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Abstract4

We compute the equivariant complex K-theory ring of a cohomogeneity-one action of a5

compact Lie group at the level of generators and relations and derive a characterization of K-6

theoretic equivariant formality for these actions. Less explicit expressions survive for a range7

of equivariant cohomology theories including Bredon cohomology and Borel complex cobor-8

dism. The proof accordingly involves elements of equivariant homotopy theory, representation9

theory, and Lie theory.10

Aside from analysis of maps of representation rings and heavy use of the structure theory11

of compact Lie groups, a more curious feature is the essential need for a basic structural fact12

about the Mayer–Vietoris sequence for any multiplicative cohomology theory which seems to13

be otherwise unremarked in the literature, and a similarly unrecognized basic lemma govern-14

ing the equivariant cohomology of the orbit space of a finite group action.15

Compact Lie group actions G ñ M of cohomogeneity one, those whose orbit space M{G is a 1-16

manifold, have been a perennial object of study in differential geometry [Mos57a, Neu68, Par86,17

AlAl93, Püt09, Hoel10, Fra11, He14, GaZ18, AnP20], first because they are the most obvious class18

to study after homogeneous (= cohomogeneity-zero) actions, but also because they furnish ex-19

amples of Einstein metrics [Ber82] and manifolds with exceptional holonomy [BryS89, CGLP02,20

CGLP04], and especially because “large” isometry, for which low cohomogeneity gives a mea-21

sure, has long played a central organizing role (sometimes called the Grove program [Grove])22

in finding Riemannian manifolds of nonnegative curvature [GrZ00, GrZ02, Ver04, GrVWZ06,23

GrWZ08, Zil09, Dear11, VZ14]. As nontrivial amounts of work have gone into understanding24

these actions geometrically,1 their algebro-topological invariants are of some interest, and phe-25

nomena arising in the computation of the rational Borel equivariant cohomology of these ac-26

tions [CGHM19] hint at the generalization to a large class of cohomology theories pursued in the27

present work. The case of equivariant K-theory is particularly interesting, given its implications28

for the existence of vector bundles with prescribed properties; for example, Theorem 6.1 of the29

present work is used in a work of Amann–González-Álvaro–Zibrowius [AmGÁZ19, Thm. A(1)]30

to construct metrics of non-negative curvature on vector bundles over a class of manifolds ad-31

mitting cohomogeneity-one actions.32

In considering cohomogeneity-one actions, one almost always operates in the framework of33

Mostert’s classical structure theorem2, encapsulated in Figure 0.2.34

1 See the bibliography in the recent work of Galaz-García and Zarei [GaZ18] for some indication of the scope of
this study.

2 with an important erratum caught by Richardson and Samelson [Mos57b]
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Theorem 0.1 (Mostert [Mos57a]). Let G be a compact Lie group acting smoothly on a compact smooth35

manifold M in such a way that the quotient M{G is a compact, connected 1-manifold, possibly with36

boundary.337

• If M{G is a closed interval, there are inclusions of closed subgroups H Ñ K˘ Ñ G such that K˘{H38

are homeomorphic to spheres4 and M is the double mapping cylinder of the span G{H Ñ G{K`.39

• If M{G is a circle, there exist a closed subgroup H of G and an element w of the normalizer NGpHq40

such that M is diffeomorphic to the mapping torus of the right translation by w on G{H.41

(a) M{G an interval (b) M{G a circle

Figure 0.2: Schematics for the orbit projection M ÝÑ M{G of a cohomogeneity-one action

In the case of the double mapping cylinder, if M is smooth, then the isotropy quotients K˘{H
can actually be taken isometric in the Riemannian sense to round spheres given by orbits in
irreducible K˘-representations [Besse, Ex. 7.13], suggesting equivariant complex K-theory K˚G,
whose coefficient ring is the ring RG of complex representations, which is already motivated by
its applications, is also an especially natural topological invariant of such an action. Indeed, the
Mayer–Vietoris sequence of the cover tU˘u in Figure 0.2(a) reduces to the exact sequence

0 Ñ K0
GpMq ÝÑ RK´ ˆ RK` ÝÑ RH δ

ÝÑ K1
GpMq Ñ 0, (0.3)

where the middle map is the difference of the restrictions RK˘ ÝÑ RH between complex repre-42

sentation rings, showing the additive structure of K˚GpMq is wholly a question of representation43

theory.44

Surprisingly, the multiplicative structure turns out to be as well. The key fact is that the45

connecting map δ in (0.3) is actually a K0
GpMq-module homomorphism. The analogous fact in46

Borel cohomology can be established by chasing cochains around a diagram, but there are no47

cochains to follow in K-theory. The result nevertheless turns out to be extremely general:48

Proposition 2.1. Let E˚ be a multiplicative (Z-graded, G-equivariant) cohomology theory. Then the nat-49

ural E˚pXq-module structure on the terms of the Mayer–Vietoris sequence of a triad pX; U, Vq of G–CW50

complexes with X “ U YV is preserved by the connecting map in the sequence.51

3 In the noncompact case, where the quotient space is an open or half-open interval, M deformation retracts onto
a homogeneous fiber G{H of M ÝÑ M{G, so this case is already understood from the point of view of this paper.

4 Without the smoothness hypothesis (omitted by Mostert), K˘{H can also be the Poincaré homology sphere, as
noted by Galaz-García and Zarei only recently [GaZ18].
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This basic result seems underappreciated; working topologists surveyed by the author seem not52

to know it, nor does it seem to be discussed in the literature. The enhanced connecting map makes53

life simpler in a variety of situations, and a sample application to the cup product on a closed54

3-manifold is discussed in Example 2.2. Most importantly for us, Proposition 2.1 immediately55

implies a general structure theorem for the equivariant cohomology ring of G ñ M in multiplica-56

tive cohomology theories with coefficients concentrated in even degree, Proposition 2.9, and one57

thus has a general expression for the K-theory ring, Theorem 2.11.58

To say more concretely what the ring K˚GpMq is, one needs to explicitly identify the maps in59

the sequence (0.3). The structure theorem for H˚
GpM;Qq proceeds from analysis of an analogous60

sequence, so one naturally changes the nouns in those statements and hopes the same arguments61

will prove the stronger results. While the results are indeed the expected ones, the cohomological62

proof methods fail utterly and the K-theoretic proof is incomparably more involved.63

For example, the algebraic lemma governing the map H˚pBK;Qq ÝÑ H˚pBH;Qq when K{H64

is an odd-dimensional sphere is an easy result on commutative graded algebras, but the anal-65

ogous statement about surjections RK ÝÑ RH between ungraded polynomial rings is a deep66

open problem in affine algebraic geometry, the Abhyankar–Sathaye embedding conjecture, and one67

is forced to an analysis in Section 4 involving the structure theory of compact Lie groups and68

the classification of homogeneous spheres. The result when one of the spheres K˘{H is odd-69

dimensional then follows:70

Theorem 4.1. Let M be the double mapping cylinder of the span G{H Ý
Ý
Ý
Ý
Ñ
Ñ G{K˘ for inclusions H Ñ71

K˘ Ñ G of closed, connected subgroups of a compact Lie group G such that K˘{H are spheres and the72

fundamental groups π1pK˘q are free abelian.73

(a) Assume that both K`{H and K´{H are odd-dimensional. Then we have an RG-algebra isomor-
phism of K˚GpMq “ K0

GpMq with one of

RHrt˘1
´ , t˘1

` s

pt´ ´ 1qpt` ´ 1q
,

RHrt˘1
´ , ρ

`
s

pt´ ´ 1qpρ
`
q
,

RHrρ
´

, t˘1
` s

pρ
´
qpt` ´ 1q

,
RHrρ

´
, ρ
`
s

pρ
´

ρ
`
q

,

where we identify RK˘ with the Laurent polynomial ring RHrt˘1
˘ s when dim K˘{H “ 1 and with the74

polynomial ring RHrρ
˘
s when dim K˘{H ě 3.75

(b) Assume K`{H is odd-dimensional and K´{H is even-dimensional. Then we have an RG-algebra
isomorphism of K˚GpMq “ K0

GpMq with

RK´ ‘ pt´ 1qRHrt˘1s ă RHrt˘1s – RK` or RK´ ‘ ρRHrρs ă RHrρs – RK`,

where we identify RK` with RHrt˘1
˘ s if dim K`{H “ 1 and with RHrρ

˘
s if dim K`{H ě 3. The76

product in either case is determined by the restriction RK´ RH.77

In all cases the RG-module structure is determined by restriction.78

Similar difficulties ensue when the spheres K˘{H are both even-dimensional. The determi-79

nation of the product on H˚
GpM;Qq in this case reduces to pleasant arguments involving Serre80

spectral sequences of fibrations between classifying spaces and the eigenspaces of the action of81

the so-called Weyl group of a geodesic of M on H˚pBH;Cq, relying on the fact these eigenspaces82

are themselves graded vector spaces; but the proof in K-theory involves a lengthy multi-layered83

induction on the structure of compact Lie groups, whose base cases require a number of lemmas84

in the Lie theory and representation theory of simple Lie groups. The result, however, comes out85

as clean as one could hope:86
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Theorem 0.4. Let M be the double mapping cylinder of the span G{H Ý
Ý
Ý
Ý
Ñ
Ñ G{K˘ for inclusions H Ñ

K˘ Ñ G of compact Lie groups such that K˘ are semisimple groups which are products of simply-
connected groups and SOpoddq factors and K˘{H are even-dimensional spheres. Then there exist an
element z P K1

GpMq and an RG-algebra isomorphism

K˚GpMq – pRK´|H X RK`|Hq b Λrzs,

where the injections RK˘ ÝÑ RH and the RG-module structure are given by restriction.87

This statement is a simplification of the more general but less pithy Theorem 5.10. The base cases88

of the induction remarkably all turn out to be known special examples; see Remark 5.11.89

These structure results also allow one to characterize surjectivity of the map K˚GpMq ÝÑ90

K˚pMq, also known as K-theoretic equivariant formality, using the Hodgkin–Künneth and Atiyah–91

Hirzebruch–Leray–Serre spectral sequences and some homological algebra:92

Theorem 6.1. Consider a cohomogeneity-one action of a compact, connected Lie group G with π1pGq93

torsion-free on a smooth closed manifold M such that the orbit space M{G is an interval and the com-94

mutator subgroups of the exceptional isotropy groups K˘ are the products of simply-connected groups95

and SOpoddq factors. Then the action is K-theoretically equivariantly formal if and only if rk G “96

maxtrk K´, rk K`u.97

So much for the case when M{G is an interval. When M{G is a circle, we can say nothing98

categorical before inverting the order |Γ| of the cyclic subgroup Γ generated by the class of99

w P NGpHq in the component group π0NGpHq (see Example 1.9), but once we do, the result100

follows formally from a much more fundamental fact about equivariant cohomology theories:101

Theorem 1.2. Let G be a compact Lie group and Γ a discrete finite group, and X a finite pG ˆ Γq–
CW complex whose isotropy subgroups are of the form H ˆ ∆ for H ď G and ∆ ď Γ. Moreover, let
E˚ be a Z-graded G-equivariant cohomology theory valued in Zr1{|Γ|s-modules. Then the quotient map
π : X ÝÑ X{Γ induces an isomorphism

E˚pX{Γq „
ÝÑ E˚pXqΓ

onto the submodule of Γ-invariant elements.102

The proof uses an equivariant Atiyah–Hirzebruch spectral sequence and an observation about103

Bredon cohomology to reduce to the classical result for singular cohomology it generalizes, and104

the result is again the sort of thing that one expects to find in the literature but does not. In105

any event, it has an immediate corollary, Lemma 1.5, describing the equivariant cohomology of106

a mapping torus in broad generality, which specializes to the result we wanted:107

Proposition 1.7. Let M be the mapping torus of the right translation by w P NGpHq on a homogeneous
space G{H of a Lie group G with finitely many components, and write w˚ for the maps induced on
K˚pG{Hq and K˚GpG{Hq – RH by the right translation by w. Let ` be the least positive natural number
such that w` lies in the identity component of NGpHq. Then one has K˚pS1q- and

`

RGbK˚pS1q
˘

-algebra
isomorphisms

K˚G
`

M;Zr1{`s
˘

– K˚pS1q b pRHqxr
˚
wy bZr1{`s,

K˚
`

M;Zr1{`s
˘

– K˚pS1q b K˚pG{Hqxr
˚
wy bZr1{`s,
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respectively, where p´qxw
˚y denotes the subring of w˚-invariant elements, the K˚pS1q-module structure is108

given in both cases by pullback from M{G « S1, and the RG-algebra structure is induced by the inclusion109

H ãÝÝÑ G.110

The structure of the paper is as follows. The less involved case where M{G is a circle, includ-111

ing Proposition 1.7, along with some necessary definitions, is discussed in Section 1. In Section 2,112

we assume the orbit space M{G is an interval and discuss those aspects of K˚GpMq which do not113

depend on representation theory on the dimensions of the homogeneous spheres K˘{H, includ-114

ing the Mayer–Vietoris proposition 2.1 and a general structure theorem 2.11. The refinements of115

this theorem in the case M{G is an interval, depending on the parities of the dimensions of K˘{H,116

rely on material on Weyl groups, Lie theory, and maps of representation rings developed in Sec-117

tion 3. In Section 4, we derive the consequences, including Theorem 4.1, when one of the spheres118

K˘{H is odd-dimensional, and in Section 5, we address the case when both of the spheres K˘{H119

are even-dimensional and derive Theorem 0.4. Finally, in Section 6 we use these structural results120

to characterize K-theoretic equivariant formality for actions with orbit space an interval.121

Acknowledgments. The author would like to thank Omar Antolín Camarena, Jason DeVito, Oliver122

Goertsches, Chen He, Liviu Mare, Clover May, Marc Stephan, Marcus Zibrowius, and the anony-123

mous referee for helpful conversations, Ján Mináč for thoughtful advice on presentation, and the124

National Center for Theoretical Sciences in Taipei for its hospitality during a phase of this work.125

1. Coverings and mapping tori126

We begin with this section because it is the only one involving any inversion of coefficients or127

any specifically equivariant homotopy theory. It does not involve representation theory or Lie128

theory in any serious way, so it is somewhat independent of the rest of the document, and we129

take it as an opportunity to get some long definitions out of the way.130

Recall from Theorem 0.1 that if a compact Lie group acts smoothly on a compact manifold M
with orbit space a circle (the case in Figure 0.2(b)), then M is diffeomorphic to the mapping torus
of the right translation by some element w P NGpHq on G{H, namely

G{H ˆ r0, 1s
pgH, 1q „ pgwH, 0q

.

As w is of finite order |w|, cutting the mapping torus at t “ 1, gluing |w| copies end to end, and131

then regluing the fiber t “ 0 to t “ |w| by w|w| “ idG{H, we see G{Hˆ S1 is a |w|-sheeted covering132

of M. The G-equivariant K-theory of G{H ˆ S1 is easy to compute, so most of our work is in133

computing the equivariant cohomology of a space from that of a finite-sheeted cover.134

Definition 1.1. Let G be a topological group. A G-n-cell is a space G{Kˆ Dn, where K ď G is a135

closed subgroup and Dn the closed n-disc, equipped with the G-action g ¨ phK, xq :“ pghK, xq. A136

G–CW complex is a G-space X constructed iteratively as the colimit (= union) of a sequence of137

spaces Xn, where X0 is a disjoint union of G-0-cells and otherwise each Xn is obtained from Xn´1138

by adjoining a collection of G-n-cells G{Kα ˆ Dn
α along G-equivariant attaching maps G{Kα ˆ139

Sn´1
α ÝÑ Xn´1. When we do not specify otherwise, Sn comes equipped with the trivial G-action140

(and hence is, if you like, a G–CW complex each of whose G-cells is of the form G{G ˆ Dk). A141

G–CW pair pX, Aq comprises a G–CW complex X and a G–CW subcomplex A, meaning each142
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G-cell of A is also a G-cell of X. Given a G–space X, we denote by X` :“ X > ˚ the disjoint union143

of X and a new isolated, G-fixed point ˚.144

A reduced G-equivariant (Z-graded) cohomology theory is a contravariant graded abelian145

group–valued homotopy functor rE˚ “
À

nPZ
rEn on the category of pointed G–CW complexes146

which takes a cofiber sequence A Ñ X Ñ X{A to an exact sequence of groups and is equipped147

with a natural graded group isomorphism σ : rE˚X „
ÝÑ rE˚`1ΣX of degree one, the suspension,148

where ΣX “ S1 ^ X is the reduced suspension of X. (Possibly obscured in the notation: S1 is149

again assumed to have trivial G-action.) Such a theory comes automatically with an associated150

unreduced theory on unpointed G–CW pairs given by E˚pX, Aq :“ rE˚pX{Aq (by convention X{∅ :“151

X`) and satisfying the Eilenberg–Steenrod axioms save dimension [Matu73, §1].152

Let OrbG denote the category of orbits G{K (for K closed) and G-equivariant maps, hOrbG153

the category with the same objects but morphisms G-homotopy classes of G-maps, Top the cat-154

egory of topological spaces, and Ab the category of abelian groups. A coefficient system is a155

contravariant functor M : hOrbG ÝÑ Ab. For a given space X, the fixed point set assignment156

G{H ÞÝÑ XH gives a standard contravariant functor OrbG ÝÑ Top and composing any covariant157

functor Top ÝÑ Ab gives a coefficient system. As an example, for each n P N and each G–CW158

complex X there is a functor HnpXq : G{H ÞÝÑ HnpXH
n , XH

n´1q. The assignment X ÞÝÑ HnpXq is159

itself covariantly functorial in G–CW complexes.160

The Bredon cohomology H˚
GpX; Mq of a G–CW complex X with coefficients in a coefficient161

system M is defined as the cohomology of the complex Cn
GpX; Mq :“ Nat

`

HnpXq, M
˘

of nat-162

ural transformations Hn ÝÑ M, where the nth coboundary map of the complex is precompo-163

sition with the tuple Bn “ pB
G{H
n qG{HPOrbG for BG{H

n the connecting map in the long exact ho-164

mology sequence of the triple pXH
n`1, XH

n , XH
n´1q. Bredon cohomology is the unique unreduced165

G-equivariant cohomology theory E˚ which satisfies the wedge axiom and the requirement that166

E˚pG{Hq “ E0pG{Hq “ MpG{Hq for G{H P OrbG.167

We write |Γ| for the order of a group Γ.168

Theorem 1.2. Let G be a compact Lie group and Γ a discrete finite group, and X a finite pG ˆ Γq–
CW complex whose isotropy subgroups are of the form H ˆ ∆ for H ď G and ∆ ď Γ. Moreover, let
E˚ be a Z-graded G-equivariant cohomology theory valued in Zr1{|Γ|s-modules. Then the quotient map
π : X ÝÑ X{Γ induces an isomorphism

E˚pX{Γq „
ÝÑ E˚pXqΓ

onto the submodule of Γ-invariant elements.169

Proof. We first show the result for Bredon cohomology Hpp´; Eqq. As the group EqpG{Kq admits
division by |Γ|, a classical Leray spectral sequence argument (apparently due to Grothendieck
[Grot57, Thm. 5.3.1, Cor. to Prop. 5.2.3]) shows

φG{K : H˚
`

XK
p {Γ, XK

p´1{Γ; EqpG{Kq
˘

ÝÑ H˚
`

XK
p , XK

p´1; EqpG{Kq
˘Γ

is an isomorphism. Endow EqpG{Kq with the trivial Γ-action. Since the Kronecker pairing is Γ-
invariant, the universal coefficient morphism

Hp`XK
p , XK

p´1; EqpG{Kq
˘

Hom
`

HppXK
p , XK

p´1q, EqpG{Kq
˘
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is also Γ-equivariant, and since EqpG{Kq is divisible by |Γ|, induces a surjection of Γ-invariants,
every Γ-invariant element being the average over a Γ-orbit. It follows from this surjectivity, the
surjectivity of φG{K, and the functoriality of the universal coefficient theorem that

fG{K : Hom
`

HppXK
p {Γ, XK

p´1{Γq, EqpG{Kq
˘

ÝÑ Hom
`

HppXK
p , XK

p´1q, EqpG{Kq
˘Γ

is also a surjection. By the observation that
` GˆΓ

Hˆ∆

˘

K{Γ «
´

` GˆΓ
Hˆ∆

˘

{Γ
¯

K, our assumption on the170

isotropy groups of X, and induction, we have pXnq
K{Γ “ pXn{ΓqK for all n, so the natural trans-171

formations HppX{Γq ÝÑ Eq are encoded by coherent sequences in the domain of
ś

G{KPOrbG
fG{K.172

Equally, assigning each EqpG{Kq the trivial Γ-action, the Γ-equivariant natural transformations173

HppXq ÝÑ Eq are coherent sequences in the codomain of
ś

G{KPOrbG
fG{K. Thus we will have174

an isomorphism Cp
G

`

X{Γ; Eqq
„
ÝÑ Cp

GpX; EqqΓ if we can show fG{K is also injective for each175

G{K P OrbG.176

To this end we may forget the corestriction to Γ-invariants in the codomain and just show the
map of Homs is injective, and for this it is enough to see the predual

ψG{K : HppXK
p , XK

p´1q ÝÑ Hp
`

pXp{ΓqK, pXp´1{ΓqK
˘

is surjective. From the definition of a pG ˆ Γq–CW complex and our assumption on isotropy
groups, the quotient XK

p {XK
p´1 “ pXp{Xp´1q

K is a wedge of summands

pG{Hα ˆ Γ{∆αq
K
` ^ Sp “

`

pG{Hαq
K ˆ Γ{∆α

˘

` ^ Sp

for various product subgroups Hα ˆ ∆α ď G ˆ Γ, so the group HppXK
p , XK

p´1q –
rHppXK

p {XK
p´1q

decomposes as

à

α

rHp

´

`

pG{Hαq
K ˆ Γ{∆α

˘

`
^ Sp

¯

–
à

α

rH0
`

pG{Hαq
K ˆ Γ{∆α

˘

`
–

à

α

H˚
0
`

pG{Hαq
K˘‘|Γ{∆α|,

and quotienting by Γ we have a similar isomorphism

Hp
`

pXp{ΓqK, pXp´1{ΓqK
˘

–
à

α

H0
`

pG{Hαq
K˘.

But under these identifications the αth summand of ψG{K is just iterated addition px1, . . . , x|Γ{∆α|
q ÞÝÑ177

x1 ` ¨ ¨ ¨ ` x|Γ{∆α|
in the group H0

`

pG{Hαq
K
˘

, which is certainly surjective.178

Varying p, we have our isomorphism of cochain complexes C˚GpX{Γ; E˚q ÝÑ C˚GpX; E˚qΓ.
Note that C˚GpX; E˚q is divisible by |Γ| and recall that given a cochain complex C of |Γ|-divisible Γ-
modules, the inclusion CΓ ãÝÝÑ C induces an isomorphism H˚pCΓq

„
ÝÑ H˚pCqΓ and multiplication

by |Γ| is again invertible on H˚pCq. Finally the composite

H˚
GpX{Γ; E˚q „

ÝÑ H˚
`

C˚pX; E˚qΓ
˘ „
ÝÑ H˚pX; E˚qΓ

is the claimed isomorphism in Bredon cohomology.179

There is a equivariant Atiyah–Hirzebruch spectral sequence due to Matumoto [Matu73, §4],5180

functorial in and converging to the E˚-cohomology of finite G–CW complexes, and the entries181

Ep,q
2 of its second page are the Bredon cohomology groups Hp

Gp´; Eqq with coefficients in the182

5 The spectral sequence with sheaf coefficients due to Segal [Seg68, §5] reduces to this one in the case E˚ “ K˚G but
is less immediately adapted to our needs.
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coefficient system K ÞÝÑ EqpG{Kq. Forgetting the Γ-action and regarding X as a G–CW complex,183

we see π : X ÝÑ X{Γ induces a morphism of these spectral sequences. Since the spectral sequence184

can be defined using a Cartan–Eilenberg Hpp, qq-system with Hpp, qq :“
À

n EnpXp´1, Xq´1q and185

the skeleta Xj are Γ-invariant by definition, the differentials dr of this spectral sequence are Γ-186

equivariant. On E2 pages, the induced map of spectral sequences is H˚
GpX{G; E˚q ÝÑ H˚

GpX; E˚q,187

which we have just seen is an isomorphism onto its image H˚
GpX; E˚qΓ. Inductively applying the188

recollection about invariants of cochain complexes from the previous paragraph to each page,189

we see π˚ induces a pagewise isomorphism of one spectral sequence with the Γ-invariants of the190

second, and so at E8 we recover an isomorphism gr E˚pX{Γq „ÝÑ pgr E˚XqΓ, where gr denotes the191

associated graded module with respect to the cellular filtration. But for any filtered Γ-module N192

divisible by |Γ|, the inclusion NΓ ãÝÝÑ N induces an isomorphism grpNΓq
„
ÝÑ pgr NqΓ, so the E8193

map further factors through an isomorphism gr E˚pX{Γq „
ÝÑ gr

`

E˚pXqΓ
˘

. This is the associated194

graded map induced by E˚pX{Γq ÝÑ E˚pXqΓ, so as the filtration involved is finite, that map is an195

isomorphism as well [Board99, Thm. 2.6].196

As a corollary we have a result on mapping tori, which we prefer to state as a ring isomor-197

phism, so we will need to define an additional notion.198

Definition 1.3. A G-equivariant cohomology theory E˚ is said to be multiplicative if E˚ is valued
in commutative graded algebras and the suspension axiom is replaced in the following way. Note
that E˚p˚,∅q “ rE0S0 is a commutative ring with unity 1 and the projections πY, πX : Y ˆ X ÝÑ

Y, X induce a natural cross product

rE˚Yb rE˚X ˆ
ÝÑ rE˚pY^ Xq,

yb x ÞÝÑ π˚Yy ¨ π˚Xx.

The new axiom is that there exist an element ς P rE1S1 such that the map σ : rE˚X „
ÝÑ rE˚`1pS1^Xq199

given by σpxq :“ ςˆ x is a natural isomorphism.200

Remark 1.4. This is somewhat leaner than the usual axiomatization. It is typical in defining a201

multiplicative cohomology theory to demand it be represented by a ring spectum, but we do not202

require our theories to satisfy the wedge axiom, and thus our results will allow for things like203

p-completed theories.204

For non-represented theories, it is usual to require natural cross products satisfying natu-205

rality axioms, but it seems simpler to demand cup products and instead note the other ax-206

ioms follow from the cga structure and functoriality. The typical axiomization also demands207

sign-commutativity of evident squares involving suspensions, but these are all consequences of208

graded commutativity and the uniform definition of suspension as a cross product. Unreduced209

theories additionally require the cross product cooperate with the connecting maps from the long210

exact sequences of a pair, but the connecting map can be defined in terms of the suspension in211

the unreduced theory, so the commutativity of these squares is again a formal consequence of212

functoriality and the uniform definition of the suspension.213

Now we can state the result.214

Lemma 1.5. Let Y be a G-space and ϕ a self-homeomorphism of Y commuting with the G-action and such
that there exists a positive integer ` such that ϕ` is homotopic to idY. Write X for the mapping torus of
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ϕ and let E˚ be a Z-graded multiplicative equivariant cohomology theory valued in Zr1{`s-algebras. Write
E˚ :“ E˚p˚q. Then

E˚X – E˚pYqxϕ
˚y b

E˚
ΛE˚rzs,

where z is the pullback of a generator of rE1pS1q – rE0pS0q “ E˚ under X ÝÑ S1.215

Here, as usual, E˚pYqxϕ
˚y denotes the subring of elements invariant under pullback by ϕ.216

Proof. Note that X admits an `-sheeted cyclic covering Z by the mapping torus of ϕ`, which is217

homotopy equivalent to the mapping torus Y ˆ S1 of the identity. The homotopy equivalence218

h : Z ÝÑ Y ˆ S1 and its homotopy inverse j can both be taken to preserve the projection to S1,219

and the action of g “ 1` `Z P Z{` on Z induces a map hgj on Y ˆ S1 which is homotopic to220

py, θq ÞÝÑ
`

ϕpyq, θ ` 2π
`

˘

, which, rotating the S1 component, is in turn homotopic to py, θq ÞÝÑ221
`

ϕpyq, θ
˘

. It follows from the suspension axiom for rE˚ that E˚S1 – E˚ ‘ rE˚S1 – E˚ ‘ E˚r1s –222

E˚‘ E˚ ¨tzu. Now assuming multiplicativity, as z P E1S1 is a free E˚p˚q-module generator of rE˚S1
223

and S1 is a suspension, we have E˚S1 – ΛE˚rzs. It follows again from the suspension axiom that224

E˚S1bE˚ E˚Y ÝÑ E˚pS1ˆYq is a ring isomorphism.6 The action of 1` `Z on E˚YbE˚ E˚S1 – E˚Z225

is given by ab s ÞÝÑ ϕ˚ab s, so an application of Theorem 1.2 yields the claim.226

Proposition 1.6. Let a cohomogeneity-one action of a compact, connected Lie group G on a smooth
manifold M be given with orbit space M{G « S1. Recall from Theorem 0.1 that this means M is G-
equivariantly diffeomorphic to the mapping torus of right multiplication on G{H by some element w P

NGpHq and let ` be the smallest positive integer such that w` lies in the identity component of NGpKq.
Suppose E˚ is a Z-graded multiplicative equivariant cohomology theory valued in Zr1{`s-algebras. Then
one has a graded ring isomorphism

E˚M – E˚pG{Hqxr
˚
wy b

E˚
ΛE˚rz1s, |z1| “ 1.

Proof. Note that w` lies in the path-component of the identity, so that right multiplication by w`
227

is homotopic to idG{H, and apply Lemma 1.5.228

The result we want follows immediately:229

Proposition 1.7. Let M be the mapping torus of the right translation by w P NGpHq on a homogeneous
space G{H of a Lie group G with finitely many components, and write w˚ for the maps induced on
K˚pG{Hq and K˚GpG{Hq – RH by the right translation by w. Let ` be the least positive natural number
such that w` lies in the identity component of NGpHq. Then one has K˚pS1q- and

`

RGbK˚pS1q
˘

-algebra
isomorphisms

K˚G
`

M;Zr1{`s
˘

– K˚pS1q b pRHqxr
˚
wy bZr1{`s,

K˚
`

M;Zr1{`s
˘

– K˚pS1q b K˚pG{Hqxr
˚
wy bZr1{`s,

respectively, where p´qxw
˚y denotes the subring of w˚-invariant elements, the K˚pS1q-module structure is230

given in both cases by pullback from M{G « S1, and the RG-algebra structure is induced by the inclusion231

H ãÝÝÑ G.232

6 Explicitly, naturality of multiplication implies the suspension isomorphism rE˚pY`q ÝÑ rE˚`1pS1^Y`q is given by
multiplication by the pullback of z, giving a natural nonunital ring isomorphism rE˚S1 bE˚

rE˚pY`q ÝÑ rE˚pS1 ^Y`q.
From the cofiber sequence S1 _ Y` Ñ S1 ˆ Y` Ñ S1 ^ Y` we get E˚S1 bE˚ E˚pY`q

„
ÝÑ E˚pS1 ˆ Y`q and from

Y Ñ Y` Ô ˚ we get E˚S1 bE˚ E˚Y „
ÝÑ E˚pS1 ˆYq.
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Remark 1.8. There is a transfer map in K-theory we could also apply directly to bypass this level233

of generality.234

Such a clean statement is not possible without inverting the order of w.235

Example 1.9. Let G “ SOpnq and K the block-diagonal subgroup r1s‘n´2‘ SOp2q. Then NGpKq has
two components, represented by the identity matrix and the block-diagonal w “ r1s‘n´3‘r´1s‘
“

0 1
1 0

‰

, conjugation by which corresponds to complex conjugation under the standard identifica-
tion of Up1qwith the unit circle in the complex plane. Thus w acts on RSOp2q – Zrt˘1s by t Ø t´1,
where t : SOp2q „

ÝÑ Up1q is the defining representation on C – R2. We let M be the mapping
torus of the right action of w on G{K. To proceed integrally rather than via Proposition 1.7, we
use the Mayer–Vietoris sequence of the cover of M by two intervals overlapping at the endpoints.
This is an exact sequence

0 Ñ K0
G M ÝÑ RKˆ RK ÝÑ RKˆ RK ÝÑ K1

G M Ñ 0

where the middle map is pa, bq ÞÝÑ pa ´ b, a ´ wbq. Since the first map is diagonal, the middle
map may be replaced with the map φ : RK ÝÑ RK taking a to a´wa. Thus

K0
GpMq – ker φ “ RpKqxwy “ Zrt` t´1s,

K1
GpMq – coker φ “ Zrt˘1s

L

Zttn ´ t´n : n P Nu.

Since the denominator in the cokernel induces on the numerator precisely the relations t´n ” tn,
a set of coset representatives for coker φ is given by Zt1, t, t2, t3, . . .u. Writing q “ t` t´1, one sees

r1s
q
ÞÝÑ rts ` rt´1s “ 2rts, rts

q
ÞÝÑ rt2 ` 1s

q
ÞÝÑ rt3 ` 3ts

q
ÞÝÑ rt4 ` 4t2 ` 3s

q
ÞÝÑ ¨ ¨ ¨ ,

and generally qn ¨ rts has highest term rtn`1s, so K1
G
`

M;Zr1{2s
˘

is a free cyclic K0
G

`

M;Zr1{2s
˘

-236

module on r1s. Note that with Z coefficients, K1
GpMq is not a free K0

GpMq-module.237

2. Mayer–Vietoris and double mapping cylinders238

The circle case disposed of, we begin analyzing the double mapping cylinder Figure 0.2(a) in239

Mostert’s dichotomy 0.1 from the introduction.240

The double mapping cylinder M of π˘ : G{H Ý
Ý
Ý
Ý
Ñ
Ñ G{K˘ admits an obvious invariant open

cover by the respective inverse images U´ and U` of the subintervals r´1, 1{2q and p´1{2, 1s of
X{G « r´1, 1s, and the intersection W “ U´ XU` equivariantly deformation retracts to G{H
and U˘ to G{K˘ in such a way that the inclusions W ãÝÝÑ U˘ correspond to the projections π˘.
Since K˚GpG{Γq “ K0

GpG{Γq “ RΓ for closed subgroups Γ ď G by restriction of an equivariant
bundle to the identity coset 1Γ P G{Γ and K˚G is Z{2-graded [Seg68, Ex. (ii), p. 132; Prop. (3.5)],
the Mayer–Vietoris sequence in K-theory reduces to the exact sequence

0 Ñ K0
GpMq ÝÑ RK´ ˆ RK` ÝÑ RH δ

ÝÑ K1
GpMq Ñ 0

noted in the introduction. As promised there, this sequence is more informative than one might241

expect, reflecting the fact that in great generality, the properties of the Mayer–Vietoris sequence242

are better than is commonly acknowledged. Those who do not care about generality can safely243

substitute E˚ “ K˚G everywhere in the following without loss.244
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Proposition 2.1. Let E˚ be a multiplicative (Z-graded, G-equivariant) cohomology theory. Then the nat-245

ural E˚pXq-module structure on the terms of the Mayer–Vietoris sequence of a triad pX; U, Vq of G–CW246

complexes with X “ U YV is preserved by the connecting map in the sequence.247

The additional structure on the connecting map is most helpful when even or odd cohomol-248

ogy of the constituent subsets vanishes, making the connecting map surjective.249

Example 2.2. Let M be a closed, oriented 3-manifold. Then M can be triangulated. A regular250

neighborhood U of its 1-skeleton is an open handlebody (i.e., homeomorphic to the bounded251

component cut out of R3 by an embedded closed surface), and examining the local picture in252

each 3-simplex, one sees the interior of the complement V is also a handlebody. The closures253

of U and V meet in a closed, oriented surface Sg, and this assemblage is called a Heegaard254

splitting of M. Letting Ng denote a standard genus-g handlebody with boundary Sg, we may255

write M « Ng Y f Ng for some gluing homeomorphism f : Sg ÝÑ Sg. If we write aj for the256

standard g circles generating H1pNgq and bj for the g circles bounding discs in Sg representing257

the other standard generators, so that |ai X bj| “ δi
j, then M is determined up to homeomorphism258

by the images f pbjq. Let αj and β j be the dual basis of H1pSgq.259

Fattening U and V slightly, we may apply the Mayer–Vietoris sequence in cohomology, which
contains the subsequence

0 Ñ H1pMq κ
ÝÑ Zg ‘Zg λ

ÝÑ H1pSgq
δ
ÝÑ H2pMq Ñ 0.

Thus H1pMq and H2pMq are determined by the map λ, which is in turn determined by the map f .
If we make the identifications UXV “ Sg Ĺ Ng “ U, then the first component λ1 : Zg ÝÑ H1pSgq

is the inclusion ι˚ : αj ÞÝÑ αj and the second component λ2 is f ˚ι˚, so we have an isomorphism

im δ – coker λ “
Ztαj, β ju

Ztαj, f ˚αju
,

which in particular is spanned by the images of the β j, and H1pMq – ker λ is spanned by260

elements p
ř

miαi,
ř

njαjq such that
ř

nj f ˚αj has no β-component. By Proposition 2.1, the cup261

product µ1,2 : H1pMq ˆ H2pMq ÝÑ H3pMq is determined by y ! δpzq “ δpλ1κy ! zq, where262

λ1κy is some linear combination of the αi and z can be taken to be a linear combination of the263

β j, and the second cup product is taken in H˚pSgq. Since this product is given on generators by264

αi ! β j “ δi
j, the Mayer–Vietoris sequence gives µ1,2 in terms of H1p f q.265

Though Proposition 2.1 does not seem to appear as such in the literature, with a bit of faith it266

is possible to cobble together a proof from citations.267

Terse proof of Proposition 2.1. In the long exact sequence of a pair pX, Aq, the connecting map268

E˚pAq ÝÑ E˚`1pX, Aq is an E˚pXq-module homomorphism; see Whitehead [Whi62, (6.19), p. 263]269

for an algebraic proof for cohomology theories represented by ring spectra and note the proof270

still follows from our axioms. Up to homotopy, the Mayer–Vietoris sequence of pX; U, Vq is the271

long exact sequence of a pair pX1, U1 >V1q in which X1 is homotopy equivalent to X via a homo-272

topy equivalence X1 ÝÑ X sending disjoint G–CW subcomplexes U1 and V1 respectively to U and273

V; cf. Adams [Adams74, p. 213] for a version of this statement for a representable theory.7274

7 Another version of this statement appears in a MathOverflow solution due to J. Peter May [May] for CW-spectra
(or, to quote, “any halfway reasonable category” of spectra).
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This is in a moral sense a geometry paper, so for those with less faith, a more expansive and275

geometric account follows.276

Notation 2.3. In what follows between now and the return to K-theory, all maps will be equiv-277

ariant with respect to a fixed topological group G and all G-spaces will come equipped with a278

G-fixed basepoint ˚. The wedge sum and smash product inherit the expected actions, and the279

closed unit interval I “ r0, 1s and circle S1 “ I{p0 „ 1q are basepointed at 0 and equipped with280

the trivial G-action. We write CX “ I^X for the reduced cone and ΣX “ CX{X “ S1^X for the281

reduced suspension, with the induced actions.282

The G-structure is just along for the ride in the proof that follows, and everything we state283

through to Proposition 2.9 follows for nonequivariant theories through the expedient of setting284

G “ 1.285

Definition 2.4. Let rE˚ be a multiplicative G-equivariant cohomology theory (not even necessarily286

equipped with suspension maps). The diagonal ∆ : X ÝÑ X ^ X makes a G-space X a coalgebra287

in the sense that p∆^ idq ˝∆ “ pid^∆q ˝∆. A right X-coaction ∆Y : Y ÝÑ Y^X on a G-space Y is288

a map such that p∆Y ^ idq ˝ ∆Y “ pid^∆q ˝ ∆Y; such a map makes Y a right X-comodule and in-289

duces an additive homomorphism ∆Y ˝ µY,X : rE˚Yb rE˚X ÝÑ rE˚Y which one checks, unravelling290

definitions, to be a right rE˚X-algebra structure. A map f : Y ÝÑ Z between right X-comodules291

such that ∆Z ˝ f “ p f ^ idq ˝ ∆Y is an X-comodule homomorphism, and induces a rE˚X-algebra292

homomorphism f ˚ : rE˚Z ÝÑ rE˚Y.293

Proposition 2.5. Let G be a topological group and E˚ a multiplicative G-equivariant cohomology theory.294

Then in the long exact sequence of a G–CW pair pX, Aq, all objects are E˚X-modules and all arrows295

E˚X-module homomorphisms. In particular the image of E˚pX{Aq ÝÑ E˚X is an ideal and the image of296

E˚A ÝÑ rE˚`1pX{Aq is a nonunital subring with zero multiplication.297

We adapt a proof from Hatcher’s manuscript K-theory text [HatVBKT, Prop. 2.15], which298

considers the cross product with a single element and does not make explicit use of the notion299

of a comodule.300

Proof. It will be enough to prove the result for the reduced theory rE˚. Note that for pointed G–
CW subcomplexes A of X and pointed G–CW complexes S with trivial action, S^ A admits the
X-coaction s^ a ÞÝÑ s^ a^ a and S^ pXY CAq the X-coaction

s^ x ÞÝÑ s^ x^ x,

s^ t^ a ÞÝÑ s^ t^ a^ a.

It is easy to check these coactions make a cofiber sequence A Ñ X Ñ X Y CA a sequence of
X-comodule homomorphisms. To see this also makes the Puppe sequence

A i
ÝÑ X ÝÑ XY CA ÝÑ ΣA Σi

ÝÑ ΣX ÝÑ ΣpXY CAq ÝÑ Σ2A ÝÑ ¨ ¨ ¨

a sequence of X-comodule homomorphisms, it suffices to observe the coaction commutes with301

(suspensions of) the connecting map XYCA ÝÑ S1^A given by t^ a ÞÝÑ p1´ tq^ a and x ÞÝÑ ˚.302

To replace S^ pX Y CAq with S^ X{A, observe the coaction s^ rxs ÞÝÑ s^ rxs ^ x on the latter303

makes the collapse map another X-comodule homomorphism.304

Applying rE˚ to the Puppe sequence then yields an rE˚X-module structure on the long exact305

sequence of pX, Aq. To see the image of the connecting map has trivial multiplication, note this306

map can be written as rE˚ΣA ÝÑ rE˚pX{Aq.307
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Remark 2.6. The meticulous reader will observe that the proof of Proposition 2.5 makes use of308

the fact the coaction smashes with X on one side and the suspension smashes with S1 on the309

other. This choice actually matters; the choice of a left E˚X-action instead of a right requires an310

additional sign, making the connecting map fail to be an E˚X-module homomorphism.8 One311

could be forgiven for suspecting this has something to do with the well-known sign in the Puppe312

sequence: our choice of q : t ^ a ÞÝÑ p1 ´ tq ^ a for the map X Y CA ÝÑ A ^ S1 comes from313

a nonstandard identification CXY CA ΣA ´
Ñ ΣA in transitioning from the iterated cofiber314

sequence to the Puppe sequence. This choice of identification makes E˚q the opposite ´δ of the315

connecting map δ : E˚A ÝÑ E˚`1pX, Aq defined through the axioms but makes the next map316

ΣE˚i rather than the ´ΣE˚i it would become under the standard identification. As q and its317

variant ´q are both X-comodule maps, the choice between them is immaterial to the success of318

Proposition 2.5, and moreover, this choice inflicts a global sign of ´1 on the connecting maps in319

each degree, so the correction factor arising from putting the E˚X-action on the left would be a320

separate, logically independent sign.321

To obtain the same result on connecting maps for the Mayer–Vietoris sequence, we realize it322

as the long exact sequence of a pair, as in the terse proof.323

Figure 2.7: Schematic of CU Y X1 Y CV in Proposition 2.8

Proposition 2.8. Let pX; U, Vq be a triad of G–CW complexes with X “ U Y V. Write W for the324

intersection U X V and X1 for the double mapping cylinder
`

U ˆ t0u
˘

Y pW ˆ Iq Y
`

V ˆ t1u
˘

of the325

inclusions U Ðâ W ãÑ V. Then for any G-equivariant cohomology theory, the long exact sequence of the326

pair
`

X1, U ˆ t0u >V ˆ t1u
˘

is the Mayer–Vietoris sequence of the triad pX; U, Vq.327

Proof. It is again enough to assume W is pointed and prove the result for the reduced theory. In328

so doing, we replace W ˆ I with the reduced cylinder W ^ I` “ pW ˆ Iq{
`

t˚u ˆ I
˘

, turning X1329

into X2 “ X1{
`

t˚u ˆ I
˘

and U ˆ t0u >V ˆ t1u into U _ V, which is naturally a subspace of X2330

since the basepoints p˚, 0q and p˚, 1q have been identified. The result is as in Figure 2.7.331

8 In detail, for singular cohomology, the k-submodule C˚pX, A; kq of cochains vanishing on C˚pAq is a two-sided
ideal of C˚pX; kq with respect to the cup product, which thus restricts to both a right and a left action of C˚pX; kq on
C˚pX, A; kq. Using the zig-zag lemma to compute the connecting map δ of the short exact sequence C˚pX, A; kq Ñ
C˚pX; kq Ñ C˚pA; kq of cochain complexes gives δ

`

a ! i˚pxq
˘

“ δa ¨ x but δ
`

i˚pxq ! a
˘

“ p´1q|x|x ¨ δa. In terms of
our preceding discussion, the sign arises because the connecting map of the pair pX, Aq factors as the composition
of ring homomorphisms and the suspension isomorphism H˚pA; kq δ

Ñ H˚`1pCA, Aq „Ð rH˚`1pΣAq arising from the
long exact sequence of the pair pCA, Aq and the standard homeomorphism CA{A « ΣA; but since the suspension
isomorphism can be identified as H˚pA; kq „ÝÑ H1pS1; kq bk H˚pA; kq ˆÑ rH˚`1pS1 ^ Aq, the cross product on the left
with the fundamental class of S1, a sign can be avoided only by switching the side on which H˚pX; kq acts.
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Note X2 is G–homotopy equivalent to X via the map collapsing the I-direction in the reduced
cylinder W ^ I`. The Puppe sequence begins

U _V ÝÑ X2 ãÝÝÑ CU Y X2 Y CV
{X2
ÝÝÑ ΣU _ ΣV ÝÑ ΣX2.

We can replace the third term with ΣW because the map collapsing CU _ CV to a point is a
G–homotopy equivalence. The maps then yield an exact sequence of graded groups

rE˚U ‘ rE˚V ÐÝ rE˚X δ
ÐÝ rE˚´1W

ζ
ÐÝ rE˚´1U ‘ rE˚´1V ÐÝ rE˚´1X,

which we check is the Mayer–Vietoris sequence:332

• That U _V ãÝÝÑ X2 yields the pair of restrictions rE˚X ÝÑ rE˚U ‘ rE˚V is clear.333

• The connecting map in the Mayer–Vietoris sequence is defined as the composition

rE˚´1W ÝÑ rE˚pV{Wq „
ÐÝÝ rE˚pX{Uq ÝÑ rE˚X,

where the first map is the connecting map in the long exact sequence of the pair pV, Wq,
hence induced by V{W „

Ð V Y CW Ñ ΣW, the second is the excision arising from the
homeomorphism V{W ÝÑ X{U, and the last is induced by the projection X X{U.
Thus the Mayer–Vietoris connecting map is obtained by following the path from X to ΣW
along the bottom of the following commutative diagram, while δ comes from following
along the top:

ΣW X2
{U_Voooo „ // //

{U

����

X

����
V Y CW

{V

OOOO

„

{CW
// // V{W « // X{U.

• The map ζ is induced as the composition along the right in the commutative diagram

ΣW « // CW Y pW ^ I`q Y CW

{pW^I`q

����

� � // CU Y pW ^ I`q Y CV

{pW^I`q

����
ΣW _ ΣW �

� // ΣU _ ΣV.

On the other hand, the left vertical map collapsing a cylinder’s worth of Ws is G–homotopy334

equivalent to the pinch map ΣW ΣW _ ΣW collapsing only the equator W ˆ t1{2u,335

so the composition ΣW Ñ ΣW _ ΣW Ñ ΣU _ ΣV is homotopic to ΣjU ´ ΣjV , where336

jU , jV : W ãÝÝÑ U, V are the inclusions. The minus sign comes from observing a small neigh-337

borhood the cone point of the abstract CU “ U ^ I lies near suspension coordinate t “ 0,338

agreeing with the suspension coordinate of the included copy of CU in CUYpW^ I`qYCV,339

while the cone point of the included copy of CV is near t “ 1, disagreeing with that of the340

abstract CV.341
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The conjunction of these two results gives Proposition 2.1. Taking W “ UXV in the statement,342

the image of δ : E˚´1W ÝÑ E˚X is an ideal with multiplication zero, since δ is induced by343

X ÝÑ ΣW and the multiplication of the non-unital algebra rE˚ΣW is zero. This result allows344

us to completely compute the ring E˚X from E˚U, E˚V, and E˚W in amenable cases. We write345

jU , jV : W ãÝÝÑ U, V and iU , iV : U, V ãÝÝÑ X.346

Proposition 2.9. Let E˚ be a Z-graded G-equivariant multiplicative cohomology theory and pX; U, Vq a
triple of G–CW complexes with X “ UYV and such that the odd-dimensional E-cohomology of U, V, and
W “ U XV vanishes. Then one has a graded ring and a graded E˚W-module isomorphism, respectively:

EevenX – E˚U ˆ
E˚W

E˚V, EoddX –

´

E˚W L

im j˚U ` im j˚V

¯

r1s.

The multiplication of odd-degree elements is zero, and the product px, δwq P EevenXˆ EoddX ÝÑ EoddX347

descends from the multiplication of E˚W in the sense that x ¨ δw “ δ
`

j˚Ui˚Upxq ¨w
˘

.348

Proof. The additive isomorphisms follow from the reduction of the Mayer–Vietoris sequence to

0 Ñ EevenX i
ÝÑ E˚U ˆ E˚V ÝÑ E˚W δ

ÝÑ EoddX i
Ñ 0.

The multiplication in the even subring follows because i is the ring homomorphism induced by349

U >V ÝÑ X. The product of odd-degree elements x, y P EoddX is zero by Proposition 2.1 since350

δ is surjective.9 To multiply an even-degree element x with an odd-degree element δw, note that351

δ is an E˚X-module homomorphism by Proposition 2.1, so particularly x ¨ δw “ δpx ¨ wq. Now352

recall the module structure on E˚W is given by restriction as x ¨w “ piU ˝ jUq˚pxq ¨w.353

Remark 2.10. In this paper, of course, we take E˚ “ K˚G. In our previous joint work [CGHM19],354

we took E˚ to be Borel cohomology X ÞÝÑ HQ˚pEG bG Xq, so that E˚pG{Γq “ HQ˚BΓ is con-355

centrated in even degree by Borel’s theorem; generally, given a nonequivariant cohomology the-356

ory e˚ such that e˚p˚q is torsion in odd degrees, one could rationalize and take E˚ to be ratio-357

nal Borel G-equivariant e-cohomology eQ˚G so that EnpG{Γq “ eQnBΓ. Since we have rational-358

ized [Rud98, Cor. 7.12], the Atiyah–Hirzebruch spectral sequences of CW-skeleta BnΓ collapse359

at E2 “ H˚pBnΓ;Qq b e˚p˚q, which is concentrated in even degree, so that E˚pG{Γq “ eQ˚GBΓ360

is concentrated in even degree as well and Proposition 2.9 applies. The author is unsure how361

much demand there is for eQ˚G, but has at least sighted the “Borel equivariant complex bordism”362

functor X ÞÝÑ MU˚pEGbG Xq in the wild.363

We can now finally return to K-theory.364

Theorem 2.11. Let M be the double mapping cylinder of the projections π˘ : G{H Ý
Ý
Ý
Ý
Ñ
Ñ G{K˘. The

Mayer–Vietoris sequence reduces to a short exact sequence

0 Ñ K0
G M ÝÑ RK´ˆ RK` ÝÑ RH ÝÑ K1

G M Ñ 0

of K0
G M-module homomorphisms, inducing the following graded ring and graded RH-module isomor-

phism, respectively:

K0
GpXq – RK´ ˆ

RH
RK`, K1

GpXq –
´

RHL

RK´|H ` RK`|H
¯

r1s,

9 Alternatively, since i is injective on EevenX and vanishes on EoddX, we have ipxyq “ ix ¨ iy “ 0 so xy “ 0.
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where p´q|H denotes restriction of representations along the inclusions H ãÝÝÑ K˘. The product of odd-
degree elements is zero, and the product K0

GpXq ˆ K1
GpXq ÝÑ K1

GpXq descends from the multiplication of
RH:

pρ´, ρ`q ¨ σ “ ρ´|H ¨ σ

for pρ´, ρ`q in the fiber product RK´ ˆ
RH

RK` and σ P K1
GpXq the image of σ P RH.365

Example 2.12. Let G “ Opnq with K “ K˘ “ Op3q and H “ Op2q block-diagonal. Recall that
ROp3q – RSOp3q ˆ RpZ{2q “ Zrσ, εs{pε2 ´ 1q, where σ : Op3q ãÑ AutR3 Ñ AutC3 complexifies
the defining representation and ε “ det : Op3q ÝÑ AutC is the determinant, and ROp2q –
Zrρ, εs{pε2´1, ρε´ ρq, where ρ : Op2q ÝÑ AutC2 complexifies the defining representation [Min71].
The restriction RK ÝÑ RH is given by σ ÞÑ ρ` 1 and ε ÞÑ ε. Now Theorem 2.11 yields a short
exact sequence

0 Ñ K0
GpMq ÝÑ

Zrσ, εs

pε2 ´ 1q
ˆ

Zrσ, εs

pε2 ´ 1q
ÝÑ

Zrρ, εs

pε2 ´ 1, ρε´ ρq
Ñ 0.

The kernel decomposes additively as the sum

K˚GpMq “ K0
GpMq –

#

px, xq : x P
Zrσ, εs

pε2 ´ 1q

+

‘
`

pσ´ 1qpε´ 1q, 0
˘

‘
`

0, pσ´ 1qpε´ 1q
˘

This bears a familial similarity to the description in Theorem 0.4(b) but cannot be put in those366

terms due to torsion.367

The cohomological situation, by way of contrast, is much simpler: we have H˚
K – Qrp1s – H˚

H,368

where p1 the first Pontrjagin class of the tautological bundle over the infinite Grassmannian369

Grp3,R8q “ BOp3q, so H˚
G M – Qrp1s. The equivariant Chern character taking a representation370

V to the Chern character of the associated vector bundle VOp3q Ñ BOp3q sends σ´ 3 to p1 and371

annihilates ε´ 1.372

Example 2.13. If G “ K˘ “ H, the resulting double mapping cylinder is just the unreduced
suspension SpG{Hq and one has

K0
G
`

SpG{Hq
˘

“ RG, K1
G
`

SpG{Hq
˘

“ RH L

impRG Ñ RHq r1s.

Remark 2.14. The decomposition in Theorem 2.11 admits a winning interpretation in terms of373

bundles. The isomorphism RK´ˆRH RK` „
ÝÑ K0

GpMq comes explicitly from the decomposition of374

the double mapping cylinder as the union along G{H of the mapping cylinders MpG{H Ñ G{K˘q375

of the natural quotient maps G{H ÝÑ G{K˘ for any pair σ˘ of K˘-representations agreeing on H,376

one forms the union of the bundles MpGbH Vσ˘ Ñ GbK˘ Vσ˘q ÝÑ MpG{H Ñ G{K˘q along the377

restriction G bH Vσ˘ ÝÑ G{H to their common boundary. Particularly, for a K`-representation378

σ` which is trivial on H, one can extend the bundle MpGbH Vσ` Ñ GbK` Vσ`q by gluing on a379

trivial bundle over MpG{H Ñ G{K´q; call this ξσ` . The formal difference of ξ`
σ`

and the trivial380

bundle Cdim Vσ` is a typical element of the summands ρRHrρs and pt ´ 1qRHrt˘1s figuring in381

Theorem 4.1(a).382

For Theorem 4.1(b), one similarly forms a virtual bundle ξσ´ from a K´-representation σ´383

trivial on H. That the product pξσ´ ´ Cdim Vσ´ q b pξσ` ´ Cdim Vσ` q should be zero follows by384

noting the first factor is zero over MpG{H Ñ G{K´q and the second over MpG{H Ñ G{K`q.385
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The map RH ÝÑ K1
GpMq admits the following description. Given an H-representation σ, use386

Bott periodicity to send the class of the bundle GbH Vσ to an element of K0
G

`

S2pG{Hq
˘

, and then387

pull back to an element of K0
GpSMq along the suspension of the map M SpG{Hq collapsing388

each of the end-caps G{K˘ to a point.389

Hodgkin [Hodgkin, Cor. 10.1] notes the geometric significance of the class βpρq P K1pK{Hq, for390

ρ a K-representation trivial on H, is as the class of the bundle on SpK{Hq obtained by gluing trivial391

bundles Vρ over two copies of the cone CpK{Hq along their boundaries K{H via the identification392

pkH, vq „
`

kH, ρpkqv
˘

.393

3. Restrictions of representation rings394

To say anything more meaningful about the map RK´ ˆ RK` ÝÑ RH figuring in Theorem 2.11,395

unsurprisingly, we will have to do some representation theory.396

Definition 3.1. If Γ is any group, we write Γ1 for its commutator subgroup and Γab for its abelian-397

ization. We then have a functorial short exact sequence 1 Ñ Γ1 Ñ Γ Ñ Γab Ñ 1. The center398

of Γ is denoted by ZpΓq and the connected component of the identity element by Γ0. If two399

groups Π and A contain a subgroup F central in both, we write ΠbF A for the balanced product400

pΠˆ Aq{
 

p f , f´1q : f P F
(

. When a group Γ is isomorphic to such a balanced product with F401

finite, we refer to the isomorphism as a virtual product decomposition. It is well known that a402

compact, connected Lie group Γ admits a virtual product decomposition Γ – Γ1 b
F

ZpΓq0, and F is403

the intersection of Γ1 and ZpΓq0.404

A representation ring RΓ is augmented over Z by the unique Z-linear map taking an honest405

representation to its dimension. Given a commutative ring k, the category of augmentation-406

preserving maps of augmented k-algebras is pointed in the sense it admits k as a zero object. The407

kernel of the augmentation A ÝÑ k is denoted IA, or, if A “ RΓ is a representation ring, IΓ.408

The quotient k-module IA{pIAq2, the module of indecomposables, is written QA. Specializing409

the general definition of exactness in a pointed category, a sequence of augmented k-algebras410

A
f
Ñ B

g
Ñ C is said to be exact at B if ker g “ f pIAqB. A short exact sequence k Ñ A ÝÑ B ÝÑ411

C Ñ k of augmented k-algebras is said to be split if there exists a section C B inducing an412

isomorphism Abk C „
ÝÑ B.413

Given an inclusion A ãÝÝÑ B of rings, an element b P B is said to be transcendental over A if414

the A-algebra map Arxs ÝÑ B from the polynomial ring in one indeterminate over A sending x415

to b is injective.416

3.1. The splitting lemma417

We need a refinement of the following splitting lemma due to Hodgkin.418

Theorem 3.2 ([Hodgkin, Prop. 11.1]). Given any compact, connected Lie group K with free abelian
fundamental group, the sequence

ZÑ RKab ÝÑ RK ÝÑ RK1 Ñ Z

induced by abelianization is split exact.419

This essentially allows us to factor out the representation ring of the connected component of420

the center of a Lie group. We actually want to factor out an arbitrary central torus. In order for421
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this to work we need RK1 to be a polynomial ring, or equivalently, that K1 be a direct product of422

simply-connected groups and odd special orthogonal groups [Ste75].10
423

Proposition 3.3. Let K be a compact, connected Lie group such that RK1 is a polynomial ring and let K
be a connected subgroup containing K1 with free abelian fundamental group and A a virtual complement,
meaning a central torus with F “ KX A finite and such that K – KbF A. Then the sequence

ZÑ RpA{Fq ÝÑ RK ÝÑ RK Ñ Z (3.4)

induced by the exact sequence 1 Ñ K Ñ K Ñ A{F Ñ 1 is split exact. The splitting is not natural.424

Proof. Hodgkin already proved the statement in the first paragraph in the case where K “ K1 is425

simply-connected. His argument in fact only uses that RK1 is polynomial, so we can get away426

assuming only this. Then Hodgkin’s argument is obtained from the one below by letting pK, K1q427

respectively take the roles of pK, Kq. This shows RK is the tensor product of a polynomial and a428

Laurent algebra, by the split exactness of (3.4), so that the argument now applies in general to429

give a splitting of RK in terms of RK.430

The argument. The restriction KˆA ÝÑ K of the multiplication of K is a surjective homomor-431

phism with kernel the antidiagonal νF “
 

p f , f´1q : f P F
(

inducing the evident isomorphism432

K bF A „
ÝÑ K. Pulling back, representations of K can be identified with those representations433

of K ˆ A whose kernels contain νF. The projections K ˆ A A A{F give us the first map434

RpA{Fq RpKˆ Aq in the display.435

For the second map, it will suffice to lift a list pρjq of representations of K forming a minimal436

set of polynomial and Laurent generators for RK, making sure the lifts of the Laurent generators437

are still units. To lift an irreducible ρ : K ÝÑ AutCn to a representation of K ˆ A trivial on νF,438

note that since F is central, multiplication by each element of ρpFq is a K-module endomorphism439

of Cn, and hence by Schur’s lemma, a constant times idCn , so ρ|F is a direct sum of n copies440

of some one-dimensional representation σ̄ : F ÝÑ S1. Since Homp´, S1q is exact and F a subset441

of A, taking ρ “ ρj, we see σ̄ is the restriction of some σρj : A ÝÑ S1. For each j, consider the442

representation rρj :“ ρj b σρj
of Kˆ A in Cn taking pk, aq ÞÝÑ σρjpaq idCn ¨ρjpkq. This rρj vanishes on443

νF by construction and restricts to ρj on K. In case ρj : K ÝÑ S1 was one of the Laurent generators,444

then n “ 1, so rρj is still a one-dimensional representation and hence invertible.445

It remains to show the map is an isomorphism. We have maps

RKb RpA{Fq
φ
ÝÑ RK RKb RA,

where φ is defined in the expected manner from the maps we have just constructed and the446

second map comes from the covering K ˆ A ÝÑ K and the natural identification RpK ˆ Aq –447

RK b RA. Since A ÝÑ A{F is surjective, HompA{F, S1q ÝÑ HompA, S1q and hence RpA{Fq ÝÑ448

RA are injective. Hence the composition is injective on elements of the form pp~ρq b θ, where449

pp~ρq is a Laurent monomial in the generators ρj and θ is an element of HompA{F, S1q. As such450

elements form a Z-basis for RK b RpA{Fq, we find φ is injective. To see it is surjective, let any451

element ppρjq b θ P RpK ˆ Aq vanishing on νF be given; such elements form a Z-basis for the452

image of RK RK b RA. The element can be rewritten ppρjq b θ “ pprρjq ¨ p1b θ1q for some453

10 The representation rings of the even special orthogonal groups and relation with those of the odd special orthog-
onal groups are given in (3.16)
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other θ1 P HompA, S1q. Moreover, 1b θ1 : pk, aq ÞÝÑ θ1paq is trivial on νF since ppρqb θ and pprρjq are,454

so θ1 is trivial on F and hence descends to an element of RpA{Fq. Thus ppρjq b θ “ φ
`

ppρjq b θ1
˘

.455

456

In the few cases we need, this unnatural splitting can actually be chosen compatibly with457

restrictions RpH ãÑ Kq.458

Proposition 3.5. Let K, K, A, and F be as in Proposition 3.3 and let H be a closed, connected subgroup459

of K, also containing A, such that RH1 is a polynomial ring and H “ KX H contains F. If the restriction460

RK ÝÑ RH is a split surjection, then a splitting of RH as in Proposition 3.3 can be chosen compatibly so461

that RK ÝÑ RH is identified with RKb RpA{Fq ÝÑ RH b RpA{Fq.462

Proof. There is a natural map from 1 Ñ H Ñ H Ñ A{F Ñ 1 to the exact sequence for K, inducing463

a map of short exact sequences of representation rings. A choice of splitting RH Ñ RK and the464

splitting RK Ñ RK of the first part of the proposition uniquely induces a compatible splitting465

RH Ñ RK Ñ RK Ñ RH.466

This will help us deal with the case that K{H is an odd-dimensional sphere. There is an467

analogous statement when K{H is an even-dimensional sphere, but to make it involves a case468

analysis of K and H, so it is difficult to extract it from the proof of Theorem 0.4.469

Lemma 3.6. Suppose a compact, connected Lie group K can be written as balanced product K bF A of470

two subgroups A and K, where A is a central torus in K and F is finite, and that H is a closed subgroup471

of K such that K{H is a sphere S2n of positive even dimension. Then, writing H “ H X K, we have472

H – H b
F

A.473

Proof. Since π1pS2nq “ 0, it follows H must contain A, and it follows from the decomposition of474

K that H and A together generate H. The preimage of H under the projection K ˆ A ÝÑ K is475

FH ˆ A, so it follows K{FH « S2n. Since K{H ÝÑ K{FH is a finite covering, we see FH “ H, so476

H contains F. Thus one can write H – H bF A as claimed.477

Lemma 3.7. Suppose a compact, connected Lie group K and closed, connected subgroup H are given such478

that K{H is homeomorphic to an even-dimensional sphere, and suppose K1 is the direct product of a simply-479

connected group and some number of factors SOpoddq. Then there exist direct factors rKeff of K1 and rHeff ă480

rKeff of H1 and a common direct factor L of H1 and K1 such that the inclusion H1 ãÝÝÑ K1 may be identified481

with rHeff ˆ L ãÝÝÑ rKeff ˆ L and hence the induced map rKeff{
rHeff ÝÑ K{H is a diffeomorphism. The pair482

prKeff, rHeffq is up to an isomorphism of pairs one of
`

Spinp2n` 1q, Spinp2nq
˘

,
`

SOp2n` 1q, SOp2nq
˘

, for483

n ě 1 or
`

G2, SUp3q
˘

.484

Proof. Note that the image Keff of the action map α : K ÝÑ Homeo K{H is by definition effec-485

tive and hence must be SOp2n` 1q or G2, with the image of H being SOp2nq or SUp3q respec-486

tively [Besse, Ex. 7.13][GrWZ08, Table C, p. 104]. The effective image Heff “ αpHq, in particular,487

determines Keff uniquely up to isomorphism. The kernel of α contains A “ ZpKq0, and ap-488

plying Lemma 3.6 with K “ K1, we have a decomposition pK, Hq “ pK1 bF A, H bF Aq. Write489

H “ α´1pHeffq X K1; this is just H1 if Heff ‰ SOp2q and a virtual direct product of the form490

H1 ¨ S1 if Heff “ SOp2q. The inclusion of pairs pK1, Hq ãÝÝÑ pK, Hq then induces a diffeomorphism491

K1{H ÝÑ K{H.492
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Since an element of K acting trivially on K{H “ S2n in particular stabilizes the basepoint 1H,493

we see H contains ker α, and similarly H contains ker α|K1 , which is thus the same as ker α|H. This494

common kernel is thus a normal subgroup of both K1 and H. Recall that a normal subgroup of495

a product of compact simple Lie groups can be written as a product of simple factors and finite496

central groups [BoreldS49, p. 205]. Since K1{ker α|K1 “ Keff is simple, it follows this kernel contains497

all but one simple factor of K1, which we call rKeff, and the composite rKeff ãÑ K1 Ñ αpK1q “ Keff498

is a covering of SOp2n` 1q or G2. In the latter case one can only have rKeff – G2 again and in the499

former one can have rKeff – SOp2n` 1q or Spinp2n` 1q. Write L for the identity component of500

ker α|K1 , so that the latter is the product Lˆ ZprKeffq.501

Now as L ď H contains all but one direct factor of K1 and H is a closed subgroup of K1, it502

follows H is the direct product of L and rHeff “
rKeff X H. Since rHeff{

rKeff Ñ K1{H Ñ Keff{Heff is503

a diffeomorphism, kerprKeff Ñ Keffq and kerp rHeff Ñ Heffq have the same cardinality, giving the504

classification of possible pairs prKeff, rHeffq.505

Corollary 3.8. In the situation and notation of Lemma 3.7 suppose additionally that if rKeff – Spinp2n`
1q, then the composition F ãÑ K rKeff is trivial. Then the inclusion H ãÝÝÑ K is given up to isomorphism
as

rHeff ˆ pLbF Aq ãÝÝÑ rKeff ˆ pLbF Aq.

Proof. We already have an equivalent expression HbF A ãÝÝÑ K1bF A by Lemma 3.6, and Lemma 3.7506

lets us write H ãÝÝÑ K1 as rHeff ˆ L ãÝÝÑ rKeff ˆ L, where the pair prKeff, rHeffq is tightly prescribed. If507

rKeff is SOp2n` 1q or G2, the only common central element of rHeff and rKeff; otherwise we invoke508

the assumption F Ñ rKeff is trivial; and either way we conclude F “ K1 X ZpKq0 is contained509

entirely within L and we can pull out H ãÝÝÑ K1.510

Proposition 3.9. Suppose a compact, connected Lie group K and closed, connected subgroup H are given511

such that K{H is homeomorphic to an even-dimensional sphere, and suppose K1 is the direct product of a512

simply-connected group and some number of factors SOpoddq. If rKeff denotes the unique direct factor of K1513

surjecting onto the image of the action map K ÞÝÑ Homeo K{H, suppose additionally that the composition514

K1 X ZpKq0 ãÑ K rKeff is trivial (this condition is automatically satisfied unless rKeff – Spinp2n` 1q).515

Then splittings as in Proposition 3.3 can be chosen compatibly so that RK ÝÑ RH is identified with516

RKb RpA{Fq ÝÑ RH b RpA{Fq.517

Proof. By Corollary 3.8, one can identify the restriction RK ÝÑ RH with pRrKeff Ñ R rHeffq b

idRpLbF Aq. Thus in the proof of Proposition 3.3 one can take the splittings RK ÝÑ RK and RH ÝÑ

RH to respectively be

RrKeff b RL
idb ϕ
ÝÝÝÑ RrKeff b RpLbF Aq,

R rHeff b RL
idb ϕ
ÝÝÝÑ R rHeff b RpLbF Aq

for the same choice of ϕ : RL ÝÑ RpLbF Aq. This makes the evident square commute by defini-518

tion, so RK ÝÑ RH can now be identified with RrKeffb RLb RpA{Fq ÝÑ R rHeffb RLb RpA{Fq as519

we wanted.520

3.2. Lemmas for odd spheres521

The results we need for the case the homogeneous sphere K{H is odd-dimensional all follow522

from the splitting proposition 3.3 once we show RK ÝÑ RH is split surjective.523
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Proposition 3.10. Let H ď K be connected, compact Lie groups such that K{H « S1 and RK1 is a
polynomial ring. Then RK ÝÑ RH is a surjection and can be written

RHrt˘1s
t ÞÑ1
ÝÝÑ RH,

where t : Kab Kab{Hab „
ÝÑ Up1q pulls back one of the generators of RpKab{Habq and is transcendental524

over RH.525

Proof. Consider the diagram

1 // H1 //

��

H //

��

Hab

��

// 0

1 // K1 // K //

��

Kab

��

// 0

K{H // K{K1H,

(3.11)

whose first two rows are exact sequences and whose first two rows and second column are526

fibrations. Since π2 of a Lie group is zero, and π1pH1q and π1pK1q are finite, we see π1pK{HqbQÑ527

π1pK{K1Hq bQ is an isomorphism, so the torus Kab{Hab “ K{K1H is a circle. Particularly, it is528

one-dimensional, so counting other dimensions, we have dim K1 “ dim H1, meaning K1{H1 is a529

connected 0-manifold and hence K1 “ H1.530

The exact sequences of representation rings resulting from the first two rows of (3.11) split by
Proposition 3.3. These splittings are not natural, but since RK1 ÝÑ RH1 is an isomorphism, we
can choose the liftings compatibly so that the following diagram commutes:

RKab b RK1

„��
Z // RKab //

;;

��

RK //

��

RK1 //

cc

„

��

Z

Z // RHab

##

// RH // RH1

{{

// Z.

RHab b RH1

„

OO

(3.12)

Since RKab ÝÑ RHab is induced by the inclusion Hab ãÝÝÑ Kab of a codimension-1 subtorus531

and monomorphisms between tori admit retractions, we have RKab – RHab b RpKab{Habq –532

RHabrt˘1s and the result follows.533

Proposition 3.13. Let H ď K be connected, compact Lie groups such that K{H is a sphere of odd
dimension 3 or more and RK1 is a polynomial ring. Then RK ÝÑ RH is a surjection and if the unique
direct factor rKeff of K1 surjecting onto the image of the action map in Homeo K{H is not of the form
SOpoddq, then RK ÝÑ RH can be written as

RHrρ̄s
ρ̄ ÞÑ0
ÝÝÑ RH,

where ρ̄ is transcendental over RH and equals ρ´ dim ρ for a K-representation ρ, trivial on H, such that534

the induced continuous map K{H ÝÑ U represents the fundamental class of K{H.535
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Proof. In (3.11) the bottom map now is a fibering of an odd sphere over a torus, which is only536

possible if the torus in question is zero-dimensional. Thus Hab ÝÑ Kab is a homeomorphism,537

so H1 “ kerpH Ñ Habq and H X K1 “ kerpH Ñ K Ñ Kabq are equal. Since K{K1H is trivial538

and the fiber of the trivial map K{H ÝÑ K{K1H is K1H{H – K1{pK1 X Hq “ K1{H1, it follows539

K1{H1 ÝÑ K{H is a homeomorphism. By the following Proposition 3.14, one has RK1 ÝÑ RH1
540

a surjection of the form RH1rρ̄s
„
ÝÑ RK1 Ñ RH1 if the group rK1eff of that lemma can be taken541

simply-connected, so Proposition 3.5 applies with A the maximal central torus of H and K “ K1542

and H “ H1.543

To show the generator has claimed property, recall that the Hodgkin map β : RΓ ÝÑ K˚pΓq544

is functorial, factors through the module of indecomposables QRΓ, and induces isomorphisms545

ΛZrQRΓs „
ÝÑ K˚pΓq if π1pΓq is torsion-free, as we now assume π1pKq (and hence π1pHq) is. Thus546

i˚ : K˚pKq ÝÑ K˚pHq is a surjection. A result of Minami [Min75, Prop. 4.1] then says K˚pK{Hq is547

the exterior algebra on the homotopy class βpρq of the composition K{H Ñ UpVρq ãÑ U for an548

element ρ P RK whose class in QRK generates ker QpRK Ñ RHq.549

We have separated out the harder part of the preceding proof into that of the following result.550

Proposition 3.14. Let H ď K be connected, compact Lie groups such that K{H is a sphere of odd551

dimension 3 or more and RK1 is a polynomial ring. Then the map RK1 ÝÑ RH1 is an augmentation-552

preserving split surjection. If the unique direct factor rKeff of K1 surjecting onto the image of the action553

map in Homeo K{H is not of the form SOpoddq, then RK1 ÝÑ RH1 can be written as RH1rρ̄s RH1
554

for a judicious choice of section RH1 RK1 and algebraically independent generator ρ̄.555

Proof. Recall K1 is a direct product of simply-connected simple groups and odd special orthogonal
groups [Ste75] and recall the groups rKeff and rHeff from that that proof. As there, we have H “

α´1pHeffq X K1 “ H1 and we may write RK1 ÝÑ RH1 as idRLbpRrK1eff Ñ R rH1
effq. We need only

analyze the last factor. Augmentation-preservation is just the fact restriction of representations
preserves dimension, so it remains only to see RrK1eff ÝÑ R rH1

eff is a surjection of the claimed
form. This comes down to a short case analysis, as the entire list of realizations of an odd-
dimensional sphere as the orbit space of an effective action of a compact, connected Lie group
is the following [Besse, Ex. 7.13][GrWZ08, Table C, p. 104], where the balanced product notation
bZ{2 is as explained in Definition 3.1:

S4n´1 “
Sppnq

Sppn´ 1q
“

Up1q b
Z{2

Sppnq

∆Up1q b
Z{2

Sppn´ 1q
“

Spp1q b
Z{2

Sppnq

∆Spp1q b
Z{2

Sppn´ 1q
,

S2n´1 “ Upnq{Upn´ 1q “ SUpnq{SUpn´ 1q “ SOp2nq{SOp2n´ 1q,

S15 “ Spinp9q{Spinp7q,

S7 “ Spinp7q{G2.

(3.15)

Our task is made easier by the λ-ring structure on Rp´q induced by exterior powers: because556

the rings in question are largely generated by exterior powers of the standard representation σ,557

much of the work is done when we find σ in the image.558

• For RSppnq ÝÑ RSppn´ 1q we have σ ÞÝÑ σ` 2 and for RSUpnq ÝÑ RSUpn´ 1q we have559

σ ÞÝÑ σ` 1. Now σ generates RSppnq and RSUpnq as λ-rings, so we already see the map is560

surjective.561
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In fact, the images of σ, . . . , λn´1σ generate the codomain in either case, since λjpσ` 2q “562

λjσ` 2λj´1σ` 1 for j ě 2 and λjpσ` 1q “ λjσ` λj´1σ for j ě 1.11 It follows the image of563

λnσ is also the image of some polynomial p in the lower λjσ, so we may rewrite the domain564

as Zrσ, . . . , λn´1σsrλnσ´ ps to obtain an expression of the claimed form.565

• Writing RSpinp2nq ÝÑ RSpinp2n ´ 1q as Zrσ, . . . , λn´2σ, ∆´, ∆`s ÝÑ Zrσ, . . . , λn´2σ, ∆s,566

where σ is the composition of the double cover with the defining representation of the567

special orthogonal group, ∆˘ are the half-spin representations, and ∆ is the spin represen-568

tation, we have σ ÞÝÑ σ` 1 and ∆˘ ÞÝÑ ∆ [BrötD, Prop. VI.6.1].569

By the same argument as before, the map is a bijection when restricted to Zrσ, . . . , λn´1σ, ∆´s,570

and we may replace the last generator by ∆` ´ ∆´ to obtain the desired expression.571

• The restriction RSOp2nq ÝÑ RSOp2n´ 1q is surjective because representations of SOp2n´ 1q572

descend from representations of Spinp2n´ 1q such that ´1 P Spinp2n´ 1q acts trivially, and573

we have just seen the map RSpinp2nq ÝÑ RSpinp2n´ 1q is surjective.12
574

To get more specific expressions, we [BrötD, Prop. VI.6.6] may write the map as

Zrσ, . . . , λn´1σ, λn
`, λn

´s{pQq ÝÑ Zrσ, . . . , λn´1σs, (3.16)

where λn
˘ are the ˘1-eigenspaces of the Hodge star on λnσ and

Q “ p

x
hkkkkkkkkkikkkkkkkkkj

λn
` ` λn´2σ` ¨ ¨ ¨qp

y
hkkkkkkkkkikkkkkkkkkj

λn
´ ` λn´2σ` ¨ ¨ ¨q ´ p

z
hkkkkkkkkkkkkikkkkkkkkkkkkj

λn´1σ` λn´3σ` ¨ ¨ ¨q2.

We have a decomposition λnσ “ λn
` ` λn

´ into irreducibles, and λnσ ÞÝÑ λnσ ` λn´1σ “

pλn´1σq_`λn´1σ “ 2λn´1σ in RSOp2n´1q since the fundamental representations of SOp2n´
1q are self-dual, so it follows that both of λn

˘ are sent to λn´1σ. If we rewrite RSOp2nq as
Zrσ, . . . , λn´2σsrx, y, zs{pxy´ z2q, we see each of x, y, z maps to w “

ř

jďn´1 λjσ (so that in
particular Q maps to 0), and the map can be described as

Zrσ, . . . , λn´2σsrx, y, zsLpxy´ z2q ÝÑ Z
“

σ` 1, . . . , λn´2pσ` 1q
‰

rws. (3.17)

As the restriction Zrσ, . . . , λn´2σs ÝÑ Z
“

σ` 1, . . . , λn´2pσ` 1q
‰

is an isomorphism, the map575

as a whole is split by additionally sending w ÞÝÑ z.576

• One [vanL] can write RSpinp7q ÝÑ RG2 as

Zrσ, λ2σ, δs ÝÑ Zrσ, Ads,

σ ÞÝÑ σ,

δ ÞÝÑ 1` σ,

Ad “ λ2σ ÞÝÑ λ2σ “ σ`Ad .

Particularly, one can obtain the desired expression by exchanging the generator λ2σ for577

λ2σ´ σ and δ for δ´ σ´ 1.578

11 In general λnpx` yq “
ř

i`j“n λix ¨ λjy, and for m P N one has λjm “
`m

j
˘

.
12 We will not use this case further, as SOp2nq is not simply-connected, but it is worth laying out clearly.
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• One [VZ09, vanL] can write RSpinp9q ÝÑ RSpinp7q as

Zrσ, λ2σ, λ3σ, ∆s ÝÑ Zrσ, λ2σ, δs,

σ ÞÝÑ δ` 1,

∆ ÞÝÑ δ` σ` 1.

Then we have λ2pσ ´ 1q ÞÝÑ λ2δ “ σ ` λ2σ and λ3pσ ´ 1q ÞÝÑ σδ ´ δ. Thus we can take
instead as generators

σ´ 1 ÞÝÑ δ,

∆´ σ ÞÝÑ σ,

λ2pσ´ 1q ´ p∆´ σq ÞÝÑ λ2σ,

λ3pσ´ 1q ´ p∆´ σ´ 1qpσ´ 1q ÞÝÑ 0.

Remark 3.18. The two “exceptional” homogeneous spheres can be understood as follows. Recall579

that the compact exceptional group G2 can be seen as the group of R-algebra automorphisms of580

the octonions O. The map G2 Spinp7q lifts the inclusion G2 ãÝÝÑ SOp7q arising from restriction581

of the defining action to the subspace of pure imaginaries. For the map Spinp7q Spinp9q582

yielding S15, since π1Spinp7q “ 1, one lifts the spin representation δ : Spinp7q SOp8q to583

Spinp7q Spinp8q, then follows with the map Spinp8q ãÝÝÑ Spinp9q double-covering the block-584

diagonal inclusion SOp8q ‘ r1s ãÝÝÑ SOp9q.585

The author learned these explanations from Jason DeVito.586

Remark 3.19. The proof of Proposition 3.14 was originally routed through the following statement:587

For any surjection ϕ : A B of polynomial rings respectively in m ě n indeterminates over588

a commutative base ring k, one can choose an algebraically independent set x1, . . . , xn, yn`1, . . . , ym589

of polynomial generators for A over k such that ϕ sends yj ÞÝÑ 0 and restricts to an isomorphism590

krx1, . . . , xns
„
ÝÑ B.591

This innocuous-sounding claim is true for graded maps of graded rings over k “ Q and open592

for ungraded maps over k “ C. In algebro-geometric language, the special case m “ n` 1 we593

use in this paper is the Abhyankar–Sathaye embedding conjecture [AbM75, Sat76, RusSat13, Pop15,594

Wendt], which states that any embedding An
C An`1

C is taken to the standard embedding by595

some automorphism of An`1
C . This is known at present for n “ 1 and several other special cases,596

and is closely related to the determination of the algebraic automorphism group AutAm
C, which597

is still incomplete for m ě 3.598

3.3. Lemmas for even spheres599

In case the homogeneous sphere K{H is even-dimensional, the restriction RK ÝÑ RH makes the600

RH a free module of rank two over RK.601

Proposition 3.20. Let H ď K be connected, compact Lie groups of equal rank such that K{H is an even-602

dimensional sphere and the semisimple component K1 is the direct product of a simply-connected group603

and SOpoddq factors. Then RH is a free RK-module of rank two.604
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Proof. Steinberg [Ste75], strengthening an earlier result of Pittie, shows that with our hypotheses,605

RH is free of rank |WK|{|WH| over RK (he also provides a basis). To see the rank is two, note that606

by completion [CF18, Thm. 5.3], this is also the rank of H˚pBH;Qq over H˚pBK;Qq, which is 2 by607

the collapse of the Serre spectral sequence of K{H Ñ BH Ñ BK with rational coefficients.608

We will apply Lemma 3.6 in conjunction with a refinement due to Adem and Gómez of the609

Steinberg basis theorem.610

Theorem 3.21 (Adem–Gómez [AdG12, Thm. 3.5]). Let G be a compact, connected Lie group with611

free abelian fundamental group and fix a choice Φ` of positive roots of G with respect to some maximal612

torus. Let W “ pWjq be a family of subgroups of W “ WG, including the trivial group 1 and W613

itself, each generated by reflections in some subsystem Φ`j of Φ`, and for each j, write ČW{Wj for the set614

tw P W : wΦ`j Ď Φ`u of coset representatives for W{Wj. Suppose any pair Wj and Wk in W lie in a615

common supergroup W` P W such that ČW{W` “
ČW{Wj X

ČW{Wk.616

Then RT and the other pRTqWj are all free modules over the subring pRTqW and respective bases617

B Ď RT and Bj Ď B respectively k of RT and the other pRTqWj as free pRTqW-submodules of RT can be618

chosen such that Bk Ď Bj whenever Wk ě Wj in W and the inclusion pRTqWk ãÝÝÑ pRTqWj is the map of619

free pRTqW-submodules of RT induced by the inclusion Bk ãÝÝÑ Bj.620

To apply this theorem we require some facts about extensions of root systems.621

Lemma 3.22. A lattice of Killing–Cartan type A2 extends to a G2 lattice in a unique way.622

Proof. If view the A2 lattice as the vectors pa1, a2, a3q P Z3 with a1` a2` a3 “ 0, a new simple root623

α in an extending G2 lattice must have length
?

6 and inner products with A2 lattice elements624

divisible by 3. We would not rob the reader of the simple joy of verifying only ˘p2,´1,´1q,625

˘p´1, 2,´1q, and ˘p´1,´1, 2q do the job.626

Lemma 3.23. A lattice of Killing–Cartan type Dn extends to a Bn lattice in
#

a unique way if n ‰ 4,

precisely two ways if n “ 4.

Proof. The standard Dn lattice in Rn is spanned by roots ej ˘ ek, and so is given by those integer
linear combinations

ř

ajej of the standard basis vectors ej P Rn for which
ř

aj is even. A new
root α in an extending Bn lattice must have length 1 and inner product with all such vectors an
integer, but the only vectors satisfying this are generally ˘ej and additionally for B4 the vectors
ř4

j“1˘
1
2 ej. The standard Bn comes from adding a simple root of the first form to a Dn root system,

while it is easy to check the rows of the matrix

»

—

—

–

1 ´1 0 0
0 1 ´1 0
0 0 1 ´1

´ 1
2 ´1

2 ´ 1
2

1
2

fi

ffi

ffi

fl

are also simple roots for a B4 root system.627



26

The union of these two lattices contains an F4 root system
»

—

—

–

0 1 ´1 0
0 0 1 ´1
0 0 0 1
1
2 ´ 1

2 ´1
2 ´ 1

2

fi

ffi

ffi

fl

and so generates an F4 lattice. Indeed, there are two distinct Spinp9q subgroups K˘ of the group628

G “ F4 meeting in a Spinp8q “ H and witnessing this root data [GrWZ08, Table E, p. 125]. The629

resulting double mapping cylinder is S25.630

Lemma 3.24. The family of Weyl groups pWG, WK´, WK`, WH, 1q corresponding to the cohomogeneity-631

one action in the preceding paragraph meets the hypotheses of Theorem 3.21.632

Proof. We note that F4 is simply-connected. The coset condition of Theorem 3.21 is satified au-633

tomatically if, in that notation, one of Wj and Wk contains the other, so we only need to check634

that for Wj “ WK´ and Wk “ WK`, we can take W` “ WG. But, as is easy to ask a computer635

to check [Car], if one chooses the positive roots Φ`F4 of the F4 root system to be ej, ej ˘ ek, and636

1
2p1,˘1,˘1,˘1q and the positive roots Φ`K˘ of the smaller groups to be subsets of these, then637

the sets tw P WF4 : wΦ`K˘ Ĺ Φ`F4u of coset representatives of WF4{WK˘ meet only in the638

neutral element.639

We will need to apply Theorem 3.21 to one other case, the system of subgroups of Spp3q given640

by the block-diagonal subgroups K´ “ Spp2q ‘ Spp1q and K` “ Spp1q ‘ Spp2q, which meet in the641

diagonal H “ Spp1q‘3. All share as a maximal torus T “ Up1q‘3. It is easy to see that the roots642

of the larger groups in T generate an C3 lattice, and under the standard identification of WSpp3q643

with Σ3¸t˘1u3 ă AutR3, the subgroups WK´ and WK` become respectively xp1 2qy ¨ t˘1u3 and644

xp2 3qy ¨ t˘1u3 , while WT is simply t˘1u3.645

Lemma 3.25. The family of Weyl groups pWG, WK´, WK`, WH, 1q corresponding to the cohomogeneity-646

one action in the preceding paragraph meets the hypotheses of Theorem 3.21.647

Proof. Note that Spp3q is simply-connected. As before, the only pair of containment-incomparable648

subgroups under consideration is tWK´, WK`u, and one checks [Car] the sets of coset represen-649

tatives tw P WC3 : wΦ`K˘ Ĺ Φ`C3u for WC3{WK˘ meet only in 1.650

4. The case when one sphere is odd-dimensional651

We now put the algebra of the previous section to use to obtain specializations of Theorem 2.11.652

In this section, at least one of the homogeneous spheres K˘{H is odd-dimensional.653

Theorem 4.1. Let M be the double mapping cylinder of the span G{H Ý
Ý
Ý
Ý
Ñ
Ñ G{K˘ for inclusions H Ñ654

K˘ Ñ G of closed, connected subgroups of a compact Lie group G such that K˘{H are spheres and the655

fundamental groups π1pK˘q are free abelian.656

(a) Assume that both K`{H and K´{H are odd-dimensional. Then we have an RG-algebra isomor-
phism of K˚GpMq “ K0

GpMq with one of

RHrt˘1
´ , t˘1

` s

pt´ ´ 1qpt` ´ 1q
,

RHrt˘1
´ , ρ

`
s

pt´ ´ 1qpρ
`
q
,

RHrρ
´

, t˘1
` s

pρ
´
qpt` ´ 1q

,
RHrρ

´
, ρ
`
s

pρ
´

ρ
`
q

,
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where we identify RK˘ with the Laurent polynomial ring RHrt˘1
˘ s when dim K˘{H “ 1 and with the657

polynomial ring RHrρ
˘
s when dim K˘{H ě 3.658

(b) Assume K`{H is odd-dimensional and K´{H is even-dimensional. Then we have an RG-algebra
isomorphism of K˚GpMq “ K0

GpMq with

RK´ ‘ pt´ 1qRHrt˘1s ă RHrt˘1s – RK` or RK´ ‘ ρRHrρs ă RHrρs – RK`,

where we identify RK` with RHrt˘1
˘ s if dim K`{H “ 1 and with RHrρ

˘
s if dim K`{H ě 3. The659

product in either case is determined by the restriction RK´ RH.660

In all cases the RG-module structure is determined by restriction.661

Remark 4.2. In terms of representations, t is the class of the representation K` Ñ pK`qab{Hab „
ÝÑ662

Up1q, and similarly for t˘. Likewise, ρ is the reduction ρ´ dim ρ of a complex K`-representation663

ρ : K` ÝÑ UpVρq, trivial when restricted to H, such that the class βpρq represented by the compo-664

sition K`{H Ñ UpVρq ãÑ U generates K1pK`{Hq, and similarly for ρ
˘

.665

Proof of Theorem 4.1. We use the description of K˚GpMq given in Theorem 2.11. In both cases,666

K1
GpMq “ 0 since RK` ÝÑ RH is surjective, so K˚GpMq “ K0

GpMq – RK´ ˆ
RH

RK`.667

(a) Recall from Theorem 0.4 that RK´ ÝÑ RH is an injection and from Propositions 3.10 and
3.13 that the map RK` „

ÝÑ RHrρ̄s Ñ RH or RK` „
ÝÑ RHrt˘1s Ñ RH is reduction modulo pρ̄q or

pt´ 1q. We prove the latter case; the former is similar. Then the fiber product is the subring of
RHrt˘1s ˆ RK` consisting of the direct summands

 

pσ, σq P RK` ˆ RK`
(

and pt´ 1qRHrt˘1s ˆ

t0u. We may identify the former with RK` ă RH ă RHrt˘1s and the latter with pt´ 1qRHrt˘1sC
RHrt˘1s and the two interact multiplicatively via the rule

σ ¨ pt´ 1q f ÐÑ pσ, σq ¨
`

pt´ 1q f , 0
˘

“
`

pt´ 1qσ f , 0
˘

ÐÑ pt´ 1qσ f .

(b) We use Theorem 0.4 to make identifications RK´ – RHrt˘1s and RK` – RHrρ̄s such that
RK´ ÝÑ RH is reduction modulo t̄ “ t´ 1 and RK` ÝÑ RH modulo ρ̄; the other cases are the
same, mutatis mutandis. The fiber product can be identified as the subring of RHrt˘1s ˆ RHrρ̄s
comprising the three direct summands

 

pσ, σq P RH ˆ RH
(

, t̄RHrt˘1s ˆ t0u, t0u ˆ ρ̄RHrρ̄s.

Multiplication across summands is determined by the three rules

pσ, σq ¨ pt̄ f´, 0q “ pt̄ f´σ, 0q, pσ, σq ¨ p0, ρ̄ f`q “ p0, ρ̄ f`σq, pt̄ f´, 0q ¨ p0, ρ̄ f`q “ p0, 0q,

so the map to RHrt˘1, ρ̄s{pt̄ρ̄q sending pσ` t̄ f´, σ` ρ̄ f`q to the class σ` t̄ f´` ρ̄ f` pmod t̄ρ̄q is a668

ring isomorphism.669

Remark 4.3. This statement is obviously not the most one can say, in that it can be extended using670

the extraneous description (3.17) of RSOp2nq ÝÑ RSOp2n´ 1q in the proof of Proposition 3.14671

to cover the cases where the image of one or more of K˘ ÝÑ Homeo K˘{H comes from an672

SOpevenq subgroup of K˘— but this is left as an exercise for the interested reader, if any, the673

current statement being long enough as it is.674
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Example 4.4. Let M be the double mapping cylinder associated to a diagram with H “ Spinp7q
included in K´ “ Spinp8q via the standard inclusion and in K` “ Spinp9q via the nonstan-
dard embedding with K`{H “ S15; the larger group G can be anything large enough, say F4 or
Spinp8q ˆ Spinp9q “ K´ ˆ K`. Then we have an explicit presentation

K˚GpMq – Zrσ, λ2σ, ∆, ρ̄´, ρ̄`s{pρ̄´ρ̄`q,

where in RSpinp8q ˆ RSpinp9q, the generators are represented by

σ ÐÑ pσ´ 1, ∆´ σq,

λ2σ ÐÑ pλ2σ´ σ´ 1, λ2pσ´ 1q ` σ´ ∆q,

∆ ÐÑ p∆´, σ´ 1q,

ρ̄´ ÐÑ p∆` ´ ∆´, 0q,

ρ̄` ÐÑ
`

0, λ3pσ´ 1q ´ p∆´ σ´ 1qpσ´ 1q
˘

.

in the manner described in Remark 2.14.675

5. The case when both spheres are even-dimensional676

In this section we obtain the specialization of Theorem 2.11 where both the homogeneous spheres677

K˘{H are even-dimensional. The groups K˘ and H are assumed to satisfy this condition every-678

where in this section. Particularly, K´, K`, and H all have the same rank. We will not have to679

assume that π1pK˘q is free abelian, but only that the commutator subgroup K1 is the direct prod-680

uct of a simply-connected factor and a number of SOpoddq factors. This is equivalent to assuming681

RK1 is a polynomial ring [Ste75].682

Notation 5.1. Occasionally we will write T for a maximal torus of some connected, compact Lie683

group Γ and use the fact that RΓ – pRTqWΓ by restriction [AtH61, §4.4], where WΓ is the Weyl684

group of Γ. Particularly, when K˘{H are even-dimensional spheres, RH “ pRTqWH is of rank two685

over RK˘ “ pRTqWK˘ , so WH is an index-two subgroup of each of WK˘.686

We start with two similar reduction lemmas which will save us time later.687

Lemma 5.2. Suppose K˘, H are compact and connected and there are groups K˘ ď K˘ and L, H ď H688

such that K˘ “ K˘ ˆ L and H “ Hˆ L (we then write for short pK˘, Hq “ pK˘, Hq ˆ L), and write M689

for the double mapping cylinder of G{H Ý
Ý
Ý
Ý
Ñ
Ñ G{K˘. Then K˚GpMq – K˚GpMq b RL.690

Proof. This follows from Theorem 2.11 since the map RK´ˆ RK` ÝÑ RH then factors as pRK´ˆ691

RK` Ñ RHq b idRL.692

Lemma 5.3. Suppose K˘, H are compact and connected and there are groups K˘ ď K˘ and A, H ď H693

such that A is a torus central in both of K˘ and such that K˘ can be written as K˘ bF A for the same694

finite subgroup F ď A and some closed subgroups K˘ ď K˘. Then H “ H bF A. Suppose the pairs695

pK`, Hq and pK´, Hq both satisfy the conditions of Corollary 3.8. Writing M for the double mapping696

cylinder of G{H Ý
Ý
Ý
Ý
Ñ
Ñ G{K˘, we then have K˚GpMq – K˚GpMq b RpA{Fq.697

Proof. The first clause applies from Lemma 3.6 applied to both pairs pK˘, Hq. The rest follows698

from Theorem 2.11 and Proposition 3.9 since the map RK´ˆRK` ÝÑ RH then factors as pRK´ˆ699

RK` Ñ RHq b idRpA{Fq.700



29

After application of these lemmas, it will follow from a case analysis that most of the time we701

are in one of two special situations. The easier of these two situations is when K´ “ K`.702

Proposition 5.4. Assume there exists w in the identity component NGpHq0 such that K` “ wK´w´1,
that K´{H “ S2n is a sphere of positive even dimension and the left K´-action is orientation-preserving.
Then

K˚GpMq – RK´ b K˚pS2n`1q.

Proof. Note that in this case [GrWZ08, p. 44], M is G-diffeomorphic to the double mapping cylin-
der of G{H Ý

Ý
Ý
Ý
Ñ
Ñ G{K´, so we may as well assume K` “ K´. Then we may apply Theorem 2.11,

noting that RK´ X RK` “ RK and that by Proposition 3.20,

RH
RK´ ` RK`

“
RK´t1, ρu

RK´
– RK´tρu.

Remark 5.5. Forgetting the manifold itself and proceeding in terms of representation theory, we703

could also have noted that if K ą H share a maximal torus and w lies in NGpHq0, then wKw´1
704

also contains that torus, with respect to which WK “ WpwKw´1q.705

Proceeding more topologically, on the other hand, we could note that if K` “ K´ “ K, then706

the natural map BH ÝÑ BK allows us to define a sphere bundle SpK{Hq Ñ MG Ñ BK. The proof707

of the analogue for Borel cohomology [CGHM19, Prop. 5.2] worked by showing this bundle was708

cohomologically trivial, and it is to reflect this analogy that we retain the number n.709

Remark 5.6. It is interesting to note that if we do not have K` “ K´, then H “ K´XK`. To see this,710

first note that since K´ X K` and H share a maximal torus, pK´ X K`q{H is even-dimensional.711

But pK´ X K`q{H Ñ K`{H Ñ K`{pK´ X K`q is a fibering of a sphere over a simplicial complex712

and by connected simplicial complexes, and Browder showed that when the fiber is none of S1,713

S3, or S7, either the base or the fiber of such a bundle must be trivial [Brow63].714

But this dichotomy does not lead to a dichotomy in expressions for K˚GpMq. For example, the715

block-diagonal subgroup H “ SOp4q ‘ r1s‘2 of G “ SOp6q is the intersection of K´ “ SOp5q ‘ r1s716

and K` “ wK´w´1 for w “ r1s‘4 ‘
“ 0 ´1

1 0

‰

, which lies in r1s‘4 ‘ SOp2q ă NGpHq0. Thus, up717

to diffeomorphism, the inclusion diagram pG, K´, K`, Hq expresses the same double mapping718

cylinder M as the one instead taking K` “ K´ “ SOp5q ‘ r1s.719

The other easy-to-manage special case follows from a less trivial product decomposition.720

Proposition 5.7. Let connected, compact Lie groups K˘ ą H˘ be such that K˘{H˘ “ S2n˘ are even-
dimensional spheres. Write H “ H´ ˆ H` and consider it in the natural way as a subgroup of K´ “
K´ ˆ H`, of K` “ H´ ˆ K`, and of G “ K´ ˆ K`. Then if M is the double mapping cylinder of
G{H Ý

Ý
Ý
Ý
Ñ
Ñ G{K˘, we have

K˚G M – RGbΛrzs

for a generator z of degree 1.721

Proof. By Proposition 3.20, we know RH˘ is free of rank two over RK˘, say on bases t1, σ˘u.
Then RK´, RK`, and RH are free over RG “ RK´ b RK` respectively on the bases

t1b 1, σ´ b 1u, t1b 1, 1b σ`u, t1b 1, σ´ b 1, 1b σ`, σ´ b σ`u.

Thus, by Theorem 2.11, we see K0
GpMq is the intersection of RK˘|H, namely the free RG-module722

on 1b 1, and K1
GpMq – RH{pRK´ ` RK`q is the free cyclic RG-module on z “ δpσ´ b σ`q. Thus723

K˚GpMq is a free RG-module on 1 P K0
GpMq and z P K1

GpMq, and since 2z2 “ 0 by antisymmetry724

and K˚GpMq is torsion-free, it follows z2 “ 0.725
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Remark 5.8. The manifold M is a sphere S2n´`2n``1 under these conditions.13 Indeed, the fiber726

over ´1 is S2n´ , that over 1 is S2n` , and in the interior the fiber is the product of the two, so M is727

the join S2n´ ˚ S2n` .728

Example 5.9 ([Püt09, Sect. 4.3]). We use Proposition 5.4 to compute the equivariant cohomology
of the space M arising from the inclusion diagram

pG, K´, K`, Hq “
`

Spp2q, Spp1q2, Spp1q2, Spp1q ˆUp1q
˘

.

Püttmann shows H˚pM;Zq – H˚pS3;Zq b H˚pS4;Zq using the Mayer–Vietoris sequence, so from
the Atiyah–Hirzebruch spectral sequence we see K˚pMq – K˚pS3qbK˚pS4q as well. The restriction
of the defining representation σ of Spp1q ă Hˆ on H – C‘ jC to the maximal torus Up1q ă Cˆ
is t` t´1, where t is the defining representation, so

K1
GpMq –

Zrσs bZrt˘1s

Zrσs bZrt` t´1s
– Zrσs b tZrt` t´1s – R

`

Spp1q2
˘

r1s

as expected.729

This action is equivariantly formal for Borel cohomology with integer coefficients [GoeM14,
Cor. 1.3], and from Theorem 6.1, it is equivariantly formal for K˚G too, but it is illuminating to
show this explicitly by examining the forgetful map K˚G ÝÑ K on the Mayer–Vietoris sequence of
the standard cover. By the snake lemma, this amounts to checking the maps

RΓ „
ÝÑ K0

GpG{Γq ÝÑ K0pG{Γq

taking a representation Vρ of Γ to the bundle GbΓ Vρ ÝÑ G{Γ are surjective for Γ P tK˘, Hu.14 It
is not hard to check this map takes 1b t P R

`

Spp1q ˆUp1q
˘

to the tautological bundle γ over CP3

and 1b σ P R
`

Spp1q2
˘

to the tautological bundle ξ over HP1.15 Since H˚pCP3q “ Zrcs{pc3q, where
c “ c1pγq, and c1 induces an isomorphism rK0pCP1q

„
ÝÑ H2pCP1q, this gives us surjectivity for H.

As for K˘, since σ restricts to Up1q as t` t´1, we see the pullback of ξ over CP3 is γ‘γ_. The total
Chern class 1` c2pτq P H˚pHP1q hence pulls back to p1` cqp1´ cq P H˚pCP3q. The Serre spectral
sequence of S3{S1 Ñ CP3 Ñ HP1 collapses for degree reasons, so that H4pHP1q Ñ H4pCP3q.
Thus, since ´c2 generates H4pCP3q, also c2pτq generates H4pHP1q. As

rK0pS4q – rK4pS4q – rK0pS0q “ Z

and the Chern character induces a natural isomorphism K˚ bQ ÝÑ H˚p´;Qq on finite com-730

plexes, it follows rτs generates rK0pS4q as needed.731

The desired simultaneous generalization of Propositions 5.4 and 5.7, specializing to Theo-732

rem 0.4 when K˘ are semisimple, is as follows.733

Theorem 5.10. Let M be the double mapping cylinder of the span G{H Ý
Ý
Ý
Ý
Ñ
Ñ G{K˘ for inclusions H Ñ

K˘ Ñ G of compact Lie groups such that K˘ are semisimple groups which are products of simply-
connected groups and SOpoddq factors and K˘{H are even-dimensional spheres. Writing rK˘eff for the

13 This will also hold if either sphere or both is odd-dimensional.
14 In fact, applying the module structure in Theorem 2.11 to both sequences, it would be enough just to see K0

G M ÝÑ

K0 M is surjective, and once we know K1pG{Hq “ K1CP3 “ 0, it would suffice to prove RK ÝÑ K0pG{Kq is surjective,
but the same proof involves both maps.

15Note Spp2q ÝÑ S7 given by A ÞÝÑ A ¨
“

0
1
‰

has stabilizer Spp1q ‘ 1 and transforms the action of 1‘ Spp1q to scalar
right-multiplication on S7 Ĺ H2, so the total spaces of the bundles are S7 bSpp1q H and S7 bUp1q C.
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unique direct factors of the commutator subgroups pK˘q1 surjecting onto the images of the action maps
K˘ ÞÝÑ Homeo K˘{H, suppose additionally that the compositions pK˘q1 X ZpK˘q0 ãÑ K˘ rK˘eff are
trivial (this is only relevant if one of K˘ is a Spinp2n` 1q). Then there exist an element z P K1

GpMq and
an RG-algebra isomorphism

K˚GpMq – pRK´|H X RK`|Hq b Λrzs,

where the injections RK˘ ÝÑ RH and the RG-module structure are given by restriction.734

The proof has been factored into as many Lie-theoretic lemmas and reduction steps as possi-735

ble but still seems to unavoidably be a bit of a slog.736

Proof of Theorem 5.10. Recall from the proof of Lemma 3.7 that the images K˘eff of the action maps737

α˘ : K˘ ÝÑ Homeo K˘{H are by definition effective and hence must be SOp2n` 1q or G2, with738

the image of H being SOp2nq or SUp3q respectively [Besse, Ex. 7.13][GrWZ08, Table C, p. 104]. The739

effective images H˘
eff “ α˘pHq of H, in particular, determine K˘eff uniquely up to isomorphism.740

Most of the proof involves analyzing the configurations of these preimages after stripping741

away extra tensor factors to eventually arrive at a base case. The recurrent phrase “factor out742

Π” means to apply Lemma 5.2 and analyze the remaining system of isotropy groups K´ Ð743

H Ñ K`, whereas “factor out A{F” means to apply Lemma 5.3. We say we have reduced to744

a join configuration if Proposition 5.7 applies, in which case that branch of the case analysis745

terminates, and similarly say we have reduced to a sphere bundle configuration if Proposition 5.4746

applies. Beyond these base case schemata, there are a few exceptional base cases enumerated in747

Section 3.3, which as we have mentioned, all turn up as examples in the literature, and the case748

with H´
eff – SOp2q – H`

eff.749

0. The case neither of H˘eff is a circle750

As K˘{H are even-dimensional spheres of dimension ą 2, the long exact fibration sequence751

of H Ñ K˘ Ñ K˘{H induces isomorphisms π1H „
ÝÑ π1K˘. It follows that the inclusion of752

A “ ZpHq0 in H induces surjections π1A ÝÑ π1K˘ and we can write K˘ as pK˘q1 bF˘ A for753

F˘ “ ker
`

pK˘q1ˆ A K˘
˘

. Since K˘{H are spheres, by two applications of Lemma 3.6 we have754

H1 bF´ A “ H “ H1 bF` A, so F “ F´ “ F`. Thus the inclusions H Ý
Ý
Ý
Ý
Ñ
Ñ K˘ factor as virtual755

product maps of the form i˘bF idA. Factoring out A{F, we need only analyze K˚GpM
1q for M1 the756

double mapping cylinder of G{pK˘q1 ÝÝÝÝÑÑ G{H1. We may thus adopt the notational convenience757

of assuming the groups K˘ of the original triple pK˘, Hq were semisimple.758

Recall from the proof of Lemma 3.7 that the kernels of α˘|H contain all but one simple factor
of H, or all but two in case H˘

eff “ SOp4q – SOp3q2{
 

˘pI, Iq
(

is not simple. Thus we have product
decompositions

K˘ – rK˘eff ˆΠ˘,

H – rH˘
eff ˆΠ˘,

where the ineffective kernels Π˘ :“ ker α˘ are products of simply-connected and SOpoddq fac-759

tors, their normal virtual complements rK˘eff ď K˘ induce isomorphisms or double-coverings760

rK˘eff ãÑ K˘ K˘eff, and rH˘
eff are the intersections of H and rK˘eff, accordingly singly or doubly761

covering H˘
eff under α˘.762
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• Suppose that rH`
eff “

rH´
eff “: rHeff.763

Then Π` “ Π´ and we may factor it out. What remains is the pair of inclusions rHeff ÝÝ
Ý
Ý
Ñ
Ñ764

rK˘eff, so we examine the images of RrK˘eff
Ý
Ý
Ý
Ý
Ñ
Ñ R rHeff.765

˝ Suppose that rHeff fl Spinp8q.766

An inclusion SOp2nq ãÝÝÑ SOp2n` 1q for n ‰ 4 or SUp3q ãÝÝÑ G2 induces an inclusion767

of root lattices in a unique way by Lemmas 3.22 and 3.23. It follows that the maps768

RrK˘eff
Ý
Ý
Ý
Ý
Ñ
Ñ R rHeff have the same image, so we have a sphere bundle configuration.769

˝ Suppose that rHeff – Spinp8q.770

* If the inclusions of root lattices induced by rHeff ÝÝ
Ý
Ý
Ñ
Ñ

rK˘eff are both standard, then771

as in the previous item, we have a sphere bundle configuration.772

* Otherwise our B4 lattices are both of those described in Lemma 3.23 and so to-
gether span an F4 lattice, and the intersection RK´ X RK` in RH “ RSpinp8q is
RF4. By Lemma 3.24, then, RSpinp8q is free over RF4 on 1152{192 “ 6 elements
and each RSpinp9q is free on 1152{384 “ 3 elements, so by arithmetic,

R rHeff

RrK´eff ` RrK`eff

– RF4 – RrK´eff X RrK`eff.

• Suppose that rH´
eff “

rH`
eff.773

˝ Suppose that neither of H˘
eff is isomorphic to SOp4q.774

The assumption implies H˘
eff and hence the single or double covers rH˘

eff are simple.
Since H is a product of simply-connected groups and SOpoddq factors, and since sub-
groups rK˘eff ď K˘ singly or doubly covering K˘eff under α˘ cannot be chosen such that
rH˘

eff “ H X rK˘eff agree, we must have rH´
eff X

rH`
eff “ 1. Thus there exists a factorization

H “ rH´
eff ˆ

rH`
eff ˆΠ

for Π a product of totally ineffective factors contained in K´ X K`. Since rk rK˘eff “

rk rH˘
eff and the groups rH˘

eff are simple, it follows

rK`eff X
rH´

eff “ 1 “ rK´eff X
rH`

eff,

and as H “ rH´
eff ˆ

rH`
eff ˆΠ is contained in both groups K˘, they must admit abstract

decompositions

K´ – rK´eff ˆ
rH`

eff ˆΠ,

K` – rH´
eff ˆ

rK`eff ˆΠ

respecting the inclusions rH˘
eff ãÝÝÑ rK˘eff. Thus we may factor out RΠ and afterwards775

have a join configuration.776
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˝ Suppose at least one of H˘
eff is isomorphic to SOp4q.777

We may suppose without loss of generality that it is H`
eff which is isomorphic to SOp4q,778

so that rH`
eff – Spinp4q – Spp1q2 and rK`eff – Spinp5q – Spp2q. Since rH`

eff and rH´
eff are779

both direct factors of the semisimple group H and we have assumed that rH´
eff ‰

rH`
eff,780

we have a dichotomy based on whether rH´
eff shares 0 or 1 of the Spp1q factors of rH`

eff.781

* Suppose no Spp1q factor of rH`
eff lies in rH´

eff.782

Then rH`
eff ď Π´, so we have

H – rH´
eff ˆΠ´ – rH´

eff ˆ
rH`

eff ˆ L

for some direct complement L with Π´ – rH`
eff ˆ L. It follows

K´ – rK´eff ˆ
rH`

eff ˆ L.

On the other hand, the inclusion H ãÝÝÑ K` factors abstractly as

rH´
eff ˆ

rH`
eff ˆ L rK`eff ˆΠ`,

with the image of rH`
eff lying in rK`eff, so it follows Π` – rH´

eff ˆ L. Thus we factor783

out L and achieve a join configuration.784

* Suppose one Spp1q factor of rH`
eff lies in rH´

eff.785

Since H´
eff is isomorphic to either SUp3q or SOpevenq and rH´

eff is a product of direct
factors of H “ Spp1q2 ˆΠ`, we must also have rH´

eff – Spp1q2 and rK´eff – Spp2q.
Factoring out Π´ XΠ` ă H, what remains are the inclusions rH Ý

Ý
Ý
Ý
Ñ
Ñ

rK˘eff, which
can be identified with

Spp2q ˆ Spp1q ÐÝ Spp1q3 ÝÑ Spp1q ˆ Spp2q.

Then by Lemma 3.25, RSpp3q is free over R
`

Spp1q3
˘

on 6 “ |Σ3| elements and each
of RrK˘eff is free on 3 elements, meaning

R rHeff

RrK´eff ` RrK`eff

– RC3 – RrK´eff X RrK`eff

as expected.786

1. The case exactly one of H˘
eff is a circle787

Without loss of generality, assume that H´
eff – SOp2q and H`

eff fl SOp2q. As before let rK˘eff be
normal virtual complements to the normal subgroups ker α˘ C K˘ and rH˘

eff “ H X rK˘eff. By our
assumption on the structure of K´, we can write

K´ – prK´eff ˆΠ´q b
F

A

for A “ ZpK´q0 and Π´ a direct complement to rK´eff in the commutator group pK´q1, and F –788

prK´eff ˆΠ´q X A. Then H X prK´eff ˆΠ´q “ rH´
eff ˆΠ´, and K´{H « S2, so by Lemma 3.6, we may789

write H – p rH´
eff ˆΠ´q bF A. Since rH´

eff is a circle, we have H1 “ Π´.790
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Now rK`eff is not isomorphic to either Spinp3q or SOp3q, so rH`
eff is a closed subgroup of Π´. By

our assumption on pK`q1, then, rK`eff is a direct factor and there exists a complement L C Π´ with

Π´ – Lˆ rH`
eff,

pK`q1 – Lˆ rK`eff.

It is clear then that K` “ rH´
eff ¨ pLˆ rK`effq ¨ A. We have

rH´
eff X pLˆ rK`effq “

rH´
eff X H X pLˆ rK`effq “

rH´
eff X pLˆ rH`

effq “ 1

and also

p rH´
eff ˆ Lˆ rK`effq X A “ p rH´

eff ˆ Lˆ rK`effq X H X A “ p rH´
eff ˆ Lˆ rH`

effq X A “ F,

so in fact K` – p rH´
eff ˆ Lˆ rK`effq bF A.791

Thus we may factor out A{F and then L to obtain a join configuration.792

2. The case H˘eff are both circles793

The intersections Π˘ of pK˘q1 with the ineffective ker α˘ admit complements rK˘eff in pK˘q1 by794

assumption. Since im α˘ – SOp3q is simple and centerless, the centers ZpK˘q are also contained795

in ker α˘. This kernel is obviously contained in the stabilizer H as well, so Π˘ “ pΠ˘q1 ď H1.796

On the other hand, since the images α˘pHq – SOp2q are abelian, the commutator subgroup H1 is797

contained in both of ker α˘, so Π˘ “ H1.798

By the assumption on pK˘q1, we have

K˘ – pH1 ˆ rK˘effq ¨ ZpK
˘q0,

H – pH1 ˆ rH˘
effq ¨ ZpK

˘q0.

Now consider the torus A :“
`

ZpK´q X ZpK`q
˘

0. Taking H “ H1
rH´

eff
rH`

eff, and F “ HX A, we may
write H – H bF A. If we set K˘ “ H rK˘eff, then evidently K˘ X H “ H and K˘ “ K˘A. Since

K˘ X A “ K˘ X H X A “ H X A “ F,

we find K˘ – K˘ bF A, so we may factor out A{F.799

• Suppose A “ ZpK´q0 “ ZpK`q0.800

In this case ZpHq{A is one-dimensional, so we may select rK˘eff in such a way that rHeff “

rH´
eff “

rH`
eff – SOp2q. Factoring out A{F and then H1 leaves a configuration SOp2q ÝÝÝÝÑÑ rK˘eff

where rK˘eff are each SOp3q or Spinp3q. Either way, the induced map RrK˘eff ÝÑ RSOp2q “
Zrts has image Zrt` t´1s, so we are functionally in the situation of Proposition 5.4 and in
particular

R rHeff

RrK´eff ` R rH`
eff

–
Zrts

Zrt` t´1s
– t ¨Zrt` t´1s

is of rank one over Zrt` t´1s.801
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• Suppose ZpK´q0 ‰ ZpK`q0.802

Write T for the two-dimensional torus rH´
eff ¨

rH`
eff in H. Then after factoring out A{F we803

have to deal with the inclusions of H “ H1 ˆ T in pH1 ˆ rK˘effq ¨ S
1, where idH1 factors out of804

these inclusions but we claim nothing particular about the two inclusions T rK˘eff ¨ S
1.805

Factoring out H1, we arrive at H “ T and K˘ – rK˘eff bF S1, where |F| ď 2.806

The inclusions T ãÝÝÑ K˘ induce inclusions RK˘ – pRTqxw˘y ãÝÝÑ RT, where w˘ gener-807

ates WK˘ – Z{2. Identifying RT2 with the group ring ZX of the character group X “808

XpTq “ HompT, S1q, these can be seen as induced by two reflections of the vector space809

t_ – R2 which preserve the integer lattice XpTq – Z2. Under this identification W “810

xw´, w`y becomes a dihedral subgroup D2k of GLp2,Zq. These are classified: they can only811

be D4, D6, D8, D12 and are conjugate to the standard presentations for the Weyl groups of812

types D2 “ A1 ˆ A1, A2, B2 “ C2, and G2 as well as a second D6 ă WG2 not generated by813

root reflections, which hence does not occur [Tah71, Prop. 1][Mack96]. The root lattice QW814

and weight lattice PW corresponding to reflection groups W of this type in R2 are unique815

(up to equivariant isomorphism) and there are examples, most of which we produce imme-816

diately following the present argument, showing any intermediate lattice between QW and817

PW occurs as X for some cohomogeneity-one action.818

In all of these cases, we need to see

Θ :“
RT

pRTqxw´y ` pRTqxw`y

is a free cyclic module over pRTqW . One is tempted is to use Theorem 3.21, but it can
happen that RT is not free over pRTqW . Instead our answer comes from the Stiefel diagram.
The ring RT is free on the Z-basis X. Quotienting by pRTqxw´y` pRTqxw`y, annihilates Xxw´y

and Xxw´y and induces relations

w´θ ” ´θ for θ R Xxw´y,

w`θ ” ´θ for θ R Xxw`y,

since θ ` w´θ P pRTqxw´y and θ ` w`θ P pRTqxw`y. It follows Θ admits a Z-basis given by819

those characters of T lying in the interior C of a fundamental domain.16
820

On the other hand, pRTqW is spanned by orbit sums Sθ “
ř

wPW{ Stab θ wθ. These are indexed821

by W-orbits of X, of which there is precisely one per character θ in the closed fundamen-822

tal domain C. Drawing out the diagrams, one checks for each lattice type that there is823

a minimal strongly dominant integral weight λ0, which makes θ ÐÑ θ ¨ λ0 a bijection824

CX X ÐÑ CX X.17 Recall that if X is given the partial order determined by setting σ ě θ825

just when θ lies in the convex hull of the orbit W ¨ σ, then given σ, θ P XX C, the difference826

Spσθq ´ Sσ ¨ Sθ is a sum of terms of lower order [Adams69, Prop. 6.36]. If we filter Θ with827

respect to this order, then it follows the pRTqW-module structure on the associated graded828

16 The notation C is meant to suggest a Weyl chamber, even though our dihedral group is just a group of symmetries
of a Z2 lattice, not a priori the Weyl group of anything, because the same reasoning goes through.

17 If X is the lattice spanned by the fundamental weights dual to the simple roots of the root system for W, so that
half the sum of positive roots is an integral weight ρ, then [Adams69, Lem. 5.58] we have ρ “ λ0. But these are not all
the cases.



36

module gr Θ is given by Sσ ¨ θλ0 “ pσθqλ0, so Θ is the free cyclic pRTqW-module generated829

by λ0 as claimed.830

Remark 5.11. It is interesting to note that all of the exceptional cases occur as the “degree-831

generating actions” tabulated by Püttmann [Püt09, §5.2][GrWZ08, Table E, p. 105]. The actions of832

F4 on S25 and Spinp3q on S13 already came up in the “no circular isotropy” case, and the others833

are among the “two circles” cases, as per the following examples.834

Example 5.12. The dihedral group D4, a Coxeter group of Killing–Cartan type D2, is realized as
the Weyl group of a cohomogeneity-one action with H – T2 as follows. One has an isomorphism
SOp4q – Spinp3q b

Z{2
Spinp3q and can consider the diagram

G – SOp4q, K´ “ Spinp3q b
Z{2

Spinp2q, K` “ Spinp2q b
Z{2

Spinp3q, H “ Spinp2q b
Z{2

Spinp2q “ T.

Write rT “ Spinp2q ˆ Spinp2q and RrT “ Zrs, t, s´1t´1s. Then W “ WSOp4q – S2 ˆ t˘1u. Since
SOp4q is not simply-connected [Ste75], we see RT “ Zrs˘1t˘1s is not free over

RSOp4q – pRTqW – Zrs` s´1 ` t` t´1, st` s´1t´1, s´1t` st´1s,

illustrating the proof of the H˘
eff “ SOp2q case in Theorem 0.4 cannot be run through Theorem 3.21835

in all cases.836

Instead considering the two-fold covers inside G “ Spinp4q – Spinp3q2, one obtains a Weyl
group of type D2 again, but now RrT “ Zrs, t, s´1t´1s is free over

RSpinp4q “ pRTqW – Zrs` s´1 ` t` t´1, st` s´1t´1s,

and one can apply Theorem 3.21 again. The space acted on is S2 ˚ S2 « S5.837

We leave it to the reader to construct an analogous example with G “ SOp3q ˆ SOp3q.838

Example 5.13. The dihedral group D6, a Coxeter group of Killing–Cartan type A2, is realized as
the Weyl group of a cohomogeneity-one action with H – T2 as follows. Consider the diagram

G “ Up3q, K´ “ Up2q ˆUp1q, K` “ Up1q ˆUp2q, H “ Up1q3.

In the notation of the proof of Theorem 0.4, the irrelevant torus A “ Z
`

Up3q
˘

– S1 is the group of839

diagonal matrices and F – xe2πi{3y. After factoring out A{F, one has the corresponding subgroups840

of SUp3q, and the manifold is S7. The reduced K˘ are both isomorphic to Up2q, and one has841

W “ WSUp3q “ Σ3 with w´ “ p1 2q and w` “ p2 3q. Since SUp3q is simply-connected and it is842

easy to check the coset condition applies, one could also apply Theorem 3.21.843

Example 5.14. The dihedral group D8, a Coxeter group of Killing–Cartan type BC2, is realized as
the Weyl group of a cohomogeneity-one action with H – T2 as follows. Consider the diagram

G – SOp5q, K´ “ Up2q ˆ t1u, K` “ SOp2q ˆ SOp3q, H “ SOp2q ˆ SOp2q ˆ t1u “ T,

where all subgroups are block-diagonal, Up2q‘t1u being embedded in the block-diagonal SOp4q‘844

t1u in the expected manner. Then WG – Σ2¸ t˘1u2 is a Coxeter group of type B2 acting on t2 as845

the dihedral group D8 and is generated by w´ “
`

p1 2q, 1, 1
˘

and w` “ pid, 1,´1q. Theorem 3.21846

does not apply as stated, as SOp5q is not simply-connected, but the relevant part of Steinberg’s847
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proof [Ste75] only requires that RSOp5q be polynomial, which it is, and one can check the coset848

condition holds.849

One can also consider the cover

G “ Spinp5q “ Spp2q, K´ “ Up2q, K` “ Up1q ‘ Spp1q, H “ Up1q ‘Up1q “ T,

which generates the same W.850

Example 5.15. The dihedral group D12, a Coxeter group of Killing–Cartan type G2, is realized as851

the Weyl group of a cohomogeneity-one action with H – T2 as follows. Consider the adjoint852

action of the compact exceptional group G2 on its Lie algebra g2 – R14. This restricts to an853

action on the unit sphere S13 under the norm induced by the Killing form, and the orbits are854

given by the intersection of S13 with a Weyl chamber in the Lie algebra t2 of a maximal torus,855

cutting out an arc of the unit circle S1 Ĺ t2 of angle π{6. The principal isotropy group fixing a856

point on the interior of the arc is T2 itself and the singular isotropies fixing the endpoints are two857

nonconjugate copies of Up2q [Miy01]. The reflections w˘ generate the dihedral group WG2 “ D12.858

As G2 is simply-connected, one can check the coset condition and apply Theorem 3.21 again.859

6. Equivariant formality860

In this final section, we let G ñ M be a cohomogeneity-one action with M{G a closed interval as861

in the first fork 0.2(a) of Mostert’s dichotomy 0.1 and use the structure theorems for K˚GpMq in862

the previous two sections and the representation theory of Section 3 to characterize equivariant863

formality of such actions.864

Recall that K-theoretic equivariant formality means surjectivity of the map K˚GpMq ÝÑ K˚pMq865

forgetting the G-equivariant structure on a complex vector bundle. This condition, first studied by866

Matsunaga and Minami [MatM86]18 is stronger than the condition that K˚GpM;Qq ÝÑ K˚pM;Qq867

be surjective, which Fok [Fok19] named rational K-theoretic equivariant formality and showed is868

equivalent to cohomological equivariant formality in the traditional sense [GorKM98] that the re-869

striction H˚
GpM;Qq ÝÑ H˚pM;Qq along the fiber inclusion in the Borel fibration M Ñ MG Ñ BG870

be surjective. Goertsches and Mare [GoeM14, Cor. 1.3] showed a cohomogeneity-one action of a871

compact, connected Lie group G on a smooth closed manifold M with orbit space an interval872

is equivariantly formal if and only if rk G “ maxtrk K´, rk K`u, so the same holds of rational873

K-theoretic equivariant formality and the rank equation is a necessary condition for K-theoretic874

equivariant formality over the integers. The converse also holds, at least with the standard re-875

striction on fundamental groups.876

Theorem 6.1. Consider a cohomogeneity-one action of a compact, connected Lie group G with π1pGq877

torsion-free on a smooth closed manifold M such that the orbit space M{G is an interval and the com-878

mutator subgroups of the exceptional isotropy groups K˘ are the products of simply-connected groups879

and SOpoddq factors. Then the action is K-theoretically equivariantly formal if and only if rk G “880

maxtrk K´, rk K`u.881

Proof. We consider the Hodgkin–Künneth spectral sequence [Hodgkin, Intro., Cor. 1, p. 6] for
the left multiplication G-action on X “ G and the given action on Y “ M, a (Zˆ Z{2)-graded

18 though Hodgkin had already dubbed the map “forgetful” [Hodgkin, p. 72]



38

left–half-plane spectral sequence which starts at

E˚,˚
2 “ Tor˚,˚

RGpK
˚
GX, K˚GYq “ Tor˚,˚

RGpZ, K˚G Mq

and, given the hypothesis on π1G, converges to

K˚GpXˆYq “ K˚GpGˆMq – K˚pMq.

The forgetful map K˚GpMq ÝÑ K˚pMq we wish to show is surjective can be identified [Hodgkin,
Prop. 9.1, p. 71] with the edge map

K˚GpMq Z b
RG

K˚GpMq “ E0,˚
2 ãÝÝÑ E0,‚

8 .

In each case we will verify the groups Torď´1
RG pZ, K˚G Mq “ 0 vanish, showing the spectral sequence882

collapses and the edge map is a surjection. We will repeatedly use the following facts. First, if883

K{H is an odd-dimensional sphere, then rk K “ 1` rk H, while if K{H is an even-dimensional884

sphere, then rk K “ rk H. Second [AtH61, Thm. 3.6], for Γ closed and connected of full rank in G885

we have K1pG{Γq “ 0 and K0pG{Γq free abelian (of rank |WG|{|WΓ|). Third [GonZ17, (7), p. 19],886

the groups Torďp
RGpZ, RΓq vanish for Γ ď G closed and connected with rk G ´ rk Γ ă |p|, so that887

particularly Torď´2
RG pZ, RΓq vanishes for Γ P tK˘, Hu.888

Suppose rk G “ rk H ` 1.889

In these cases we know that one of K˘ has rank greater than that of H, and our hypothesis890

on K˘ implies that RpK˘)’ is polynomial [Ste75], so the corresponding restriction RK˘ ÝÑ RH is891

surjective by Propositions 3.10 and 3.13 and the Mayer–Vietoris sequence of Theorem 4.1 shows892

K1
GpMq vanishes, leaving a short exact sequence of RG-modules K0

GpMq RK´ ˆ RK` RH.893

Applying the derived exact sequence of the functor ZbRG ´, we find Torď´2
RG pZ, K˚G Mq vanishes894

as above. Since in fact the E2 page is only inhabited by E0,0
2 and E´1,0

2 , we know the former of895

these is K0pMq and the latter K1pMq. Thus the forgetful map will be surjective if and only if also896

Tor´1
RGpZ, K0

G Mq “ K1pMq “ 0. Using the Mayer–Vietoris sequence of the standard cover, we must897

show K0pG{K´q ‘ K0pG{K`q ÝÑ K0pG{Hq is surjective and K1pG{K´q ‘ K1pG{K`q ÝÑ K1pG{Hq898

injective.899

For surjectivity, assume without loss of generality that rk G “ rk K`, so that K1pG{K`q is
zero and K0pG{K`q is free abelian; in particular, then the Atiyah–Hirzebruch spectral sequence
H˚pG{K`q ùñ K˚pG{K`q collapses. There is an evident bundle map

K`{H

��

// ˚

��
G{H

��

// G{K`

G{K` G{K`

inducing a map of Atiyah–Hirzebruch–Leray–Serre spectral sequences. We have just seen the
right spectral sequence collapses, and the map then shows all differentials out of the zero row
of the left spectral sequence must vanish as well. Particularly this means that the row E˚,0

8 is a
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quotient of E˚,0
2 “ K˚pG{K`q; and since K`{H is an odd-dimensional sphere, K˚pK`{Hq is an

exterior algebra Λrzs on one generator z P K1pK`{Hq, so that

E2 “ H˚
`

G{H; K˚pK`{Hq
˘

– H˚pG{Hq bΛrzs.

Since each diagonal thus contains only one nonzero entry, we have E8 – K˚pG{Hq as groups and900

thus, since odd columns are zero, E˚,0
8 – K0pG{Hq. This is a quotient of the row E˚,0

2 – H˚pG{K`q,901

so the collapse H˚pG{K`q – K0pG{K`q of the Atiyah–Hirzebruch spectral sequence on the right902

shows K0pG{K`q ÝÑ K0pG{Hq is surjective.903

Injectivity is obvious if K1pG{K˘q “ 0, so now assume as well that rk K´ “ rk H “ rk G´ 1.904

We consider the map of Hodgkin–Künneth spectral sequences corresponding to X “ G and905

G{H “ Y Ñ Y1 “ G{K´. These are concentrated in the 0-row and again by the vanishing of906

Torď´2, the spectral sequences both collapse at E2, so the map K1pG{K´q ÝÑ K1pG{Hq may be907

identified with the map Tor´1
RGpZ, RK´q ÝÑ Tor´1

RGpZ, RHq. But as K´{H is an even-dimensional908

sphere by assumption, Proposition 3.20 shows RH is free of rank two over RK´, so one has a909

short exact sequence RK´ RH RK´. Applying the derived exact sequence of ZbRG ´ and910

the vanishing of Tor´2, we see Tor´1
RGpZ, RK´q ÝÑ Tor´1

RGpZ, RHq is injective as claimed.911

Suppose rk G “ rk H.912

Since K1pG{K˘q “ 0 “ K1pG{Hq in this situation, the sequence of Theorem 2.11 separates into
the two short exact sequences

0 Ñ K0
GpMq ÝÑ RK´ ˆ RK` ÝÑ B Ñ 0,

0 Ñ B ÝÑ RH ÝÑ K1
GpMq Ñ 0

of RG-modules. From the vanishing of Torď´2 we get RG-module isomorphisms

Tor´n´2
RG pZ, K1

G Mq – Tor´n´1
RG pZ, Bq – Tor´n

RGpZ, K0
G Mq pn ě 1q,

and from Theorem 0.4 we also have an RG-module isomorphism K0
GpMq – K1

GpMq, so the higher913

Tors are 2-periodic. But Z has finite projective dimension over RG (indeed, the Koszul algebra914

RGb K˚G is a resolution of length rk G), so these higher Tors vanish.915

Remark 6.2. The last sentence in this proof, the observation it concludes the proof, and the request916

for such a result in the first place are all due to Marcus Zibrowius.917
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[CGLP04] M. Cvetič, G.W. Gibbons, H. Lü, and C.N. Pope. New cohomogeneity one metrics with Spin(7) holon-957

omy. J. Geom. Phys., 49(3-4):350–365, 2004. doi:10.1016/s0393-0440(03)00108-6.958

[Dear11] Owen Dearricott. A 7-manifold with positive curvature. Duke Math. J., 158(2):307–346, 2011. doi:959

10.1215/00127094-1334022.960

[Fok19] Chi-Kwong Fok. Equivariant formality in K-theory. New York J. Math., 25:315–327, Mar. 2019. http:961

//nyjm.albany.edu/j/2019/25-15.html, arXiv:1704.04796.962

[Fra11] Philipp Frank. Cohomogeneity one manifolds with positive Euler characteristic. Transform. Groups,963

18(3):639–684, Jul. 2013. Latest arXiv version: 2018. http://d-nb.info/1027017088, arXiv:1202.1165,964

doi:10.1007/s00031-013-9227-8.965

[GaZ18] Fernando Galaz-García and Masoumeh Zarei. Cohomogeneity one topological manifolds revisited.966

Math. Z., 288(3–4):829–853, Aug. 2018. URL: http://link.springer.com/article/10.1007/s00209-967

017-1915-y, arXiv:1503.09068, doi:10.1007/s00209-017-1915-y.968

[GoeM14] Oliver Goertsches and Augustin-Liviu Mare. Equivariant cohomology of cohomogeneity one actions.969

Topology Appl., 167:36–52, 2014. arXiv:1110.6318, doi:10.1016/j.topol.2014.03.006.970

[GonZ17] David González-Álvaro and Marcus Zibrowius. The stable converse soul question for positively curved971

homogeneous spaces. 2017. arXiv:1707.04711.972

[GorKM98] Mark Goresky, Robert Kottwitz, and Robert MacPherson. Equivariant cohomology, Koszul duality,973

and the localization theorem. Invent. Math., 131(1):25–83, 1998. http://math.ias.edu/~goresky/pdf/974

equivariant.jour.pdf, doi:10.1007/s002220050197.975

[Grot57] Alexandre Grothendieck. Sur quelques points d’algèbre homologique. Tôhoku Math. J. (2), 9(2):119–183,976

1957.977

http://arxiv.org/abs/2010.08475
https://www.maths.ed.ac.uk/~v1ranick/papers/ahvbh.pdf
http://dx.doi.org/10.1090/pspum/003/0139181
http://dx.doi.org/10.1007/bf02565599
http://hopf.math.purdue.edu/Boardman/ccspseq.pdf
http://dx.doi.org/10.1090/conm/239/03597
http://dx.doi.org/10.2307/1993612
http://dx.doi.org/10.2307/1993612
http://dx.doi.org/10.2307/1993612
http://dx.doi.org/10.1215/S0012-7094-89-05839-0
https://wwwf.imperial.ac.uk/~jcarlson/Weyl_coset_GAP_computations.txt
https://wwwf.imperial.ac.uk/~jcarlson/Weyl_coset_GAP_computations.txt
https://wwwf.imperial.ac.uk/~jcarlson/Weyl_coset_GAP_computations.txt
http://arxiv.org/abs/1511.06228
http://dx.doi.org/10.1112/jlms.12116
http://arxiv.org/abs/1802.02304
http://dx.doi.org/10.1007/s10711-019-00434-4
http://dx.doi.org/10.1103/PhysRevD.65.106004
http://dx.doi.org/10.1016/s0393-0440(03)00108-6
http://dx.doi.org/10.1215/00127094-1334022
http://dx.doi.org/10.1215/00127094-1334022
http://dx.doi.org/10.1215/00127094-1334022
http://nyjm.albany.edu/j/2019/25-15.html
http://nyjm.albany.edu/j/2019/25-15.html
http://nyjm.albany.edu/j/2019/25-15.html
http://arxiv.org/abs/1704.04796
http://d-nb.info/1027017088
http://arxiv.org/abs/1202.1165
http://dx.doi.org/10.1007/s00031-013-9227-8
http://link.springer.com/article/10.1007/s00209-017-1915-y
http://link.springer.com/article/10.1007/s00209-017-1915-y
http://link.springer.com/article/10.1007/s00209-017-1915-y
http://arxiv.org/abs/1503.09068
http://dx.doi.org/10.1007/s00209-017-1915-y
http://arxiv.org/abs/1110.6318
http://dx.doi.org/10.1016/j.topol.2014.03.006
http://arxiv.org/abs/1707.04711
http://math.ias.edu/~goresky/pdf/equivariant.jour.pdf
http://math.ias.edu/~goresky/pdf/equivariant.jour.pdf
http://math.ias.edu/~goresky/pdf/equivariant.jour.pdf
http://dx.doi.org/10.1007/s002220050197


41

[Grove] Karsten Grove. Geometry of, and via, symmetries. In In Conformal, Riemannian and Lagrangian geometry978

(Knoxville, TN), 2002.979

[GrVWZ06] Karsten Grove, Luigi Verdiani, Burkhard Wilking, and Wolfgang Ziller. Non-negative curvature obstruc-980

tions in cohomogeneity one and the Kervaire spheres. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), Ser. 5, v.981

5(2):159–170, 2006. http://www.numdam.org/item/ASNSP_2006_5_5_2_159_0, arXiv:0601765.982

[GrWZ08] Karsten Grove, Burkhard Wilking, and Wolfgang Ziller. Positively curved cohomogeneity one manifolds983

and 3-Sasakian geometry. J. Diff. Geom., 78:33–111, 2008. doi:10.4310/jdg/1197320603.984

[GrZ00] Karsten Grove and Wolfgang Ziller. Curvature and symmetry of Milnor spheres. Ann. of Math.,985

152(1):331–367, 2000. doi:10.2307/2661385.986

[GrZ02] Karsten Grove and Wolfgang Ziller. Cohomogeneity one manifolds with positive Ricci curvature. Invent.987

Math., 149(3):619–646, Sep. 2002. doi:10.1007/s002220200225.988

[HatAT] Allen Hatcher. Algebraic topology. Cambridge Univ. Press, 2002. http://math.cornell.edu/~hatcher/989

AT/ATpage.html.990

[HatVBKT] Allen Hatcher. Vector bundles and K-theory. 2017 manuscript. http://math.cornell.edu/~hatcher/991

VBKT/VBpage.html.992

[He14] Chenxu He. New examples of obstructions to non-negative sectional curvatures in cohomogeneity993

one manifolds. Trans. Amer. Math. Soc., 366(11):6093–6118, Mar. 2014. arXiv:0910.5712, doi:10.1090/994

s0002-9947-2014-06194-1.995

[Hodgkin] Luke Hodgkin. The equivariant Künneth theorem in K-theory. In Topics in K-theory, pages 1–101.996

Springer, 1975. doi:10.1007/BFb0082285.997

[Hoel10] Corey A. Hoelscher. Classification of cohomogeneity one manifolds in low dimensions. Pacific J. Math.,998

246(1):129–185, 2010. doi:10.2140/pjm.2010.246.129.999

[Mack96] George Mackiw. Finite groups of 2ˆ 2 integer matrices. Math. Mag., 69(5):356–361, 1996. doi:10.2307/1000

2691281.1001

[MatM86] Hiromichi Matsunaga and Haruo Minami. Forgetful homomorphisms in equivariant K-theory. Publ.1002

Res. Inst. Math. Sci., 22(1):143–150, 1986. doi:10.2977/prims/1195178377.1003

[Matu73] Takao Matumoto. Equivariant cohomology theories on G-CW complexes. Osaka J. Math., 10(1):51–68,1004

1973. URL: http://ir.library.osaka-u.ac.jp/repo/ouka/all/11621/ojm10_01_07.pdf.1005

[May] J. Peter May. Mayer-Vietoris sequence for arbitrary bicartesian square of spectra. MathOverflow, Mar.1006

2013. http://mathoverflow.net/q/123326.1007

[Min71] Haruo Minami. The representation rings of orthogonal groups. Osaka J. Math., 8(2):243–250, 1971.1008

https://projecteuclid.org/euclid.ojm/1200758166.1009

[Min75] Haruo Minami. K-groups of symmetric spaces I. Osaka J. Math., 12:623–634, 1975. http://1010

projecteuclid.org/euclid.ojm/1200758166.1011

[Miy01] Takashi Miyasaka. Adjoint orbit types of compact exceptional Lie group G2 in its Lie algebra. Math.1012

J. Okayama Univ., 43:17–23, 2001. http://www.math.okayama-u.ac.jp/mjou/mjou43/_Miyasaka.pdf,1013

arXiv:1011.0048.1014

[Mos57a] Paul S. Mostert. On a compact Lie group acting on a manifold. Ann. of Math., 65(3):447–455, 1957.1015

doi:10.2307/1970056.1016

[Mos57b] Paul S. Mostert. Errata: On a compact Lie group acting on a manifold. Ann. of Math., 66(3):589, 1957.1017

doi:10.2307/1969911.1018

[Neu68] Walter D. Neumann. 3-dimensional G-manifolds with 2-dimensional orbits. In Proceedings of the Confer-1019

ence on Transformation Groups, pages 220–222. Springer, 1968. doi:10.1007/978-3-642-46141-5_16.1020

[NS] Mara D. Neusel and Larry Smith. Invariant Theory of Finite Groups, volume 94 of Math. Surveys Monogr.1021

Amer. Math. Soc., 2002.1022

[Par86] Jeff Parker. 4-dimensional G-manifolds with 3-dimensional orbits. Pacific J. Math., 125(1):187–204, 1986.1023

doi:10.2140/pjm.1986.125.187.1024

[Pop15] Vladimir L. Popov. Around the Abhyankar–Sathaye conjecture. Doc. Math., pages 513–528, 2015. URL:1025

https://www.math.uni-bielefeld.de/documenta/vol-merkurjev/popov.html.1026

http://www.numdam.org/item/ASNSP_2006_5_5_2_159_0
http://arxiv.org/abs/0601765
http://dx.doi.org/10.4310/jdg/1197320603
http://dx.doi.org/10.2307/2661385
http://dx.doi.org/10.1007/s002220200225
http://math.cornell.edu/~hatcher/AT/ATpage.html
http://math.cornell.edu/~hatcher/AT/ATpage.html
http://math.cornell.edu/~hatcher/AT/ATpage.html
http://math.cornell.edu/~hatcher/VBKT/VBpage.html
http://math.cornell.edu/~hatcher/VBKT/VBpage.html
http://math.cornell.edu/~hatcher/VBKT/VBpage.html
http://arxiv.org/abs/0910.5712
http://dx.doi.org/10.1090/s0002-9947-2014-06194-1
http://dx.doi.org/10.1090/s0002-9947-2014-06194-1
http://dx.doi.org/10.1090/s0002-9947-2014-06194-1
http://dx.doi.org/10.1007/BFb0082285
http://dx.doi.org/10.2140/pjm.2010.246.129
http://dx.doi.org/10.2307/2691281
http://dx.doi.org/10.2307/2691281
http://dx.doi.org/10.2307/2691281
http://dx.doi.org/10.2977/prims/1195178377
http://ir.library.osaka-u.ac.jp/repo/ouka/all/11621/ojm10_01_07.pdf
http://mathoverflow.net/q/123326
https://projecteuclid.org/euclid.ojm/1200758166
http://projecteuclid.org/euclid.ojm/1200758166
http://projecteuclid.org/euclid.ojm/1200758166
http://projecteuclid.org/euclid.ojm/1200758166
http://www.math.okayama-u.ac.jp/mjou/mjou43/_Miyasaka.pdf
http://arxiv.org/abs/1011.0048
http://dx.doi.org/10.2307/1970056
http://dx.doi.org/10.2307/1969911
http://dx.doi.org/10.1007/978-3-642-46141-5_16
http://dx.doi.org/10.2140/pjm.1986.125.187
https://www.math.uni-bielefeld.de/documenta/vol-merkurjev/popov.html


42

[Püt09] T. Püttmann. Cohomogeneity one manifolds and selfmaps of nontrivial degree. Transform. Groups,1027

14:225–247, 2009. arXiv:0710.3770, doi:10.1007/s00031-008-9037-6.1028

[Rud98] Yuli B. Rudyak. On Thom spectra, orientability, and cobordism. Springer, 1998.1029

[RusSat13] Peter Russell and Avinash Sathaye. Forty years of the epimorphism theorem. Eur. Math. Soc. Newsl.,1030

90:12–17, Dec. 2013. URL: https://www.ems-ph.org/journals/all_issues.php?issn=1027-488X.1031

[Sat76] Avinash Sathaye. On linear planes. Proc. Amer. Math. Soc., 56(1):1–7, 1976. doi:10.1090/s0002-9939-1032

1976-0409472-6.1033

[Seg68] Graeme Segal. Equivariant K-theory. Publ. Math. Inst. Hautes Études Sci., 34:129–151, 1968. http:1034

//numdam.org/item/PMIHES_1968__34__129_0, doi:10.1007/BF02684593.1035

[Ste75] Robert Steinberg. On a theorem of Pittie. Topology, 14(2):173–177, 1975. doi:10.1016/0040-9383(75)1036

90025-7.1037

[Tah71] Ken-Ichi Tahara. On the finite subgroups of GLp3, Zq. Nagoya Math. J., 41:169–209, 1971. doi:10.1017/1038

s002776300001415x.1039

[vanL] Marc van Leeuwen. LiE online service, 2000. http://wwwmathlabo.univ-poitiers.fr/~maavl/LiE/1040

form.html.1041

[Ver04] Luigi Verdiani. Cohomogeneity one manifolds of even dimension with strictly positive sectional curva-1042

ture. J. Differential Geom., 68(1):31–72, Sep 2004. doi:10.4310/jdg/1102536709.1043

[VZ09] Luigi Verdiani and Wolfgang Ziller. Positively curved homogeneous metrics on spheres. Math. Z.,1044

261(3):473–488, 2009. doi:10.1007/s00209-008-0332-7.1045

[VZ14] Luigi Verdiani and Wolfgang Ziller. Concavity and rigidity in non-negative curvature. J. Differential1046

Geom., 97(2):349–375, Jun 2014. doi:10.4310/jdg/1405447808.1047

[Wendt] Matthias Wendt. Generalizations of Abhyankar-Moh theorem (embeddings of the line in the plane).1048

MathOverflow, Mar. 2018. https://mathoverflow.net/q/295575.1049

[Whi62] George W. Whitehead. Generalized homology theories. Trans. Amer. Math. Soc., 102(2):227–283, 1962.1050

doi:10.1090/s0002-9947-1962-0137117-6.1051

[Zil09] Wolfgang Ziller. On the geometry of cohomogeneity one manifolds with positive curvature. In Rieman-1052

nian Topology and Geometric Structures on Manifolds, pages 233–262. Springer, 2009. doi:10.1007/978-0-1053

8176-4743-8\_10.1054

Department of Mathematics, Imperial College London, 180 Queen’s Gate, London SW7 2AZ, UK1055

j.carlson@imperial.ac.uk1056

http://arxiv.org/abs/0710.3770
http://dx.doi.org/10.1007/s00031-008-9037-6
https://www.ems-ph.org/journals/all_issues.php?issn=1027-488X
http://dx.doi.org/10.1090/s0002-9939-1976-0409472-6
http://dx.doi.org/10.1090/s0002-9939-1976-0409472-6
http://dx.doi.org/10.1090/s0002-9939-1976-0409472-6
http://numdam.org/item/PMIHES_1968__34__129_0
http://numdam.org/item/PMIHES_1968__34__129_0
http://numdam.org/item/PMIHES_1968__34__129_0
http://dx.doi.org/10.1007/BF02684593
http://dx.doi.org/10.1016/0040-9383(75)90025-7
http://dx.doi.org/10.1016/0040-9383(75)90025-7
http://dx.doi.org/10.1016/0040-9383(75)90025-7
http://dx.doi.org/10.1017/s002776300001415x
http://dx.doi.org/10.1017/s002776300001415x
http://dx.doi.org/10.1017/s002776300001415x
http://wwwmathlabo.univ-poitiers.fr/~maavl/LiE/form.html
http://wwwmathlabo.univ-poitiers.fr/~maavl/LiE/form.html
http://wwwmathlabo.univ-poitiers.fr/~maavl/LiE/form.html
http://dx.doi.org/10.4310/jdg/1102536709
http://dx.doi.org/10.1007/s00209-008-0332-7
http://dx.doi.org/10.4310/jdg/1405447808
https://mathoverflow.net/q/295575
http://dx.doi.org/10.1090/s0002-9947-1962-0137117-6
http://dx.doi.org/10.1007/978-0-8176-4743-8_10
http://dx.doi.org/10.1007/978-0-8176-4743-8_10
http://dx.doi.org/10.1007/978-0-8176-4743-8_10
j.carlson@imperial.ac.uk

	Coverings and mapping tori
	Mayer–Vietoris and double mapping cylinders
	Restrictions of representation rings
	The splitting lemma
	Lemmas for odd spheres
	Lemmas for even spheres

	The case when one sphere is odd-dimensional
	The case when both spheres are even-dimensional
	Equivariant formality

