent bundle 280
of a sphere (See Tangent bundle of a
sphere)
Tangent bundle of a sphere
cohomology 194
Euler class 125
unit tangent bundle of the 2-sphere is
SO0@3) 195
Tangent space 21
Tangent vector field (See Vector field)
Tautological exact sequence
over a Grassmannian 292
over a projective bundle 270
over a projective space 268
Telescoping construction 241
infinite complex projective space 242
infinite Grassmannian 302
infinite Lens space 243
infinite real projective space 241
infinite sphere 242
Tensor product
exactness 169
Chern classes of 267, 279
of vector bundles 56
product structure 176
Thom class 64, 232
a characterization of 64
as a relative cohomology class 78
in terms of the global angular form 74,
132
in terms of the patching data 75
of adirect sum 65
N

Index

pulls back to the Euler class
relation to the Poincaré dual
Thom isomorphism 63
and Poincaré duality 60
nonorientable 88, 131
3-sphere 243
w8y 251
wy(S 257
Tic-tac-toe lemma 135
Tic-tac-toe proof
of Poincaré duality 141
of the generalized Mayer— Vietoris
principle 138
of the Kiinneth formula 105
of the Leray— Hirsch theorem
Todd class 279
Tor functor 193, 194
Torsion 9, 182, 194
Torus 221
good cover on
Total space 48
Total Chern class
classes)
Total Pontrjagin class
Pontrjagin classes)
of a complex manifold 290
of a sphere 290
Transition functions
for a fiber bundle 48
for a manifold 20
for a vector bundle 53
for the conjugate bundle 286
for the density bundle 85
for the direct sum 56
for the dual bundle 56
for the tensor product 56
reduction of the structure group
54
Transgression 247
Transgressive element 247
Transversal intersection 68, 69
codimension is additive 69
is dual to the wedge product
normal bundle of 69
Transversality theorem 123
Triangularizable space 190
good covers are cofinal 190
Triangulation 190
of a manifold 190
Tricks
basic tricks in homotopy theory
249
Trivialization
and transition functions

74, 132
67

108

105
270 (See also Chern

289 (See also

69

54
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of a coordinate open cover 21
locally constant 80
Tubular neighborhood 65, 214
Tubular neighborhood theorem 66
Twisted cohomology 80, 82
and trivialization 80, 83
invariant under the refinement of open
covers 82
Twisted de Rham cohomology 84
is the same as the de Rham cohomology
on an orientable manifold 85
Twisted de Rham cohomology with
compact supports 84
Twisted de Rham complex 85

Unit sphere bundle 114
Unit tangent bundle of a sphere
cohomology of 195
Unitary group 196, 292
integer cohomology of 196
reduction of the structure group to 267
stable homotopy groups of 239
Universal Chern classes 304
Universal coefficient theorems
Universal covering 252
of a circle 152
Universal quotient bundle
and the cohomology of a
Grassmannian 293
classification of vector bundles
over a Grassmannian 292, 298
over a_projective bundle 270
over a projective space 268
Universal subbundle 77, 270
over a Grassmannian 292
over a projective bundle 270
over a projective space 268
Upper half space 30
1t-small chain 185

194

298

Vector bundles
bundle)

classification 299
cohomology 60
compact cohomology 60, 65
compact vertical cohomology 61, 63
complex vector bundle 54
Euler class 72, 118
exact sequence of 65
flat 80

(See also oriented vector
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God-given 268

isomorphic <> cocycles are
equivalent 54

orientability of 54

orientable <=> associated sphere
bundles are 115

orientable <=> determinant bundles
are 116

over a contractible manifold 59

over a simply connected manifold

over a sphere 302

real vector bundle 53

reduction of the structure group 54,267

splitting of 274

to ‘‘dilute’’ a vector bundle 291

116

unit sphere bundle of 114
Vector field 21

Hopf index theorem 129

index of a zero 128

on a sphere 125
Volume integral 3
Volume form

on a sphere 27

on the 2-sphere 235
Wedge of spheres 153, 262

minimal model 263
ranks of the homotopy groups 265
Wedge product of differential forms 14
is Poincaré dual to a transversal
intersection 69
Weil, André 5, 10, 89
Whitehead tower 252, 253, 257
Whitney embedding theorem 213
Whitney, Hassler 7, 217, 266
Whitney product formula
for the Chern class 272, 275
for the Euler class 133
for the L-class = 279
for the Pontrjagin class
for the Todd class 279

289

Yang—Mills 8

Zero locus of a section
normal bundle of 133
orientation on 134
Poincaré dual of 134

Zig-zag 95
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