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The K-theory of cohomogeneity-one actions (clean)
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Abstract

We compute the equivariant complex K-theory ring of a cohomogeneity-one action of a
compact Lie group at the level of generators and relations and derive a characterization of K-
theoretic equivariant formality for these actions. Less explicit expressions survive for a range
of equivariant cohomology theories including Bredon cohomology and Borel complex cobor-
dism. The proof accordingly involves elements of equivariant homotopy theory, representation
theory, and Lie theory.

Aside from analysis of maps of representation rings and heavy use of the structure theory
of compact Lie groups, a more curious feature is the essential need for a basic structural fact
about the Mayer-Vietoris sequence for any multiplicative cohomology theory which seems to
be otherwise unremarked in the literature, and a similarly unrecognized basic lemma govern-
ing the equivariant cohomology of the orbit space of a finite group action.

Compact Lie group actions G — M of cohomogeneity one, those whose orbit space M/G is a 1-
manifold, have been a perennial object of study in differential geometry [Mos57a, Neu68, Par86,
AlAlg3, Piitog, Hoel1o, Fra11, He14, GaZ18, AnP20], first because they are the most obvious class
to study after homogeneous (= cohomogeneity-zero) actions, but also because they furnish ex-
amples of Einstein metrics [Ber82] and manifolds with exceptional holonomy [BryS8g, CGLPoz,
CGLPo4], and especially because “large” isometry, for which low cohomogeneity gives a mea-
sure, has long played a central organizing role (sometimes called the Grove program [Grove])
in finding Riemannian manifolds of nonnegative curvature [GrZoo, GrZoz, Verog, GrVWZo6,
GrWZo8, Zilog, Dear11, VZ14]. As nontrivial amounts of work have gone into understanding
these actions geometrically,’ their algebro-topological invariants are of some interest, and phe-
nomena arising in the computation of the rational Borel equivariant cohomology of these ac-
tions [CGHM19] hint at the generalization to a large class of cohomology theories pursued in the
present work. The case of equivariant K-theory is particularly interesting, given its implications
for the existence of vector bundles with prescribed properties; for example, Theorem 6.1 of the
present work is used in a work of Amann-Gonzélez-Alvaro—Zibrowius [AmMGAZ19, Thm. A(1)]
to construct metrics of non-negative curvature on vector bundles over a class of manifolds ad-
mitting cohomogeneity-one actions.

In considering cohomogeneity-one actions, one almost always operates in the framework of
Mostert’s classical structure theorem?, encapsulated in Figure o.2.

! See the bibliography in the recent work of Galaz-Garcia and Zarei [GaZ18] for some indication of the scope of
this study.
2 with an important erratum caught by Richardson and Samelson [Mos57b]
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Theorem o.1 (Mostert [Moss7al). Let G be a compact Lie group acting smoothly on a compact smooth
manifold M in such a way that the quotient M/G is a compact, connected 1-manifold, possibly with
boundary.’

* If M/G is a closed interval, there are inclusions of closed subgroups H = K* = G such that K*/H
are homeomorphic to spheres* and M is the double mapping cylinder of the span G/H =3 G/K™.

e If M/G is a circle, there exist a closed subgroup H of G and an element w of the normalizer N (H)
such that M is diffeomorphic to the mapping torus of the right translation by w on G/H.

G/H
<>
G/K~ G/K*

}
| D
1 i ¢ 1

(a) M/G an interval (b) M/G a circle

Figure 0.2: Schematics for the orbit projection M — M/G of a cohomogeneity-one action

In the case of the double mapping cylinder, if M is smooth, then the isotropy quotients K*/H
can actually be taken isometric in the Riemannian sense to round spheres given by orbits in
irreducible K*-representations [Besse, Ex. 7.13], suggesting equivariant complex K-theory K7,
whose coefficient ring is the ring RG of complex representations, which is already motivated by
its applications, is also an especially natural topological invariant of such an action. Indeed, the
Mayer-Vietoris sequence of the cover {U*} in Figure 0.2(a) reduces to the exact sequence

0 — K%(M) — RK~ x RK* — RH -5 KL(M) — 0, (0.3)

where the middle map is the difference of the restrictions RK* — RH between complex repre-
sentation rings, showing the additive structure of KE(M) is wholly a question of representation
theory.

Surprisingly, the multiplicative structure turns out to be as well. The key fact is that the
connecting map ¢ in (0.3) is actually a K%(M)-module homomorphism. The analogous fact in
Borel cohomology can be established by chasing cochains around a diagram, but there are no
cochains to follow in K-theory. The result nevertheless turns out to be extremely general:

Proposition 2.1. Let E* be a multiplicative (Z-graded, G-equivariant) cohomology theory. Then the nat-
ural E*(X)-module structure on the terms of the Mayer—Vietoris sequence of a triad (X; U, V) of G-CW
complexes with X = U u V is preserved by the connecting map in the sequence.

3 In the noncompact case, where the quotient space is an open or half-open interval, M deformation retracts onto
a homogeneous fiber G/H of M — M/G, so this case is already understood from the point of view of this paper.

4 Without the smoothness hypothesis (omitted by Mostert), K /H can also be the Poincaré homology sphere, as
noted by Galaz-Garcia and Zarei only recently [GaZ18].
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This basic result seems underappreciated; working topologists surveyed by the author seem not
to know it, nor does it seem to be discussed in the literature. The enhanced connecting map makes
life simpler in a variety of situations, and a sample application to the cup product on a closed
3-manifold is discussed in Example 2.2. Most importantly for us, Proposition 2.1 immediately
implies a general structure theorem for the equivariant cohomology ring of G — M in multiplica-
tive cohomology theories with coefficients concentrated in even degree, Proposition 2.9, and one
thus has a general expression for the K-theory ring, Theorem 2.11.

To say more concretely what the ring K¢ (M) is, one needs to explicitly identify the maps in
the sequence (0.3). The structure theorem for Hf(M; Q) proceeds from analysis of an analogous
sequence, so one naturally changes the nouns in those statements and hopes the same arguments
will prove the stronger results. While the results are indeed the expected ones, the cohomological
proof methods fail utterly and the K-theoretic proof is incomparably more involved.

For example, the algebraic lemma governing the map H*(BK; Q) — H*(BH; Q) when K/H
is an odd-dimensional sphere is an easy result on commutative graded algebras, but the anal-
ogous statement about surjections RK — RH between ungraded polynomial rings is a deep
open problem in affine algebraic geometry, the Abhyankar-Sathaye embedding conjecture, and one
is forced to an analysis in Section 4 involving the structure theory of compact Lie groups and
the classification of homogeneous spheres. The result when one of the spheres K*/H is odd-
dimensional then follows:

Theorem 4.1. Let M be the double mapping cylinder of the span G/H —= G/K* for inclusions H =3
K* = G of closed, connected subgroups of a compact Lie group G such that K*/H are spheres and the
fundamental groups 7t1(K%) are free abelian.

(a) Assume that both K™ /H and K~ /H are odd-dimensional. Then we have an RG-algebra isomor-
phism of K (M) = KX (M) with one of
RH[tE!, #11] RH[,p,] RH[p_, 1] RH[p_,p.]
(- =1ty 1) (t-=1(p,) (P )ty —1) 00, ’

where we identify RK* with the Laurent polynomial ring RH[tT'] when dim K*/H = 1 and with the
polynomial ring RH[p, ] when dim K*/H > 3.

(b) Assume K* /H is odd-dimensional and K~ /H is even-dimensional. Then we have an RG-algebra
isomorphism of K& (M) = KX (M) with

RK™ @ (t — 1)RH[t*'] < RH[t*!] =~ RK" or RK~ @pRH[p] < RH[p] = RK™,

where we identify RK* with RH[t1'] if dimK*/H = 1 and with RH[p_] if diimK*/H > 3. The
product in either case is determined by the restriction RK~™ —— RH.

In all cases the RG-module structure is determined by restriction.

Similar difficulties ensue when the spheres K*/H are both even-dimensional. The determi-
nation of the product on HE(M; Q) in this case reduces to pleasant arguments involving Serre
spectral sequences of fibrations between classifying spaces and the eigenspaces of the action of
the so-called Weyl group of a geodesic of M on H*(BH;C), relying on the fact these eigenspaces
are themselves graded vector spaces; but the proof in K-theory involves a lengthy multi-layered
induction on the structure of compact Lie groups, whose base cases require a number of lemmas
in the Lie theory and representation theory of simple Lie groups. The result, however, comes out
as clean as one could hope:
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Theorem 0.4. Let M be the double mapping cylinder of the span G/H — G/K* for inclusions H =3
K* = G of compact Lie groups such that K* are semisimple groups which are products of simply-
connected groups and SO(odd) factors and K*/H are even-dimensional spheres. Then there exist an
element z € K (M) and an RG-algebra isomorphism

KE(M) =~ (RK™|g n RK" ) ® Alz],
where the injections RK* — RH and the RG-module structure are given by restriction.

This statement is a simplification of the more general but less pithy Theorem 5.10. The base cases
of the induction remarkably all turn out to be known special examples; see Remark 5.11.

These structure results also allow one to characterize surjectivity of the map Ki(M) —
K*(M), also known as K-theoretic equivariant formality, using the Hodgkin—-Kiinneth and Atiyah—
Hirzebruch-Leray—Serre spectral sequences and some homological algebra:

Theorem 6.1. Consider a cohomogeneity-one action of a compact, connected Lie group G with m1(G)
torsion-free on a smooth closed manifold M such that the orbit space M/G is an interval and the com-
mutator subgroups of the exceptional isotropy groups K+ are the products of simply-connected groups
and SO(odd) factors. Then the action is K-theoretically equivariantly formal if and only if tkG =
max{rk K—,rk K*}.

So much for the case when M/G is an interval. When M/G is a circle, we can say nothing
categorical before inverting the order |I'| of the cyclic subgroup I' generated by the class of
w € Ng(H) in the component group myNg(H) (see Example 1.9), but once we do, the result
follows formally from a much more fundamental fact about equivariant cohomology theories:

Theorem 1.2. Let G be a compact Lie group and T a discrete finite group, and X a finite (G x I')—
CW complex whose isotropy subgroups are of the form H x A for H < G and A < T. Moreover, let
E* be a Z-graded G-equivariant cohomology theory valued in Z[1/|r|]-modules. Then the quotient map
nt: X — X/T induces an isomorphism

E*(X/T) — E*(X)"
onto the submodule of I'-invariant elements.

The proof uses an equivariant Atiyah-Hirzebruch spectral sequence and an observation about
Bredon cohomology to reduce to the classical result for singular cohomology it generalizes, and
the result is again the sort of thing that one expects to find in the literature but does not. In
any event, it has an immediate corollary, Lemma 1.5, describing the equivariant cohomology of
a mapping torus in broad generality, which specializes to the result we wanted:

Proposition 1.7. Let M be the mapping torus of the right translation by w € Ng(H) on a homogeneous
space G/H of a Lie group G with finitely many components, and write w* for the maps induced on
K*(G/H) and KE(G/H) =~ RH by the right translation by w. Let  be the least positive natural number
such that w' lies in the identity component of Ng(H). Then one has K*(S)- and (RG® K*(S'))-algebra
isomorphisms

K& (M; Z[1/6]) = K*(S") ® (RH)"® @ Z[1/1],
K*(M; Z[1/4]) = K*(SY) @ K*(G/H)"® @ Z[/1],
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respectively, where (—)*” denotes the subring of w*-invariant elements, the K*(S')-module structure is
given in both cases by pullback from M/G ~ S, and the RG-algebra structure is induced by the inclusion
H— G.

The structure of the paper is as follows. The less involved case where M/G is a circle, includ-
ing Proposition 1.7, along with some necessary definitions, is discussed in Section 1. In Section 2,
we assume the orbit space M/G is an interval and discuss those aspects of K& (M) which do not
depend on representation theory on the dimensions of the homogeneous spheres K*/H, includ-
ing the Mayer—Vietoris proposition 2.1 and a general structure theorem 2.11. The refinements of
this theorem in the case M/G is an interval, depending on the parities of the dimensions of K*/H,
rely on material on Weyl groups, Lie theory, and maps of representation rings developed in Sec-
tion 3. In Section 4, we derive the consequences, including Theorem 4.1, when one of the spheres
K*/H is odd-dimensional, and in Section 5, we address the case when both of the spheres K*/H
are even-dimensional and derive Theorem 0.4. Finally, in Section 6 we use these structural results
to characterize K-theoretic equivariant formality for actions with orbit space an interval.

Acknowledgments. The author would like to thank Omar Antolin Camarena, Jason DeVito, Oliver
Goertsches, Chen He, Liviu Mare, Clover May, Marc Stephan, Marcus Zibrowius, and the anony-
mous referee for helpful conversations, Jan Minda¢ for thoughtful advice on presentation, and the
National Center for Theoretical Sciences in Taipei for its hospitality during a phase of this work.

1. Coverings and mapping tori

We begin with this section because it is the only one involving any inversion of coefficients or
any specifically equivariant homotopy theory. It does not involve representation theory or Lie
theory in any serious way, so it is somewhat independent of the rest of the document, and we
take it as an opportunity to get some long definitions out of the way.

Recall from Theorem o.1 that if a compact Lie group acts smoothly on a compact manifold M
with orbit space a circle (the case in Figure 0.2(b)), then M is diffeomorphic to the mapping torus
of the right translation by some element w € Ng(H) on G/H, namely

G/H % [0,1]
(gH,1) ~ (gwH,0)

As w is of finite order |w|, cutting the mapping torus at t = 1, gluing |w| copies end to end, and
then regluing the fiber t = 0 to t = |w| by w!*l = idg /1, we see G/H x S!is a |w|-sheeted covering
of M. The G-equivariant K-theory of G/H x S! is easy to compute, so most of our work is in
computing the equivariant cohomology of a space from that of a finite-sheeted cover.

Definition 1.1. Let G be a topological group. A G-n-cell is a space G/K x D", where K < G is a
closed subgroup and D" the closed n-disc, equipped with the G-action g - (kK, x) = (ghK, x). A
G-CW complex is a G-space X constructed iteratively as the colimit (= union) of a sequence of
spaces X,;, where X is a disjoint union of G-0O-cells and otherwise each X, is obtained from X,,_;
by adjoining a collection of G-n-cells G/K, x D} along G-equivariant attaching maps G/K, x
S"1 — X,_1. When we do not specify otherwise, S" comes equipped with the trivial G-action
(and hence is, if you like, a G-CW complex each of whose G-cells is of the form G/G x D). A
G-CW pair (X, A) comprises a G-CW complex X and a G-CW subcomplex A, meaning each
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G-cell of A is also a G-cell of X. Given a G—space X, we denote by X, := X1I* the disjoint union
of X and a new isolated, G-fixed point *.

A reduced G-equivariant (Z-graded) cohomology theory is a contravariant graded abelian
group—valued homotopy functor E* = P,z E" on the category of pointed G-CW complexes
which takes a cofiber sequence A — X — X/A to an exact sequence of groups and is equipped
with a natural graded group isomorphism ¢: E*X — E**1TX of degree one, the suspension,
where £X = S! A X is the reduced suspension of X. (Possibly obscured in the notation: S! is
again assumed to have trivial G-action.) Such a theory comes automatically with an associated
unreduced theory on unpointed G-CW pairs given by £*(X, A) = E*(X/A) (by convention X/& =
X4 ) and satisfying the Eilenberg-Steenrod axioms save dimension [Matuy3, §1].

Let Orb;; denote the category of orbits G/K (for K closed) and G-equivariant maps, #Orbg
the category with the same objects but morphisms G-homotopy classes of G-maps, Top the cat-
egory of topological spaces, and Ab the category of abelian groups. A coefficient system is a
contravariant functor M: hOrbg — Ab. For a given space X, the fixed point set assignment
G/H > X! gives a standard contravariant functor Orbg — Top and composing any covariant
functor Top — Ab gives a coefficient system. As an example, for each n € N and each G-CW
complex X there is a functor H,(X): G/H — H,(X, X! ). The assignment X — H,(X) is
itself covariantly functorial in G-CW complexes.

The Bredon cohomology H(X; M) of a G-CW complex X with coefficients in a coefficient
system M is defined as the cohomology of the complex C/(X; M) := Nat(H,(X), M) of nat-
ural transformations H,, —> M, where the n'" coboundary map of the complex is precompo-
sition with the tuple 0, = ((9,? / H)G /HeOrb for 85 M the connecting map in the long exact ho-
mology sequence of the triple (X! |, XH, X! |). Bredon cohomology is the unique unreduced
G-equivariant cohomology theory E* which satisfies the wedge axiom and the requirement that
E*(G/H) = E°(G/H) = M(G/H) for G/H € Orbg.

We write |I'| for the order of a group I'.

Theorem 1.2. Let G be a compact Lie group and T a discrete finite group, and X a finite (G x I')—
CW complex whose isotropy subgroups are of the form H x A for H < G and A < T'. Moreover, let
E* be a Z-graded G-equivariant cohomology theory valued in Z[1/|r||-modules. Then the quotient map
nt: X — X/T induces an isomorphism

E*(X/)T) = E*(X)F
onto the submodule of I'-invariant elements.

Proof. We first show the result for Bredon cohomology H”(—; E). As the group E7(G/K) admits
division by |I'|, a classical Leray spectral sequence argument (apparently due to Grothendieck
[Grots7, Thm. 5.3.1, Cor. to Prop. 5.2.3]) shows

¢k H* (X5 /T, X 1/T; E1(G/K)) — H*(X;, X, 1; E1(G/K))"

is an isomorphism. Endow EY9(G/K) with the trivial I'-action. Since the Kronecker pairing is T'-
invariant, the universal coefficient morphism

HP (X, XJ_1; E1(G/K)) — Hom (H, (X}, X§ 1), E'(G/K))



is also I'-equivariant, and since E7(G/K) is divisible by |T'|, induces a surjection of I'-invariants,
every I'-invariant element being the average over a I'-orbit. It follows from this surjectivity, the
surjectivity of ¢k, and the functoriality of the universal coefficient theorem that

fe/x: Hom (Hp (X, /T, X3;_1/T), E(G/K)) — Hom (H, (X}, XpK_l),E"(G/K))r

170 is also a surjection. By the observation that (£25)5/T ~ ((gig) /F) our assumption on the

11 isotropy groups of X, and induction, we have (X,)X/T = (X,,/T)X for all n, so the natural trans-
172 formations H,,(X/I') — E7 are encoded by coherent sequences in the domain of | [ keorm, fo/-
173 Equally, assigning each E7(G/K) the trivial I'-action, the I'-equivariant natural transformations

174 H,(X) — Ef are coherent sequences in the codomain of [ [ keom, fo/x- Thus we will have
175 an isomorphism CZ (X/T;ET) — CZ(X; EN if we can show fc/k is also injective for each
176 G/K € Orbg.

To this end we may forget the corestriction to I'-invariants in the codomain and just show the

map of Homs is injective, and for this it is enough to see the predual

Yok Hp(Xy, Xy 1) — Hy((Xp/D)X, (X,-1/T)F)

is surjective. From the definition of a (G x I')-CW complex and our assumption on isotropy
groups, the quotient XX /Xp 1 = (Xp/Xp-1)X is a wedge of summands
(G/Hy x T/Ag)% A SP = ((G/Ha)* x T/Ay)+ A S¥

for various product subgroups H, x A, < G x I, so the group HP(X,I;, X]I:fl) =~ I:Ip(Xﬁ/ngl)
decomposes as

@Hp (( G/Ha)" x T/As) , A sr’) ~ @ Ho((G/Ho)X x T/A) . = @ Hy ((G/H)<) @™,

and quotienting by I' we have a similar isomorphism

Hy (Xp/T)X, (Xp-1/T)X) = @HO(G/Ha) ).

177 But under these identifications the a'h summand of 1 /k is just iterated addition (x1, ..., X|r/a,|) —
178 X1+ + X|r/a,| in the group Hy((G/H,)X), which is certainly surjective.
Varying p, we have our isomorphism of cochain complexes C&(X/T;E*) — C&(X;E*)L.
Note that C%(X; E*) is divisible by |I'| and recall that given a cochain complex C of |I'|-divisible I'-
modules, the inclusion C!' — C induces an isomorphism H*(C') — H*(C)' and multiplication
by |I'| is again invertible on H*(C). Finally the composite

HE(X/T; E*) = H*(C*(X; E*)') — H*(X;E*)T

179 is the claimed isomorphism in Bredon cohomology.

180 There is a equivariant Atiyah-Hirzebruch spectral sequence due to Matumoto [Matuy3, §4],°
181 functorial in and converging to the E*-cohomology of finite G-CW complexes, and the entries
12 Ey'? of its second page are the Bredon cohomology groups HE(—; E7) with coefficients in the

5 The spectral sequence with sheaf coefficients due to Segal [Seg68, §5] reduces to this one in the case E* = K but
is less immediately adapted to our needs.
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coefficient system K — E7(G/K). Forgetting the I'-action and regarding X as a G-CW complex,
we see 71: X — X/I' induces a morphism of these spectral sequences. Since the spectral sequence
can be defined using a Cartan-Eilenberg H(p, q)-system with H(p,q) := @, E"(Xp-1, X;-1) and
the skeleta X; are I'-invariant by definition, the differentials d, of this spectral sequence are I'-
equivariant. On E; pages, the induced map of spectral sequences is H}(X/G; E*) — HE(X; E*),
which we have just seen is an isomorphism onto its image H%(X; E*)'. Inductively applying the
recollection about invariants of cochain complexes from the previous paragraph to each page,
we see 77* induces a pagewise isomorphism of one spectral sequence with the I'-invariants of the
second, and so at E., we recover an isomorphism gr E*(X/T) = (gr E*X)!, where gr denotes the
associated graded module with respect to the cellular filtration. But for any filtered I'-module N
divisible by ||, the inclusion NT «—— N induces an isomorphism gr(N') — (gr N)I, so the E,
map further factors through an isomorphism gr E*(X/T) — gr (E*(X)"). This is the associated
graded map induced by E*(X/T') — E*(X)T, so as the filtration involved is finite, that map is an
isomorphism as well [Boardgg, Thm. 2.6]. O

As a corollary we have a result on mapping tori, which we prefer to state as a ring isomor-
phism, so we will need to define an additional notion.

Definition 1.3. A G-equivariant cohomology theory E* is said to be multiplicative if E* is valued
in commutative graded algebras and the suspension axiom is replaced in the following way. Note
that E*(x, @) = E°S is a commutative ring with unity 1 and the projections 7ty, 7rx: Y x X —>
Y, X induce a natural cross product

E*YQ E*X = E*(Y A X),

Y® X —> TTyY - TTXX.

The new axiom is that there exist an element ¢ € E'S! such that the map ¢: E*X —> E*+1(S! A X)
given by o(x) := ¢ x x is a natural isomorphism.

Remark 1.4. This is somewhat leaner than the usual axiomatization. It is typical in defining a
multiplicative cohomology theory to demand it be represented by a ring spectum, but we do not
require our theories to satisfy the wedge axiom, and thus our results will allow for things like
p-completed theories.

For non-represented theories, it is usual to require natural cross products satisfying natu-
rality axioms, but it seems simpler to demand cup products and instead note the other ax-
ioms follow from the cGa structure and functoriality. The typical axiomization also demands
sign-commutativity of evident squares involving suspensions, but these are all consequences of
graded commutativity and the uniform definition of suspension as a cross product. Unreduced
theories additionally require the cross product cooperate with the connecting maps from the long
exact sequences of a pair, but the connecting map can be defined in terms of the suspension in
the unreduced theory, so the commutativity of these squares is again a formal consequence of
functoriality and the uniform definition of the suspension.

Now we can state the result.

Lemma 1.5. Let Y be a G-space and ¢ a self-homeomorphism of Y commuting with the G-action and such
that there exists a positive integer ( such that ' is homotopic to idy. Write X for the mapping torus of
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@ and let E* be a Z-graded multiplicative equivariant cohomology theory valued in Z[1/¢]-algebras. Write
E* := E*(%). Then
E*X =~ E* (V)" @ Apx[z],
E*

where z is the pullback of a generator of E*(S') ~ E°(S°) = E* under X —> S
Here, as usual, E*(Y)?"” denotes the subring of elements invariant under pullback by ¢.

Proof. Note that X admits an /-sheeted cyclic covering Z by the mapping torus of ¢f, which is
homotopy equivalent to the mapping torus Y x S! of the identity. The homotopy equivalence
h: Z — Y x S! and its homotopy inverse j can both be taken to preserve the projection to S!,
and the action of ¢ = 1+ ¢Z € Z/¢ on Z induces a map hgj on Y x S! which is homotopic to
(v,0) — (¢(y),0 + ZF), which, rotating the S! component, is in turn homotopic to (y,0) —
(¢(y),6). It follows from the suspension axiom for E* that E*S' ~ E* @ E*S' ~ E* @ E*[1] =
E* ® E*-{z}. Now assuming multiplicativity, as z € E!S! is a free E*(x)-module generator of E*s!
and S! is a suspension, we have E*S! >~ Ap«[z]. It follows again from the suspension axiom that
E*S!'®gx E¥*Y — E*(S! x Y) is a ring isomorphism.® The action of 1 + ¢Z on E*Y @« E*S! ~ E*Z
is given by 1 ® s — ¢*a®s, so an application of Theorem 1.2 yields the claim. O

Proposition 1.6. Let a cohomogeneity-one action of a compact, connected Lie group G on a smooth
manifold M be given with orbit space M/G ~ S'. Recall from Theorem 0.1 that this means M is G-
equivariantly diffeomorphic to the mapping torus of right multiplication on G/H by some element w €
Ng(H) and let ¢ be the smallest positive integer such that w’ lies in the identity component of Ng(K).
Suppose E* is a Z-graded multiplicative equivariant cohomology theory valued in Z[1/¢]-algebras. Then
one has a graded ring isomorphism

E*M =~ E*(G/H)"® ® Apx[z1], |zl =1
E

Proof. Note that w' lies in the path-component of the identity, so that right multiplication by w’
is homotopic to idg/y, and apply Lemma 1.5. O

The result we want follows immediately:

Proposition 1.7. Let M be the mapping torus of the right translation by w € Ng(H) on a homogeneous
space G/H of a Lie group G with finitely many components, and write w* for the maps induced on
K*(G/H) and KE(G/H) =~ RH by the right translation by w. Let  be the least positive natural number
such that w' lies in the identity component of Ng(H). Then one has K*(S')- and (RG ® K*(S'))-algebra
isomorphisms

KE(M; Z[1/4]) = K*(S") ® (RH)"® @ Z[1/1],
K*(M; Z[1/d]) = K*(SY) @ K*(G/H)"® @ Z[/1],
respectively, where (—)@*) denotes the subring of w*-invariant elements, the K*(S')-module structure is

given in both cases by pullback from M/G ~ S', and the RG-algebra structure is induced by the inclusion
H— G.

6 Explicitly, naturality of multiplication implies the suspension isomorphism E* (Yy) — Ex+1 (S' A Y4 ) is given by
multiplication by the pullback of z, giving a natural nonunital ring isomorphism E*S'@px E¥(Y4) —> E*(SU A Y4).
From the cofiber sequence S' v Y; — S x Y, — S' A Yy we get E*S! ®g+ E*(Y4) —> E*(S! x Y4) and from
Y - Yi S # we get E¥S! ®p« E¥Y —5 E*(S! x Y).
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Remark 1.8. There is a transfer map in K-theory we could also apply directly to bypass this level
of generality.

Such a clean statement is not possible without inverting the order of w.

Example 1.9. Let G = SO(n) and K the block-diagonal subgroup [1]®"~2@®SO(2). Then Ng(K) has
two components, represented by the identity matrix and the block-diagonal w = [1]®" 3 ®[-1]®
[93], conjugation by which corresponds to complex conjugation under the standard identifica-
tion of U(1) with the unit circle in the complex plane. Thus w acts on RSO(2) = Z[t1] by t <> 7,
where t: SO(2) — U(1) is the defining representation on C =~ R2. We let M be the mapping
torus of the right action of w on G/K. To proceed integrally rather than via Proposition 1.7, we
use the Mayer-Vietoris sequence of the cover of M by two intervals overlapping at the endpoints.
This is an exact sequence

0 — K&M — RK x RK — RK x RK — Kt M — 0

where the middle map is (a,b) — (a — b,a — wb). Since the first map is diagonal, the middle
map may be replaced with the map ¢: RK — RK taking a to a — wa. Thus

Ko(M) =~ kerp = R(K)™” = Z[t +t71],

K5(M) = coker ¢ = Z[F] Jzqm _p=n .y e Ny

Since the denominator in the cokernel induces on the numerator precisely the relations t=" = t",
a set of coset representatives for coker ¢ is given by Z{1,t,t2,3,...}. Writing g = t + t !, one sees

] -5 [+ =20 [t [P+1] 5 [P +3t] -5 [+ 42 +3] -5 -+,

and generally 4" - [t] has highest term [t"*1], so KL (M;Z[1/2]) is a free cyclic KX (M;Z[1/2])-
module on [1]. Note that with Z coefficients, Kl.(M) is not a free K& (M)-module.

2. Mayer-Vietoris and double mapping cylinders

The circle case disposed of, we begin analyzing the double mapping cylinder Figure o0.2(a) in
Mostert’s dichotomy 0.1 from the introduction.

The double mapping cylinder M of n*: G/H —3 G/K* admits an obvious invariant open
cover by the respective inverse images U~ and U* of the subintervals [—1,12) and (—12,1] of
X/G ~ [-1,1], and the intersection W = U~ n U™ equivariantly deformation retracts to G/H
and U to G/K¥ in such a way that the inclusions W — U* correspond to the projections 7t*.
Since K%(G/T) = K&(G/T) = RT for closed subgroups I' < G by restriction of an equivariant
bundle to the identity coset 1I' € G/I" and K, is Z/2-graded [Seg68, Ex. (ii), p. 132; Prop. (3.5)],
the Mayer—Vietoris sequence in K-theory reduces to the exact sequence

0 — K%(M) — RK~ x RK* — RH -2 KL(M) - 0

noted in the introduction. As promised there, this sequence is more informative than one might
expect, reflecting the fact that in great generality, the properties of the Mayer—Vietoris sequence
are better than is commonly acknowledged. Those who do not care about generality can safely
substitute E* = K¢, everywhere in the following without loss.
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Proposition 2.1. Let E* be a multiplicative (Z-graded, G-equivariant) cohomology theory. Then the nat-
ural E*(X)-module structure on the terms of the Mayer—Vietoris sequence of a triad (X;U, V) of G-CW
complexes with X = U u V is preserved by the connecting map in the sequence.

The additional structure on the connecting map is most helpful when even or odd cohomol-
ogy of the constituent subsets vanishes, making the connecting map surjective.

Example 2.2. Let M be a closed, oriented 3-manifold. Then M can be triangulated. A regular
neighborhood U of its 1-skeleton is an open handlebody (i.e., homeomorphic to the bounded
component cut out of R? by an embedded closed surface), and examining the local picture in
each 3-simplex, one sees the interior of the complement V is also a handlebody. The closures
of U and V meet in a closed, oriented surface Sy, and this assemblage is called a Heegaard
splitting of M. Letting N, denote a standard genus-g handlebody with boundary S,, we may
write M ~ N; Us N,y for some gluing homeomorphism f: S; — S.. If we write a; for the
standard g circles generating Hi(N,) and b; for the g circles bounding discs in S, representing
the other standard generators, so that |a; N b]-\ = (5}, then M is determined up to homeomorphism
by the images f(b;). Let aj and f3; be the dual basis of H'(S).

Fattening U and V slightly, we may apply the Mayer—Vietoris sequence in cohomology, which
contains the subsequence

P A o
0 — H' (M) =5 Z8 @ Z8 — H'(Sq) ——

H*(M) — 0.

Thus H'(M) and H?(M) are determined by the map A, which is in turn determined by the map f.
If we make the identifications U n V = Sy & N, = U, then the first component A : Z8 — H'(S,)
is the inclusion (*: a; — «; and the second component A; is f*/*, so we have an isomorphism

Zaj, Bj}
ZAwj, faj}’

which in particular is spanned by the images of the f;, and H'(M) =~ kerA is spanned by
elements (3 m;a;, >, nja;) such that } n;f*a; has no B-component. By Proposition 2.1, the cup
product p15: HY(M) x H* (M) — H3(M) is determined by y — &(z) = §(A13ey — z), where
Aqzy is some linear combination of the a; and z can be taken to be a linear combination of the
Bj, and the second cup product is taken in H*(S,). Since this product is given on generators by
a; — Bj = 6, the Mayer-Vietoris sequence gives i1 in terms of H(f).

imd =~ coker A =

Though Proposition 2.1 does not seem to appear as such in the literature, with a bit of faith it
is possible to cobble together a proof from citations.

Terse proof of Proposition 2.1. In the long exact sequence of a pair (X, A), the connecting map
E*(A) — E**1(X, A) is an E*(X)-module homomorphism; see Whitehead [Whi62, (6.19), p. 263]
for an algebraic proof for cohomology theories represented by ring spectra and note the proof
still follows from our axioms. Up to homotopy, the Mayer—Vietoris sequence of (X; U, V) is the
long exact sequence of a pair (X, U'11V’) in which X’ is homotopy equivalent to X via a homo-
topy equivalence X’ — X sending disjoint G-CW subcomplexes U’ and V'’ respectively to U and
V; ¢f. Adams [Adamsyy, p. 213] for a version of this statement for a representable theory.” O

7 Another version of this statement appears in a MathOverflow solution due to J. Peter May [May] for CW-spectra
(or, to quote, “any halfway reasonable category” of spectra).
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This is in a moral sense a geometry paper, so for those with less faith, a more expansive and
geometric account follows.

Notation 2.3. In what follows between now and the return to K-theory, all maps will be equiv-
ariant with respect to a fixed topological group G and all G-spaces will come equipped with a
G-fixed basepoint #. The wedge sum and smash product inherit the expected actions, and the
closed unit interval I = [0,1] and circle S' = I/(0 ~ 1) are basepointed at 0 and equipped with
the trivial G-action. We write CX = I A X for the reduced cone and > X = CX/X = S! A X for the
reduced suspension, with the induced actions.

The G-structure is just along for the ride in the proof that follows, and everything we state
through to Proposition 2.9 follows for nonequivariant theories through the expedient of setting
G=1

Definition 2.4. Let E* be a multiplicative G-equivariant cohomology theory (not even necessarily
equipped with suspension maps). The diagonal A: X — X A X makes a G-space X a coalgebra
in the sense that (A Aid) o A = (id A A) o A. A right X-coaction Ay: Y — Y A X on a G-space Y is
a map such that (Ay A id) o Ay = (id A A) o Ay; such a map makes Y a right X-comodule and in-
duces an additive homomorphlsm Ayopyx: E*Y ® E*X —> E*Y which one checks, unravelling
definitions, to be a right E*X- -algebra structure. A map f: Y — Z between right X-comodules
such that Az o f = (f A id) o Ay is an X-comodule homomorphism, and induces a E*X-algebra
homomorphism f*: E*Z — E*Y.

Proposition 2.5. Let G be a topological group and E* a multiplicative G-equivariant cohomology theory.
Then in the long exact sequence of a G-CW pair (X, A), all objects are E*X-modules and all arrows
E*X-module homomorphisms. In particular the image of E*(X/A) — E*X is an ideal and the image of
E*A — E**1(X/A) is a nonunital subring with zero multiplication.

We adapt a proof from Hatcher’s manuscript K-theory text [HatVBKT, Prop. 2.15], which
considers the cross product with a single element and does not make explicit use of the notion
of a comodule.

Proof. 1t will be enough to prove the result for the reduced theory E*. Note that for pointed G-
CW subcomplexes A of X and pointed G-CW complexes S with trivial action, S A A admits the
X-coactions nar—srasraand S A (X uCA) the X-coaction

SAX—>SAXALX,

sAntrhna—sAtAana.

It is easy to check these coactions make a cofiber sequence A — X — X u CA a sequence of
X-comodule homomorphisms. To see this also makes the Puppe sequence

A5 X-—>XUCA—TA L EX —S(XUCA) — 224 — -

a sequence of X-comodule homomorphisms, it suffices to observe the coaction commutes with
(suspensions of) the connecting map X U CA — S' A A givenby t Aa— (1—t) naand x — *.
To replace S A (X U CA) with S A X/A, observe the coaction s A [x] — s A [x] A x on the latter
makes the collapse map another X-comodule homomorphism.

Applying E* to the Puppe sequence then yields an E*X-module structure on the long exact
sequence of (X, A). To see the image of the connecting map has trivial multiplication, note this
map can be written as E*$.A — E*(X/A). O
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Remark 2.6. The meticulous reader will observe that the proof of Proposition 2.5 makes use of
the fact the coaction smashes with X on one side and the suspension smashes with S! on the
other. This choice actually matters; the choice of a left E* X-action instead of a right requires an
additional sign, making the connecting map fail to be an E*X-module homomorphism.® One
could be forgiven for suspecting this has something to do with the well-known sign in the Puppe
sequence: our choice of g: t Aa —> (1 —t) A a for the map X UCA — A A S! comes from
a nonstandard identification CX U CA — XA — LA in transitioning from the iterated cofiber
sequence to the Puppe sequence. This choice of identification makes E*g the opposite —6 of the
connecting map 8: E*A — E**1(X, A) defined through the axioms but makes the next map
YE*i rather than the —XE*i it would become under the standard identification. As g and its
variant —g are both X-comodule maps, the choice between them is immaterial to the success of
Proposition 2.5, and moreover, this choice inflicts a global sign of —1 on the connecting maps in
each degree, so the correction factor arising from putting the E* X-action on the left would be a
separate, logically independent sign.

To obtain the same result on connecting maps for the Mayer-Vietoris sequence, we realize it
as the long exact sequence of a pair, as in the terse proof.

Figure 2.7: Schematic of CU u X’ U CV in Proposition 2.8
cv

X Wal,

cu

Proposition 2.8. Let (X;U,V) be a triad of G-CW complexes with X = U u V. Write W for the
intersection U n'V and X' for the double mapping cylinder (U x {0}) v (W x I) u (V x {1}) of the
inclusions U «— W < V. Then for any G-equivariant cohomology theory, the long exact sequence of the
pair (X', U x {0} 1V x {1}) is the Mayer—Vietoris sequence of the triad (X; U, V).

Proof. It is again enough to assume W is pointed and prove the result for the reduced theory. In
so doing, we replace W x I with the reduced cylinder W A I, = (W x I)/({*} x I), turning X’
into X” = X'/({*} x I) and U x {0} 1V x {1} into U v V, which is naturally a subspace of X"
since the basepoints (x,0) and (x,1) have been identified. The result is as in Figure 2.7.

8 In detail, for singular cohomology, the k-submodule C*(X, A; k) of cochains vanishing on Cy(A) is a two-sided
ideal of C*(X; k) with respect to the cup product, which thus restricts to both a right and a left action of C*(X; k) on
C*(X, A;k). Using the zig-zag lemma to compute the connecting map ¢ of the short exact sequence C*(X, A;k) —
C*(X;k) — C*(A;k) of cochain complexes gives &(a — i*(x)) = da - x but 6(i*(x) — a) = (—1)*x - da. In terms of
our preceding discussion, the sign arises because the connecting map of the pair (X, A) factors as the composition
of ring homomorphisms and the suspension isomorphism H*(A;k) % H *+1(CA, A) & H*T1(ZA) arising from the
long exact sequence of the pair (CA, A) and the standard homeomorphism CA/A ~ XA; but since the suspension
isomorphism can be identified as H*(A;k) => H'(S!;k) @ H*(A; k) = H*+1(S! A A), the cross product on the left
with the fundamental class of S!, a sign can be avoided only by switching the side on which H* (X; k) acts.
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Note X" is G-homotopy equivalent to X via the map collapsing the I-direction in the reduced
cylinder W A L. The Puppe sequence begins

UvV — X' —scuuvX'vev X suvsy — =X

We can replace the third term with ~W because the map collapsing CU v CV to a point is a
G-homotopy equivalence. The maps then yield an exact sequence of graded groups

ErU@EV «— E*X < B 1w <= B U@ E* 1V — E* X,
which we check is the Mayer—Vietoris sequence:

e That U v V — X” yields the pair of restrictions E*X — E*U@E*V is clear.

¢ The connecting map in the Mayer—Vietoris sequence is defined as the composition
E*'W — E*(V/W) < E*(X/U) — E*X,

where the first map is the connecting map in the long exact sequence of the pair (V, W),
hence induced by V/W < V UCW — XW, the second is the excision arising from the
homeomorphism V/W — X/U, and the last is induced by the projection X — X/U.
Thus the Mayer—Vietoris connecting map is obtained by following the path from X to ZW
along the bottom of the following commutative diagram, while é comes from following

along the top:
/uvv

W X' —X

/v u

VUCW/C‘W»V/WHX/U.

® The map ( is induced as the composition along the right in the commutative diagram

SWECWUWAL)UCW S CUU(WAIL)UCY
J/(WnLy) J(WAL)

SWvEINC——2XU v EV.

On the other hand, the left vertical map collapsing a cylinder’s worth of Ws is G-homotopy
equivalent to the pinch map XW — LW v LW collapsing only the equator W x {1/2},
so the composition ZW — YW v EW — XU v XV is homotopic to Xjy — Xjy, where
ju,jv: W —— U,V are the inclusions. The minus sign comes from observing a small neigh-
borhood the cone point of the abstract CU = U A I lies near suspension coordinate t = 0,
agreeing with the suspension coordinate of the included copy of CUin CUuU (W A I;) uCV,
while the cone point of the included copy of CV is near t = 1, disagreeing with that of the
abstract CV. O



342
343
344
345
346

347
348

349
350
351

353

354
355
356
357

358

360

361

363

364

15

The conjunction of these two results gives Proposition 2.1. Taking W = U n V in the statement,
the image of 6: E*"!W — E*X is an ideal with multiplication zero, since ¢ is induced by
X — ZW and the multiplication of the non-unital algebra E*W is zero. This result allows
us to completely compute the ring E*X from E*U, E*V, and E*W in amenable cases. We write
ju,jv: W —s U,V and iu,iv: U,V — X.

Proposition 2.9. Let E* be a Z-graded G-equivariant multiplicative cohomology theory and (X; U, V) a
triple of G-CW complexes with X = U U V and such that the odd-dimensional E-cohomology of U, V, and
W = U n V vanishes. Then one has a graded ring and a graded E*W-module isomorphism, respectively:

Vi ~ dd ~ * . . . .
EYX = E'U x E'V,  E%X = (E W /imjs + lm];) [1].
The multiplication of odd-degree elements is zero, and the product (x,dw) € EV"X x EoddX — poddx
descends from the multiplication of E*W in the sense that x - Sw = 6 (j};it;(x) - w).

Proof. The additive isomorphisms follow from the reduction of the Mayer-Vietoris sequence to
0 — E®"X -1 E*U x E*V — E*W -2 E*ddx L 0,

The multiplication in the even subring follows because i is the ring homomorphism induced by
UtV — X. The product of odd-degree elements x,y € E°44X is zero by Proposition 2.1 since
J is surjective.” To multiply an even-degree element x with an odd-degree element dw, note that
0 is an E*X-module homomorphism by Proposition 2.1, so particularly x - dw = é(x - w). Now
recall the module structure on E*W is given by restriction as x - w = (iy7 o jiy)*(x) - w. O

Remark 2.10. In this paper, of course, we take E* = KE. In our previous joint work [CGHM19],
we took E* to be Borel cohomology X — HQ*(EG ®¢ X), so that E*(G/I') = HQ*BT is con-
centrated in even degree by Borel’s theorem; generally, given a nonequivariant cohomology the-
ory e* such that e*(x) is torsion in odd degrees, one could rationalize and take E* to be ratio-
nal Borel G-equivariant e-cohomology eQ¢, so that E"(G/I') = eQ"BI. Since we have rational-
ized [Rudg8, Cor. 7.12], the Atiyah-Hirzebruch spectral sequences of CW-skeleta B,I" collapse
at E; = H*(B,I;Q) ® e*(*), which is concentrated in even degree, so that E*(G/I') = eQfBI
is concentrated in even degree as well and Proposition 2.9 applies. The author is unsure how
much demand there is for eQf, but has at least sighted the “Borel equivariant complex bordism”
functor X — MU, (EG ®¢ X) in the wild.

We can now finally return to K-theory.

Theorem 2.11. Let M be the double mapping cylinder of the projections n*: G/H — G/K*. The
Mayer—Vietoris sequence reduces to a short exact sequence

0 — KM — RK™ x RKT — RH — KM — 0

of KX M-module homomorphisms, inducing the following graded ring and graded RH-module isomor-
phism, respectively:

K2(X) =~ RK‘;;{RK*, KL(X) =~ (RH/RK*]H+RK+\H) [1],

9 Alternatively, since i is injective on E®"*"X and vanishes on E°44 X, we have i(xy) = ix - iy = 0 so xy = 0.
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where (—)|y denotes restriction of representations along the inclusions H — K*. The product of odd-
degree elements is zero, and the product KX (X) x KG(X) — KL (X) descends from the multiplication of
RH:

(o p4) T =p-|u-o

ss for (p—, p4) in the fiber product RK~ x RK™ and € KL(X) the image of o € RH.
RH
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369
370
371
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373
374
375
376
377
378
379
380
381
382
383
384
385

Example 2.12. Let G = O(n) with K = K* = O(3) and H = O(2) block-diagonal. Recall that
RO(3) = RSO(3) x R(Z/2) = Z[o,e]/(e* — 1), where o: O(3) — AutR3 — AutC?® complexifies
the defining representation and ¢ = det: O(3) — AutC is the determinant, and RO(2) =
Zp,€]/(€* —1,pe — p), where p: O(2) —> Aut C? complexifies the defining representation [Min71].
The restriction RK — RH is given by ¢ — p +1 and & — &. Now Theorem 2.11 yields a short
exact sequence

Zlo,e]  Z|o,¢€] Z|p, €]
@-1) " @-1)  @-Lpe—p)

The kernel decomposes additively as the sum

0 — Kg(M) —

Z|o, €]
@—-1)

This bears a familial similarity to the description in Theorem 0.4(b) but cannot be put in those
terms due to torsion.

The cohomological situation, by way of contrast, is much simpler: we have Hg ~ Q[p1]| = Hf;,
where p; the first Pontrjagin class of the tautological bundle over the infinite Grassmannian
Gr(3,R*) = BO(3), so HEM =~ Q[p1]. The equivariant Chern character taking a representation
V to the Chern character of the associated vector bundle V3 — BO(3) sends 0 — 3 to py and
annihilates e — 1.

KE(M) = K&(M) = {(x,x) tx € }@ ((c=1)(e=1),0)® (0, (c —1)(e — 1))

Example 2.13. If G = K= = H, the resulting double mapping cylinder is just the unreduced
suspension S(G/H) and one has

KZ(S(G/H)) = RG,  K§(S(G/H)) = RH /im(RG — RH)[1]-

Remark 2.14. The decomposition in Theorem 2.11 admits a winning interpretation in terms of
bundles. The isomorphism RK™ x gy RK* — K2 (M) comes explicitly from the decomposition of
the double mapping cylinder as the union along G/H of the mapping cylinders M(G/H — G/K*)
of the natural quotient maps G/H —> G/K* for any pair 0= of K*-representations agreeing on H,
one forms the union of the bundles M(G ®y V,+ — G Qk+ V,+) — M(G/H — G/K*) along the
restriction G ®p V,+ — G/H to their common boundary. Particularly, for a K*-representation
ot which is trivial on H, one can extend the bundle M(G ®y V,+ — G ®+ V,+) by gluing on a
trivial bundle over M(G/H — G/K~); call this &,+. The formal difference of . and the trivial
bundle C™VY+ is a typical element of the summands pRH[p] and (¢t — 1)RH[t*!] figuring in
Theorem 4.1(a).

For Theorem 4.1(b), one similarly forms a virtual bundle ¢,- from a K~ -representation ¢~
trivial on H. That the product (&,- — CYi™Ve~) @ (&,+ — CY™Ve+) should be zero follows by
noting the first factor is zero over M(G/H — G/K~) and the second over M(G/H — G/K¥).
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The map RH — K{ (M) admits the following description. Given an H-representation o, use
Bott periodicity to send the class of the bundle G ®p Vi to an element of K2 (S*(G/H)), and then
pull back to an element of K%(SM) along the suspension of the map M — S(G/H) collapsing
each of the end-caps G/K* to a point.

Hodgkin [Hodgkin, Cor. 10.1] notes the geometric significance of the class B(p) € K*(K/H), for
p a K-representation trivial on H, is as the class of the bundle on S(K/H) obtained by gluing trivial
bundles V, over two copies of the cone C(K/H) along their boundaries K/H via the identification
(kH,v) ~ (kH, p(k)v).

3. Restrictions of representation rings

To say anything more meaningful about the map RK~ x RK* — RH figuring in Theorem 2.11,
unsurprisingly, we will have to do some representation theory.

Definition 3.1. If T is any group, we write I for its commutator subgroup and I'*" for its abelian-
ization. We then have a functorial short exact sequence 1 — I’ — I' — T%® — 1. The center
of I' is denoted by Z(I') and the connected component of the identity element by I'o. If two
groups ITand A contain a subgroup F central in both, we write IT®r A for the balanced product
(IIx A)/{(f,f~1) : f € F}. When a group T is isomorphic to such a balanced product with F
finite, we refer to the isomorphism as a virtual product decomposition. It is well known that a
compact, connected Lie group I' admits a virtual product decomposition T’ =~ I" ® Z(T')g, and F is
the intersection of I and Z(T'). F

A representation ring RI' is augmented over Z by the unique Z-linear map taking an honest
representation to its dimension. Given a commutative ring k, the category of augmentation-
preserving maps of augmented k-algebras is pointed in the sense it admits k as a zero object. The
kernel of the augmentation A — k is denoted [ A, or, if A = RI is a representation ring, II".
The quotient k-module 1A/(IA)?, the module of indecomposables, is written QA. Specializing
the general definition of exactness in a pointed category, a sequence of augmented k-algebras
AL B2 Cis said to be exact at B if kerg = f(IA)B. A short exact sequence k - A — B —
C — k of augmented k-algebras is said to be split if there exists a section C —— B inducing an
isomorphism A ®;, C — B.

Given an inclusion A —— B of rings, an element b € B is said to be transcendental over A if
the A-algebra map A[x] — B from the polynomial ring in one indeterminate over A sending x
to b is injective.

3.1.  The splitting lemma

We need a refinement of the following splitting lemma due to Hodgkin.

Theorem 3.2 ([Hodgkin, Prop. 11.1]). Given any compact, connected Lie group K with free abelian
fundamental group, the sequence

Z — RK® — RK — RK' - Z
induced by abelianization is split exact.

This essentially allows us to factor out the representation ring of the connected component of
the center of a Lie group. We actually want to factor out an arbitrary central torus. In order for
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this to work we need RK’ to be a polynomial ring, or equivalently, that K’ be a direct product of
simply-connected groups and odd special orthogonal groups [Stey5].*°

Proposition 3.3. Let K be a compact, connected Lie group such that RK' is a polynomial ring and let K
be a connected subgroup containing K' with free abelian fundamental group and A a virtual complement,
meaning a central torus with F = K n A finite and such that K =~ K ®r A. Then the sequence

induced by the exact sequence 1 — K — K — A/F — 1 is split exact. The splitting is not natural.

Proof. Hodgkin already proved the statement in the first paragraph in the case where K = K’ is
simply-connected. His argument in fact only uses that RK’ is polynomial, so we can get away
assuming only this. Then Hodgkin’s argument is obtained from the one below by letting (K, K’)
respectively take the roles of (K, K). This shows RK is the tensor product of a polynomial and a
Laurent algebra, by the split exactness of (3.4), so that the argument now applies in general to
give a splitting of RK in terms of RK.

The argument. The restriction K x A — K of the multiplication of K is a surjective homomor-
phism with kernel the antidiagonal vF' = {(f,f!) : f € F} inducing the evident isomorphism
K®r A — K. Pulling back, representations of K can be identified with those representations
of K x A whose kernels contain vF. The projections K x A — A — A/F give us the first map
R(A/F) — R(K x A) in the display.

For the second map, it will suffice to lift a list (o;) of representations of K forming a minimal
set of polynomial and Laurent generators for RK, making sure the lifts of the Laurent generators
are still units. To lift an irreducible p: K — AutC" to a representation of K x A trivial on vF,
note that since F is central, multiplication by each element of p(F) is a K-module endomorphism
of C", and hence by Schur’s lemma, a constant times idc», so p|r is a direct sum of n copies
of some one-dimensional representation &: F — S!. Since Hom(—, S!) is exact and F a subset
of A, taking p = p;, we see 7 is the restriction of some 0, : A — S'. For each j, consider the
representation p; := p; ® 0y, of K x A in C" taking (k,a) — 0,,(a)idcn -pj(k). This p; vanishes on
vF by construction and restricts to p; on K. In case pj: K — S ! was one of the Laurent generators,
thenn =1, so ﬁj is still a one-dimensional representation and hence invertible.

It remains to show the map is an isomorphism. We have maps

RK®R(A/F) - RK —— RK®RA,

where ¢ is defined in the expected manner from the maps we have just constructed and the
second map comes from the covering K x A — K and the natural identification R(K x A) =~
RK® RA. Since A —> A/F is surjective, Hom(A/F,S') — Hom(A, S') and hence R(A/F) —
RA are injective. Hence the composition is injective on elements of the form p(g) ® 6, where
p(P) is a Laurent monomial in the generators p; and 6 is an element of Hom(A/F, S'). As such
elements form a Z-basis for RK® R(A/F), we find ¢ is injective. To see it is surjective, let any
element p(p;) ® 0 € R(K x A) vanishing on vF be given; such elements form a Z-basis for the
image of RK ~— RK® RA. The element can be rewritten p(p;) ® 0 = p(p;) - (1®6’') for some

1° The representation rings of the even special orthogonal groups and relation with those of the odd special orthog-
onal groups are given in (3.16)



454
455

456

457

458

459

460

462

463
464
465

466

467
468

469

470

472

473

474
475
476

477

478
479
480
481
482
483
484

485
486
487
488
489
490
491

492

19

other ¢ € Hom(A, S'). Moreover, 1®6': (k,a) — ¢'(a) is trivial on vF since p(p) ®6 and p(p;) are,
so ¢ is trivial on F and hence descends to an element of R(A/F). Thus p(pj) ® 0 = ¢(p(pj) ®6').

O]

In the few cases we need, this unnatural splitting can actually be chosen compatibly with
restrictions R(H — K).

Proposition 3.5. Let K, K, A, and F be as in Proposition 3.3 and let H be a closed, connected subgroup
of K, also containing A, such that RH' is a polynomial ring and H = K n H contains F. If the restriction
RK — RH is a split surjection, then a splitting of RH as in Proposition 3.3 can be chosen compatibly so
that RK — RH is identified with RK® R(A/F) — RH ® R(A/F).

Proof. There is a natural map from1 - H — H — A/F — 1 to the exact sequence for K, inducing
a map of short exact sequences of representation rings. A choice of splitting RH — RK and the
splitting RK — RK of the first part of the proposition uniquely induces a compatible splitting
RH — RK — RK — RH. O

This will help us deal with the case that K/H is an odd-dimensional sphere. There is an
analogous statement when K/H is an even-dimensional sphere, but to make it involves a case
analysis of K and H, so it is difficult to extract it from the proof of Theorem o.4.

Lemma 3.6. Suppose a compact, connected Lie group K can be written as balanced product K ®r A of
two subgroups A and K, where A is a central torus in K and F is finite, and that H is a closed subgroup
of K such that K/H is a sphere S*" of positive even dimension. Then, writing H = H n K, we have
H=>~H QF<) A.

Proof. Since m1(5*") = 0, it follows H must contain A, and it follows from the decomposition of
K that H and A together generate H. The preimage of H under the projection K x A — K is
FH x A, so it follows K/FH ~ S?". Since K/H — K/FH is a finite covering, we see FH = H, so
H contains F. Thus one can write H >~ H ®r A as claimed. O

Lemma 3.7. Suppose a compact, connected Lie group K and closed, connected subgroup H are given such
that K/H is homeomorphic to an even-dimensional sphere, and suppose K' is the direct product of a simply-
connected group and some number of factors SO(odd). Then there exist direct factors Kegr of K’ and Hegy <

Kesi of H' and a common direct factor L of H" and K’ such that the inclusion H' — K’ may be identified
with Heff x L — Keff x L and hence the induced map Keff/ Heff — K/H is a diffeomorphism. The pair
(Kest, Heg) is up to an isomorphism of pairs one of (Spin(2n + 1), Spin(2n)), (SO(2n + 1),S0(2n)), for
n=1or (Gy,SU(3)).

Proof. Note that the image K.i of the action map «: K — Homeo K/H is by definition effec-
tive and hence must be SO(2n + 1) or G,, with the image of H being SO(2n) or SU(3) respec-
tively [Besse, Ex. 7.13][GrWZo8, Table C, p. 104]. The effective image H.4 = a(H), in particular,
determines K. uniquely up to isomorphism. The kernel of a contains A = Z(K)o, and ap-
plying Lemma 3.6 with K = K’, we have a decomposition (K, H) = (K'®r A, H®r A). Write
H = a7!(Heg) n K'; this is just H' if Heg # SO(2) and a virtual direct product of the form
H’ - S if Hyg = SO(2). The inclusion of pairs (K, H) — (K, H) then induces a diffeomorphism
K'/H — K/H.
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493 Since an element of K acting trivially on K/H = S*" in particular stabilizes the basepoint 1H,
24 we see H contains ker «, and similarly H contains ker a|gs, which is thus the same as ker «|f. This
495 common kernel is thus a normal subgroup of both K’ and H. Recall that a normal subgroup of
w6 a product of compact simple Lie groups can be written as a product of simple factors and finite
497 central groups [BoreldS49, p. 205]. Since K’/ ker zx| x = Kege is simple, it follows this kernel contains
a8 all but one simple factor of K/, which we call K., and the composite Keff — K' — a(K') = Kegt
a9 is a covering of SO(2n + 1) or G,. In the latter case one can only have Kegf = G again and in the
s former one can have Ky =~ SO(2n + 1) or Spin(2n + 1). Write L for the identity component of
so1  keral|gs, so that the latter is the product L x 7 (Keff)-

502 Now as L < H contains all but one direct factor of K’ and H is a closed subgroup of K, it
so3  follows H is the direct product of L and Heg = Izeff n H. Since ﬁeff/lzeff — K'/H — Kegt/Hegt is
so4  a diffeomorphism, kel‘(Izeff — Kef) and ker(ﬁeff — Heg) have the same cardinality, giving the
sos classification of possible pairs (Keff, ﬁeff). O

Corollary 3.8. In the situation and notation of Lemma 3.7 suppose additionally that if Ko =~ Spin(2n +
1), then the composition F < K —» Ko is trivial. Then the inclusion H — K is given up to isomorphism
as

Heft x (L®F A) = Kot x (LQF A).

sos  Proof. We already have an equivalent expression H@p A — K’ ®r A by Lemma 3.6, and Lemma 3.7
s07  lets us write H — K’ as Heff X L —> Keff x L, where the pair (Keff, Heff) is tightly prescribed. If
508 Keff is SO(2n + 1) or Gz, the only common central element of Heff and Keff, otherwise we invoke
500 the assumption F — Keff is trivial; and either way we conclude F = K’ n Z(K) is contained
s10  entirely within L and we can pull out H — K'. ]

511 Proposition 3.9. Suppose a compact, connected Lie group K and closed, connected subgroup H are given
s12 - such that K/H is homeomorphic to an even-dimensional sphere, and suppose K' is the direct product of a
513 simply-connected group and some number of factors SO(odd). If Keg denotes the unique direct factor of K’
s1a surjecting onto the image of the action map K — Homeo K/H, suppose additionally that the composition
55 K'nZ(K)g — K — Izeff is trivial (this condition is automatically satisfied unless Eeff ~ Spin(2n + 1)).
s Then splittings as in Proposition 3.3 can be chosen compatibly so that RK — RH is identified with
57 RK®R(A/F) — RH® R(A/F).

Proof. By Corollary 3.8, one can identify the restriction RK — RH with (RIZeff — Rﬁeff) ®
idR(1@;4)- Thus in the proof of Proposition 3.3 one can take the splittings RK — RK and RH —
RH to respectively be

~ d® ~
RKes ® RL —% RKos ® R(L®F A),
~ id® ~
RHeg ® RL % R ® R(L®F A)

518 for the same choice of ¢: RL — R(L ®r A). This makes the evident square commute by defini-
519 tion, so RK — RH can now be identified with RK. ® RL® R(A/F) — RHe @ RLQ R(A/F) as
520 we wanted. O

= 3.2. Lemmas for odd spheres

s22 The results we need for the case the homogeneous sphere K/H is odd-dimensional all follow
23 from the splitting proposition 3.3 once we show RK — RH is split surjective.
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Proposition 3.10. Let H < K be connected, compact Lie groups such that K/H ~ S' and RK' is a
polynomial ring. Then RK — RH is a surjection and can be written

RH[+' =L RH,

where t: K3 — K3 /H*® = U(1) pulls back one of the generators of R(K®/H®) and is transcendental
over RH.

Proof. Consider the diagram

1-—H —~H—>H¥_+0

L

1—K 1( Kjb 0 (3.11)
K/H -~ K/K'H,

whose first two rows are exact sequences and whose first two rows and second column are
fibrations. Since 71, of a Lie group is zero, and 711 (H’) and 711 (K’) are finite, we see 771 (K/H) @ Q —
m(K/K'H) ® Q is an isomorphism, so the torus K*/H3® = K/K'H is a circle. Particularly, it is
one-dimensional, so counting other dimensions, we have dim K’ = dim H’, meaning K'/H’ is a
connected 0-manifold and hence K’ = H'.

The exact sequences of representation rings resulting from the first two rows of (3.11) split by
Proposition 3.3. These splittings are not natural, but since RK’ — RH’ is an isomorphism, we
can choose the liftings compatibly so that the following diagram commutes:

RK?® ® RK’

N

7 - RK®»— s RK— > RK' =7

| |

7 - RH®—~ RH —> RH' -~ 7.

N e

RH* ® RH'’

Since RK*® — RH® is induced by the inclusion H® < K3 of a codimension-1 subtorus
and monomorphisms between tori admit retractions, we have RK*® =~ RH® ® R(K®/H?®) ~
RH?[t*1] and the result follows. O

Proposition 3.13. Let H < K be connected, compact Lie groups such that K/H is a sphere of odd
dimension 3 or more and RK' is a polynomial ring. Then RK — RH is a surjection and if the unique
direct factor Keg of K' surjecting onto the image of the action map in Homeo K/H is not of the form
SO(odd), then RK — RH can be written as

RH[p] =% RH,
where p is transcendental over RH and equals p — dim p for a K-representation p, trivial on H, such that
the induced continuous map K/H — U represents the fundamental class of K/H.



536
537
538
539
540
541
542
543
544
545
546
547
548

549

550

552
553
554
555

556
557

558

559
560

561

22

Proof. In (3.11) the bottom map now is a fibering of an odd sphere over a torus, which is only
possible if the torus in question is zero-dimensional. Thus H® — K is a homeomorphism,
so H = ker(H — H?®) and H n K’ = ker(H — K — K®) are equal. Since K/K'H is trivial
and the fiber of the trivial map K/H — K/K'H is KH/H =~ K'/(K' n H) = K'/H’, it follows
K'/H — K/H is a homeomorphism By the following Proposition 3.14, one has RK" — RH'
a surjection of the form RH'[p] = RK’ — RH' if the group K/, of that lemma can be taken
simply-connected, so Proposition 3.5 applies with A the maximal central torus of H and K = K’
and H = H'.

To show the generator has claimed property, recall that the Hodgkin map B: RIT — K*(I')
is functorial, factors through the module of indecomposables QRI’, and induces isomorphisms
Az[QRT] — K*(T) if 11 (T) is torsion-free, as we now assume 711 (K) (and hence 711 (H)) is. Thus
i*: K*(K) — K*(H) is a surjection. A result of Minami [Miny5, Prop. 4.1] then says K*(K/H) is
the exterior algebra on the homotopy class B(p) of the composition K/H — U(V,) — U for an
element p € RK whose class in QRK generates ker Q(RK — RH). O

We have separated out the harder part of the preceding proof into that of the following result.

Proposition 3.14. Let H < K be connected, compact Lie groups such that K/H is a sphere of odd
dimension 3 or more and RK' is a polynomial ring. Then the map RK' — RH' is an augmentation-
preserving split surjection. If the unique direct factor Ky of K' surjecting onto the image of the action
map in Homeo K/H is not of the form SO(odd), then RK" — RH' can be written as RH'[p] — RH’
for a judicious choice of section RH' —— RK' and algebraically independent generator p.

Proof. Recall K’ is a direct product of simply-connected simple groups and odd special orthogonal
groups [Ste75] and recall the groups Keff and Heff from that that proof As there, we have H =
a1 (Heg) n K' = H' and we may write RK’ — RH’ as idg; ® (RKeff — RHeff). We need only
analyze the last factor. Augmentation-preservation is just the fact restriction of representations
preserves dimension, so it remains only to see ngff — Rﬁéﬁ is a surjection of the claimed
form. This comes down to a short case analysis, as the entire list of realizations of an odd-
dimensional sphere as the orbit space of an effective action of a compact, connected Lie group
is the following [Besse, Ex. 7.13][GrWZo8, Table C, p. 104], where the balanced product notation
®z,2 is as explained in Definition 3.1:

g1 __Spln) u(1) Z@/DZ Sp(n) ) Sp(1) Z@/DZ Sp(n)
“Sp(n—1)  AU(1) ZC?Z Sp(n—1)  ASp(1) Z@/DZ Sp(n—1)
$2=1 — U(n)/U(n — 1) = SU(n)/SU(n — 1) = SO(2n)/S0(2n — 1), (3.15)

S = Spin(9)/Spin(7),
S7 = Spin(7)/G,.

Our task is made easier by the A-ring structure on R(—) induced by exterior powers: because
the rings in question are largely generated by exterior powers of the standard representation c,
much of the work is done when we find ¢ in the image.

e For RSp(n) — RSp(n — 1) we have 0 — ¢ + 2 and for RSU(n) — RSU(n — 1) we have
o0 — 0 + 1. Now o generates RSp(n) and RSU(n) as A-rings, so we already see the map is
surjective.
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In fact, the images of 7,..., A" 1o generate the codomain in either case, since V(0 +2) =
Mo +2M g +1for j = 2 and M(c + 1) = Mo + A~lo for j = 1."" It follows the image of
A"'¢ is also the image of some polynomial p in the lower A/g, so we may rewrite the domain
as Z[o, ..., A" 1g][A"c — p] to obtain an expression of the claimed form.

Writing RSpin(2n) — RSpin(2n — 1) as Z[o,..., A" 20,A_,Ay] — Z[o,..., A" 20, 7],
where ¢ is the composition of the double cover with the defining representation of the
special orthogonal group, A are the half-spin representations, and A is the spin represen-
tation, we have ¢ —— ¢ + 1 and A4 —— A [BrotD, Prop. VI.6.1].

By the same argument as before, the map is a bijection when restricted to Z|c, . . ., Ao, A,

and we may replace the last generator by A, — A_ to obtain the desired expression.

The restriction RSO(2n) — RSO(2n — 1) is surjective because representations of SO(2n — 1)
descend from representations of Spin(2n — 1) such that —1 € Spin(2n — 1) acts trivially, and
we have just seen the map RSpin(2n) — RSpin(2n — 1) is surjective.’?

To get more specific expressions, we [BrotD, Prop. VI.6.6] may write the map as
Zlo,...,A"to, AT, A" /(Q) — Z[o,..., A" ], (3.16)

where A'L are the +1-eigenspaces of the Hodge star on A"¢ and

X Yy z
A A

Q= A"+ A" 20 +. DA £ AT 20 1) = (A AR )2,

We have a decomposition A" = A" + A" into irreducibles, and A"c — A'c + A" lg =
(A1) + Ao = 2071 in RSO(2n — 1) since the fundamental representations of SO(2n —
1) are self-dual, so it follows that both of A" are sent to A"~!o. If we rewrite RSO(2n) as
Zlo, ..., A" 20][x,y,z]/(xy — z*), we see each of x,,z maps to w = >.._, ; Ao (so that in
particular Q maps to 0), and the map can be described as

j<n—

Zlo, .. A"20Nx Y, 2] [y — 2) — Z[o+1,.., A2 (0 + 1)][w]. (3.17)

As the restriction Z[c, ..., A" 20] — Z[a +1,..., A" 2(c + 1)] is an isomorphism, the map
as a whole is split by additionally sending w —— z.

One [vanL] can write RSpin(7) — RG; as

Zo, A\%c, 8] — Z[o, Ad],
o—> 0,
o—1+o0,
Ad = A%0 — A0 =0+ Ad.

Particularly, one can obtain the desired expression by exchanging the generator A%c for
A0 —cand 6 for 6 —o — 1.

" In general A" (x +y) = Xy, Alx - My, and for m € N one has Aim = (7)-
2 We will not use this case further, as SO(2n) is not simply-connected, but it is worth laying out clearly.



579
580
581
582
583
584
585

586

587

588

590
591

592
593
594
595
596
597
598

599

600
601

602
603
604

24

® One [VZog, vanL] can write RSpin(9) — RSpin(7) as

Zlo, A%c, \30, A] — Z[o, A%0, 5],
oc—0+1,
A—d+0+1.

Then we have A?(¢ — 1) — A%25 = ¢ + A%0 and A*(0 — 1) —> 06 — 4. Thus we can take
instead as generators

c—1+—6,
AN—0o— o0,
A —1)— (A —0) — A%0,
Mo-1)—(A—c—1)(c—1) — 0. O

Remark 3.18. The two “exceptional” homogeneous spheres can be understood as follows. Recall
that the compact exceptional group G; can be seen as the group of R-algebra automorphisms of
the octonions 0. The map G, —— Spin(7) lifts the inclusion G, — SO(7) arising from restriction
of the defining action to the subspace of pure imaginaries. For the map Spin(7) —— Spin(9)
yielding S'°, since 7;Spin(7) = 1, one lifts the spin representation &: Spin(7) —— SO(8) to
Spin(7) —— Spin(8), then follows with the map Spin(8) < Spin(9) double-covering the block-
diagonal inclusion SO(8) @ [1] — SO(9).
The author learned these explanations from Jason DeVito.

Remark 3.19. The proof of Proposition 3.14 was originally routed through the following statement:

For any surjection ¢: A — B of polynomial rings respectively in m > n indeterminates over
a commutative base ring k, one can choose an algebraically independent set Xx1i,...,%Xn,Ynt1,---,Ym
of polynomial generators for A over k such that ¢ sends y; —— O and restricts to an isomorphism
k[x1,...,x,] — B.

This innocuous-sounding claim is true for graded maps of graded rings over k = Q and open
for ungraded maps over k = C. In algebro-geometric language, the special case m = n +1 we
use in this paper is the Abhyankar-Sathaye embedding conjecture [AbM75, Saty6, RusSat13, Pop1s,
Wendt], which states that any embedding A}, —— A’fC“ is taken to the standard embedding by
some automorphism of A?CH. This is known at present for n = 1 and several other special cases,
and is closely related to the determination of the algebraic automorphism group Aut A7, which
is still incomplete for m > 3.

3.3. Lemmas for even spheres

In case the homogeneous sphere K/H is even-dimensional, the restriction RK — RH makes the
RH a free module of rank two over RK.

Proposition 3.20. Let H < K be connected, compact Lie groups of equal rank such that K/H is an even-
dimensional sphere and the semisimple component K’ is the direct product of a simply-connected group
and SO(odd) factors. Then RH is a free RK-module of rank two.
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Proof. Steinberg [Ste75], strengthening an earlier result of Pittie, shows that with our hypotheses,
RH is free of rank |Wk|/|Wg| over RK (he also provides a basis). To see the rank is two, note that
by completion [CF18, Thm. 5.3], this is also the rank of H*(BH; Q) over H*(BK; Q), which is 2 by
the collapse of the Serre spectral sequence of K/H — BH — BK with rational coefficients. O

We will apply Lemma 3.6 in conjunction with a refinement due to Adem and Gémez of the
Steinberg basis theorem.

Theorem 3.21 (Adem-Gémez [AdG12, Thm. 3.5]). Let G be a compact, connected Lie group with
free abelian fundamental group and fix a choice ®* of positive roots of G with respect to some maximal
torus. Let W = (W;) be a family of subgroups of W = WG, including the trivial group 1 and W
itself, each generated by reflections in some subsystem ®;" of ®*, and for each j, write W/Wj for the set
{we W :wd/ < &} of coset representatives for W/W;. Suppose any pair W and Wy in W' lie in a
common supergroup Wy € W such that W/ W, = W/W; n W/W.

Then RT and the other (RT)Yi are all free modules over the subring (RT)W and respective bases
B < RT and Bj < B respectively k of RT and the other (RT)"i as free (RT)™-submodules of RT can be
chosen such that B, = B; whenever Wy = W; in # and the inclusion (RT)Ve — (RT)Wi is the map of
free (RT)W-submodules of RT induced by the inclusion B — B,.

To apply this theorem we require some facts about extensions of root systems.
Lemma 3.22. A lattice of Killing—Cartan type A; extends to a Gy lattice in a unique way.

Proof. If view the A, lattice as the vectors (a1, ay,a3) € 73 with a; + a; + a3 = 0, a new simple root
a in an extending G, lattice must have length v/6 and inner products with A, lattice elements
divisible by 3. We would not rob the reader of the simple joy of verifying only +(2,—-1,-1),
+(-1,2,-1), and +(-1,—1,2) do the job. O

Lemma 3.23. A lattice of Killing—Cartan type D,, extends to a B, lattice in

a unique way ifn+#4,
precisely two ways if n = 4.

Proof. The standard D, lattice in R" is spanned by roots ¢; & ¢, and so is given by those integer
linear combinations »;aje; of the standard basis vectors ¢; € R” for which } 4; is even. A new
root & in an extending B, lattice must have length 1 and inner product with all such vectors an
integer, but the only vectors satisfying this are generally +e; and additionally for By the vectors
Z;-lzl +3e;. The standard B, comes from adding a simple root of the first form to a D, root system,
while it is easy to check the rows of the matrix

1 -1 0 O
0 1 -1 0
o 0 1 -1
1 1 _1 1
2 T2 T2 2

are also simple roots for a B4 root system. O
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The union of these two lattices contains an F; root system

0o 1 -1 O
o 0 1 -1
0o 0 0 1
r 1 1 _1
2 T2 T2 72

and so generates an Fj lattice. Indeed, there are two distinct Spin(9) subgroups K* of the group
G = F; meeting in a Spin(8) = H and witnessing this root data [GrWZo8, Table E, p. 125]. The
resulting double mapping cylinder is $%.

Lemma 3.24. The family of Weyl groups (WG, WK~, WK, WH, 1) corresponding to the cohomogeneity-
one action in the preceding paragraph meets the hypotheses of Theorem 3.21.

Proof. We note that F; is simply-connected. The coset condition of Theorem 3.21 is satified au-
tomatically if, in that notation, one of W; and W contains the other, so we only need to check
that for W]- = WK~ and Wy = WK™, we can take W, = WG. But, as is easy to ask a computer
to check [Car], if one chooses the positive roots ®*F; of the F; root system to be ej, ejte, and
%(1, +1,+1,+1) and the positive roots ®TK* of the smaller groups to be subsets of these, then
the sets {w € WF; : w®TK* ¢ ®'F,} of coset representatives of WF;/WK* meet only in the
neutral element. ]

We will need to apply Theorem 3.21 to one other case, the system of subgroups of Sp(3) given
by the block-diagonal subgroups K~ = Sp(2) ®Sp(1) and Kt = Sp(1) ®Sp(2), which meet in the
diagonal H = Sp(1)®3. All share as a maximal torus T = U(1)®2. It is easy to see that the roots
of the larger groups in T generate an Cs lattice, and under the standard identification of WSp(3)
with 3 x {£1}® < AutR3, the subgroups WK~ and WK* become respectively ((12))- {+1} and
((23))-{£1}®, while WT is simply {+1}°.

Lemma 3.25. The family of Weyl groups (WG, WK~, WK*, WH, 1) corresponding to the cohomogeneity-
one action in the preceding paragraph meets the hypotheses of Theorem 3.21.

Proof. Note that Sp(3) is simply-connected. As before, the only pair of containment-incomparable
subgroups under consideration is {IWK—, WK™}, and one checks [Car] the sets of coset represen-
tatives {w € WCs : w®TK* ¢ &+ C3} for WC3/WK* meet only in 1. O

4, The case when one sphere is odd-dimensional

We now put the algebra of the previous section to use to obtain specializations of Theorem 2.11.
In this section, at least one of the homogeneous spheres K*/H is odd-dimensional.

Theorem 4.1. Let M be the double mapping cylinder of the span G/H — G/K= for inclusions H =
K* = G of closed, connected subgroups of a compact Lie group G such that K*/H are spheres and the
fundamental groups 7t;(K*) are free abelian.

(a) Assume that both K™ /H and K~ /H are odd-dimensional. Then we have an RG-algebra isomor-
phism of K& (M) = K% (M) with one of
RH[tE!, #11] RH[t,p,] RH[p_, 1] RH[p_,p.]
(- =1ty —1) (t-=1)(p,) (P )ty —1) (p_py)
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where we identify RK* with the Laurent polynomial ring RH[tT'] when dim K*/H = 1 and with the
polynomial ring RH|p, | when dim K*/H > 3.

(b) Assume K*/H is odd-dimensional and K~ /H is even-dimensional. Then we have an RG-algebra
isomorphism of K& (M) = K (M) with

RK™ @ (t — 1)RH[t*'] < RH[t*!] = RK™" or RK~ @pRH[p] < RH[p] = RK",

where we identify RK* with RH[t1'] if dimK*/H = 1 and with RH[p_] if diimK*/H > 3. The
product in either case is determined by the restriction RK~ —— RH.

In all cases the RG-module structure is determined by restriction.

Remark 4.2. In terms of representations, f is the class of the representation K+ — (K+)3/H® =
U(1), and similarly for .. Likewise, p is the reduction p — dim p of a complex K*-representation
p: Kt — U(V,), trivial when restricted to H, such that the class (p) represented by the compo-
sition K*/H — U(V,) < U generates K'(K*/H), and similarly for o , .

Proof of Theorem 4.1. We use the description of K& (M) given in Theorem 2.11. In both cases,
KE(M) = 0 since RK™ — RH is surjective, so K& (M) = K% (M) =~ RK~ % RK™.

(a) Recall from Theorem 0.4 that RK™ — RH is an injection and from Propositions 3.10 and
3.13 that the map RK™ = RH[p] — RH or RK* = RH[t*!] — RH is reduction modulo (p) or
(t —1). We prove the latter case; the former is similar. Then the fiber product is the subring of
RH[t*'] x RK" consisting of the direct summands {(¢,0) € RK* x RK*} and (f — 1)RH[t*!] x
{0}. We may identify the former with RK* < RH < RH[t*!] and the latter with (t — 1)RH[t*'] <
RH[t*!] and the two interact multiplicatively via the rule

¢ (t=1)f < (0,0)- ((t=1)£,0) = ((t—1)of,0) «—> (t—1)of.

(b) We use Theorem 0.4 to make identifications RK~ =~ RH[t*!] and RK* =~ RH[p] such that
RK~ — RH is reduction modulo f = t — 1 and RK* — RH modulo p; the other cases are the
same, mutatis mutandis. The fiber product can be identified as the subring of RH[t*!] x RH[p]
comprising the three direct summands

{(¢,0) € RH x RH}, IRH[t*!] x {0}, {0} x pRH][p].
Multiplication across summands is determined by the three rules

(0,0)-((f,0) = (] 0,0),  (0,0)-(0,pf") = (0,pf 7o), (,0)-(0,pf") = (0,0),

so the map to RH[t*!,p]/(£p) sending (o + Ff ~,0 + pf ") to the class o + ff ~ + pf ™ (mod #p) is a
ring isomorphism. O

Remark 4.3. This statement is obviously not the most one can say, in that it can be extended using
the extraneous description (3.17) of RSO(2n) — RSO(2n — 1) in the proof of Proposition 3.14
to cover the cases where the image of one or more of K* — Homeo K*/H comes from an
SO(even) subgroup of K* —but this is left as an exercise for the interested reader, if any, the
current statement being long enough as it is.
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Example 4.4. Let M be the double mapping cylinder associated to a diagram with H = Spin(7)
included in K~ = Spin(8) via the standard inclusion and in K* = Spin(9) via the nonstan-
dard embedding with K*/H = S'°; the larger group G can be anything large enough, say Fs or
Spin(8) x Spin(9) = K~ x K*. Then we have an explicit presentation

KEM) = Zlo, Ao, A, p—, 041/ (9-p+),
where in RSpin(8) x RSpin(9), the generators are represented by

c— (0—-1,A-0),

Ao (Mc—0—1,A%(c—1)+0—A),
A (A_,o—1),

p- — (A4 —A0),

pr > (,A3(c—1)—(A—0o—1)(c—1)).

in the manner described in Remark 2.14.

9. The case when both spheres are even-dimensional

In this section we obtain the specialization of Theorem 2.11 where both the homogeneous spheres
K*/H are even-dimensional. The groups K* and H are assumed to satisfy this condition every-
where in this section. Particularly, K~, K*, and H all have the same rank. We will not have to
assume that 711 (K*) is free abelian, but only that the commutator subgroup K’ is the direct prod-
uct of a simply-connected factor and a number of SO(odd) factors. This is equivalent to assuming
RK’ is a polynomial ring [Stey5].

Notation 5.1. Occasionally we will write T for a maximal torus of some connected, compact Lie
group I' and use the fact that RT" ~ (RT)WT by restriction [AtH61, §4.4], where WTI is the Weyl
group of I. Particularly, when K*/H are even-dimensional spheres, RH = (RT)"H is of rank two
over RK* = (RT)"K*, so WH is an index-two subgroup of each of WK*.

We start with two similar reduction lemmas which will save us time later.

Lemma 5.2. Suppose K=, H are compact and connected and there are groups K* < K* and L,H < H
such that K* = K* x L and H = H x L (we then write for short (K*, H) = (K*, H) x L), and write M
for the double mapping cylinder of G/H —3 G/K*. Then K& (M) =~ K& (M) ® RL.

Proof. This follows from Theorem 2.11 since the map RK~ x RK* — RH then factors as (RK™ x
RK" — RH) ®idgy. O

Lemma 5.3. Suppose K*, H are compact and connected and there are groups K*¥ < K* and A,H < H
such that A is a torus central in both of K= and such that K= can be written as K* @ A for the same
finite subgroup F < A and some closed subgroups K* < K*. Then H = H ®r A. Suppose the pairs
(K*,H) and (K—, H) both satisfy the conditions of Corollary 3.8. Writing M for the double mapping
cylinder of G/H == G/K™, we then have K& (M) =~ K& (M) ® R(A/F).

Proof. The first clause applies from Lemma 3.6 applied to both pairs (K*, H). The rest follows
from Theorem 2.11 and Proposition 3.9 since the map RK~ x RK™ — RH then factors as (RK™ x
RK* — RH) ®idg(a/r)- O
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After application of these lemmas, it will follow from a case analysis that most of the time we
are in one of two special situations. The easier of these two situations is when K~ = K*.

Proposition 5.4. Assume there exists w in the identity component Ng(H)o such that Kt = wK- w1,
that K~ /H = S*" is a sphere of positive even dimension and the left K~-action is orientation-preserving.
Then

K& (M) = RK™ @ K*(§2+*1),

Proof. Note that in this case [GrWZo8, p. 44], M is G-diffeomorphic to the double mapping cylin-
der of G/H —= G/K~, so we may as well assume K™ = K~. Then we may apply Theorem 2.11,
noting that RK~ n RK* = RK and that by Proposition 3.20,
RH RK{1,0} _ . _

RK-+RK® ~ Rk~ = KKtk -
Remark 5.5. Forgetting the manifold itself and proceeding in terms of representation theory, we
could also have noted that if K > H share a maximal torus and w lies in Ng(H)o, then wKw™!
also contains that torus, with respect to which WK = W (wKw™1).

Proceeding more topologically, on the other hand, we could note that if Kt = K~ = K, then
the natural map BH — BK allows us to define a sphere bundle S(K/H) — Mg — BK. The proof
of the analogue for Borel cohomology [CGHM19, Prop. 5.2] worked by showing this bundle was
cohomologically trivial, and it is to reflect this analogy that we retain the number 7.

Remark 5.6. It is interesting to note that if we do not have KT = K=, then H = K~ n K*. To see this,
first note that since K~ n K* and H share a maximal torus, (K~ n K*)/H is even-dimensional.
But (K~ nK*)/H — K*/H — K* /(K™ n K") is a fibering of a sphere over a simplicial complex
and by connected simplicial complexes, and Browder showed that when the fiber is none of S!,
S3, or §7, either the base or the fiber of such a bundle must be trivial [Brow63].

But this dichotomy does not lead to a dichotomy in expressions for K (M). For example, the
block-diagonal subgroup H = SO(4) @ [1]%? of G = SO(6) is the intersection of K~ = SO(5) @ [1]
and K* = wK-w™! for w = [1]®* @ [{ 7} ], which lies in [1]®*@®SO(2) < Ng(H)o. Thus, up
to diffeomorphism, the inclusion diagram (G,K~,K*, H) expresses the same double mapping
cylinder M as the one instead taking K™ = K~ = SO(5) @ [1].

The other easy-to-manage special case follows from a less trivial product decomposition.

Proposition 5.7. Let connected, compact Lie groups K* > H* be such that K* /H t = §2+ gre even-
dimensional spheres. Write H = H™ x H* and consider it in the natural way as a subgroup of K~ =
K- xH", of Kt = H x K%, and of G = K~ x K. Then if M is the double mapping cylinder of
G/H — G/K=*, we have

KEM =~ RG® Alz]

for a generator z of degree 1.

Proof. By Proposition 3.20, we know RHT is free of rank two over RKE, say on bases {1,04}.
Then RK~, RK*, and RH are free over RG = RK~ ® RK™ respectively on the bases

{1®1, c-®1}, {1®1,1®04}, {1®1, r-®1, 1Q0y, 0-®R04}.

Thus, by Theorem 2.11, we see Koc(M) is the intersection of RK*|, namely the free RG-module
on1®1, and K (M) =~ RH/(RK™ + RK") is the free cyclic RG-module on z = §(¢— ® 0 ). Thus
KE(M) is a free RG-module on 1 € KX(M) and z € K}, (M), and since 2z> = 0 by antisymmetry
and K§ (M) is torsion-free, it follows z* = 0. O
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Remark 5.8. The manifold M is a sphere §2n—+2n1+1 ynder these conditions.”> Indeed, the fiber
over —1 is §2"-, that over 1 is §%"+, and in the interior the fiber is the product of the two, so M is
the join G2n— 4 G2n+

Example 5.9 ([Piitog, Sect. 4.3]). We use Proposition 5.4 to compute the equivariant cohomology
of the space M arising from the inclusion diagram

(G,K~,K*, H) = (Sp(2),5p(1)%,5p(1)2,Sp(1) x U(1)).

Piittmann shows H*(M;Z) ~ H*(S%,Z) ® H*(S*;Z) using the Mayer-Vietoris sequence, so from
the Atiyah-Hirzebruch spectral sequence we see K* (M) =~ K*(S%) ® K*(S*) as well. The restriction
of the defining representation ¢ of Sp(1) < H* on H =~ C® jC to the maximal torus U(1) < C*
is t + t~!, where t is the defining representation, so

Zlo]®Z[tH]
ZIo|QZ[t + t71]

KE(M) =

lle

Zlo]@tZ[t+ '] = R(Sp(1)?)[1]

as expected.

This action is equivariantly formal for Borel cohomology with integer coefficients [GoeM14,
Cor. 1.3], and from Theorem 6.1, it is equivariantly formal for K¢ too, but it is illuminating to
show this explicitly by examining the forgetful map K¢ — K on the Mayer—Vietoris sequence of
the standard cover. By the snake lemma, this amounts to checking the maps

RT = K% (G/T) — K°(G/T)

taking a representation V, of I to the bundle G ®r V, — G/I' are surjective for I' € {K*, H}.*4 It
is not hard to check this map takes 1®t € R(Sp(1) x U(1)) to the tautological bundle y over CP?
and 1®0 € R(Sp(1)?) to the tautological bundle ¢ over HP'.'> Since H*(CP?) = Z[c]/(c?), where
c = c1(7), and ¢; induces an isomorphism K°(CP') = H2(CPY), this gives us surjectivity for H.
As for K*, since ¢ restricts to U(1) as t + ¢!, we see the pullback of & over CP®is 7@+ . The total
Chern class 1 + ¢3(7) € H*(HP!) hence pulls back to (1 + ¢)(1 —c) € H*(CP?). The Serre spectral
sequence of S3/S! — CP® — HP! collapses for degree reasons, so that H*(HP!) — H*(CP?).
Thus, since —c? generates H*(CP?), also c(T) generates H*(HP!). As

KO($*) = K*($*) = K*($") = Z
and the Chern character induces a natural isomorphism K* ® Q — H*(—;Q) on finite com-
plexes, it follows [7] generates K°(S*) as needed.
The desired simultaneous generalization of Propositions 5.4 and 5.7, specializing to Theo-

rem 0.4 when K+ are semisimple, is as follows.

Theorem 5.10. Let M be the double mapping cylinder of the span G/H —3 G/K= for inclusions H =
K* = G of compact Lie groups such that K* are semisimple groups which are products of simply-
connected groups and SO(odd) factors and K*/H are even-dimensional spheres. Writing K, for the

3 This will also hold if either sphere or both is odd-dimensional.

14 In fact, applying the module structure in Theorem 2.11 to both sequences, it would be enough just to see KX M —>
KM is surjective, and once we know K!(G/H) = K!CP3 = 0, it would suffice to prove RK — K%(G/K) is surjective,
but the same proof involves both maps.

5Note Sp(2) —> S7 given by A —> A - [9] has stabilizer Sp(1) @1 and transforms the action of 1 Sp(1) to scalar
right-multiplication on S7 ¢ H?, so the total spaces of the bundles are s7 ®Sp(1) H and S’ ®u() C.
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unique direct factors of the commutator subgroups (K*)' surjecting onto the images of the action maps
K* — Homeo K*/H, suppose additionally that the compositions (K*)' n Z(K*)g < K= — KL are
trivial (this is only relevant if one of K* is a Spin(2n + 1)). Then there exist an element z € K;(M) and
an RG-algebra isomorphism

KE(M) = (RK™|g n RK" ) ® Alz],
where the injections RK* — RH and the RG-module structure are given by restriction.

The proof has been factored into as many Lie-theoretic lemmas and reduction steps as possi-
ble but still seems to unavoidably be a bit of a slog.

Proof of Theorem 5.10. Recall from the proof of Lemma 3.7 that the images K_, of the action maps
a*: K¥ — Homeo K*/H are by definition effective and hence must be SO(2n + 1) or G, with
the image of H being SO(2n) or SU(3) respectively [Besse, Ex. 7.13][GrWZo8, Table C, p. 104]. The
effective images Heiff = a*(H) of H, in particular, determine K;_—rff uniquely up to isomorphism.
Most of the proof involves analyzing the configurations of these preimages after stripping
away extra tensor factors to eventually arrive at a base case. The recurrent phrase “factor out
[1” means to apply Lemma 5.2 and analyze the remaining system of isotropy groups K~ «
H — K*, whereas “factor out A/F” means to apply Lemma 5.3. We say we have reduced to
a join configuration if Proposition 5.7 applies, in which case that branch of the case analysis
terminates, and similarly say we have reduced to a sphere bundle configuration if Proposition 5.4
applies. Beyond these base case schemata, there are a few exceptional base cases enumerated in
Section 3.3, which as we have mentioned, all turn up as examples in the literature, and the case
with H; =~ SO(2) =~ HY;.

0. The case neither of Hz is a circle

As K*/H are even-dimensional spheres of dimension > 2, the long exact fibration sequence
of H - K* — K*/H induces isomorphisms mH — mK*. It follows that the inclusion of
A = Z(H)p in H induces surjections 1jA — 71K+ and we can write K* as (K*)' ®p+ A for
F* = ker ((K*)' x A — K¥). Since K* /H are spheres, by two applications of Lemma 3.6 we have
H ®r A=H = H ®p+ A, so F = F~ = F*. Thus the inclusions H —3 K* factor as virtual
product maps of the form i+ ®rid4. Factoring out A/F, we need only analyze K¢, (M') for M’ the
double mapping cylinder of G/(K*) —3 G/H’. We may thus adopt the notational convenience
of assuming the groups K* of the original triple (K*, H) were semisimple.

Recall from the proof of Lemma 3.7 that the kernels of a* | contain all but one simple factor
of H, or all but two in case Hei;f = S0(4) = SO(3)?/{= (I, 1)} is not simple. Thus we have product
decompositions

+ o Rt +
K :Keffo ,

~ Ot t
H =~ HE x T,

where the ineffective kernels [T+ := kera® are products of simply-connected and SO(odd) fac-
tors, their normal virtual complements Kciff < K* induce isomorphisms or double-coverings
IZ;_—FH — K*¥ — Kz, and Iqeiff are the intersections of H and IZ;—FH, accordingly singly or doubly
covering Hei;f under a*.
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763 e Suppose that H; = Hy =t Hes.

764 Then ITT = IT~ and we may factor it out. What remains is the pair of inclusions f{eff —
765 K;—;f, so we examine the images of RKfff —3 RH,g.

766 o Suppose that ﬁeff # Spin(8).

767 An inclusion SO(2n) < SO(2n + 1) for n # 4 or SU(3) «— G, induces an inclusion
768 of root lattices in a unique way by Lemmas 3.22 and 3.23. It follows that the maps
769 RK;—Fff —= RH,g have the same image, so we have a sphere bundle configuration.

770 o Suppose that Heg =~ Spin(8).

771 + If the inclusions of root lattices induced by ﬁeff f— Izeiff are both standard, then
772 as in the previous item, we have a sphere bundle configuration.

+ Otherwise our By lattices are both of those described in Lemma 3.23 and so to-
gether span an F; lattice, and the intersection RK~ n RK* in RH = RSpin(8) is
RF,. By Lemma 3.24, then, RSpin(8) is free over RF; on 1152/192 = 6 elements
and each RSpin(9) is free on 1152/384 = 3 elements, so by arithmetic,

RH, N N
———__ ~ RF, ~ RK n RK;,.
RKqs + RK g
773 o Suppose that H = H.
774 o Suppose that neither of H;; is isomorphic to SO(4).

The assumption implies Heiff and hence the single or double covers IfI;—}f are simple.
Since H is a product of simply-connected groups and SO(odd) factors, and since sub-
groups IZei;f < K* singly or doubly covering Kfff under a* cannot be chosen such that
IjIeJ—}f =Hn Keiff agree, we must have ﬁe_ff N ﬁg;f = 1. Thus there exists a factorization

H = H

7+
X Hgge x I1
for IT a product of totally ineffective factors contained in K~ n K*. Since rk Iz;iff =
rk IerJ—}f and the groups ﬁéf are simple, it follows

~

P
Ko N Heg = 1 = K 0 Hg,

and as H = ﬁe_ff X I:]g}f x IT is contained in both groups K*, they must admit abstract

decompositions
-~ KR x g
K™ =~ Keff X Heff x 11,
+~ g w KT
K™ =~ H_g x K x 11
775 respecting the inclusions IerJ—;f — IZ;—}f Thus we may factor out RII and afterwards

776 have a join configuration.
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o Suppose at least one of HZ, is isomorphic to SO(4).
We may suppose without loss of generality that it is H, which is 1somorph1c to SO(4),

so that HJ;f ~ Spin(4) =~ Sp(1)? and K:ff ~ Spin(5) =~ Sp(2). Since H S and H ot are

both direct factors of the semisimple group H and we have assumed that H, off 7 H* o7
we have a dichotomy based on whether H off shares 0 or 1 of the Sp(1) factors of H* off"

+ Suppose no Sp(1) factor of H, lies in H,.

Then H;}f IT-, so we have

Hx~H_ xIT" ~H_yxHjxL
for some direct complement L with IT™ = ﬁ(jff x L. It follows

K~ = K, x Hf x L.
On the other hand, the inclusion H — K* factors abstractly as
Ifle_ff X ﬁ;f x L— Iz:;f x 1T+,

with the image of HZ, lying in K, so it follows [T+ =~ H_, x L. Thus we factor
out L and achieve a join configuration.

+ Suppose one Sp(1) factor of ﬁl;;f lies in H off"

Since H_ is isomorphic to either SU(3) or SO(even) and H-; ofisa product of direct
factors of H = Sp(1)? x IT*, we must also have H = = Sp(1)? and K- ot = ~ Sp(2).
Factoring out IT~ n IT* < H, what remains are the inclusions H K= offr which
can be identified with

Sp(2) x Sp(1) «— Sp(1)* — Sp(1) x Sp(2).

Then by Lemma 3.25, RSp(3) is free over R(Sp(1)®) on 6 = |Z3| elements and each

of RK:ff is free on 3 elements, meaning

RH, N N
T ~ RC3 = RK n RK}y
RK g + RK

as expected.

i . .
1. The case exactly one of H g is a circle

Without loss of generality, assume that H =~ SO(2) and H; # SO(2). As before let K;ﬁf be
normal virtual complements to the normal subgroups kera* < K* and H w=Hn Iz;iff By our
assumption on the structure of K, we can write

K™ = (K x I17) ®A
for A = Z(K7)p and 11~ a direct complement to K off in the commutator group (K~)/, and F =
(E;ffxn )mA ThenHm(K g x I17) = H 4 <117, and K~ /H ~ S?%, so by Lemma 3.6, we may
write H ~ (He_ff x IT7) ®F A. Since IN{e_ff is a circle, we have H' =TI
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Now IZ:H is not isomorphic to either Spin(3) or SO(3), so ﬁ:ff is a closed subgroup of I1™. By
our assumption on (K*)’, then, I?:H is a direct factor and there exists a complement L. <11~ with

IT" =L x H;;f,

(K*) =~ L x K.
It is clear then that Kt = H (L x Keff) A. We have

Hyn(LxKy)=HpynHn(LxKy) =Hyn(LxHY) =1

€

and also
(HypxLxKi)nA=(HyxLxKi)nHnA=(HyxLxHy)nA=F,

so in fact K =~ (ﬁe}f x L x IZ:H) ®F A.
Thus we may factor out A/F and then L to obtain a join configuration.

2. The case Hei;f are both circles

The intersections I1° of (KT)’ with the ineffective ker a* admit complements K= & in (K¥)' by
assumption. Since im a* =~ SO(3) is simple and centerless, the centers Z(K*) are also contained
in ker a*. This kernel is obviously contained in the stabilizer H as well, so [T+ = (IT*)’ < H'.
On the other hand, since the i 1mages a*(H) =~ SO(2) are abelian, the commutator subgroup H’ is
contained in both of kera*, so [1T = H'.

By the assumption on (K*)/, we have

K* = (H' x K%) - Z(K*),,

H = (H' x HL) - Z(K*),.

Now consider the torus A := (Z(K~) n Z(K")),. Taking H = H'H_H}, and F = H 1 A, we may
write H ~ H®F A. If we set KT = ﬂ]?;—rff, then evidently K* A H = H and K* = KT A. Since

KfEnA=K*~A~HNA=H~NnA=F,
we find K ~ K= ®r A, so we may factor out A/F.

* Suppose A = Z(K™)o = Z(K™)o.

In this case Z(H)/A is one-dimensional, so we may select 12;*& in such a way that Hey =
H_ff = HJFf =~ SO(2). Factoring out A/F and then H’ leaves a configuration SO(2) —= IZ;LH
where K& o are each SO(3) or Spin(3). Either way, the induced map Rke—ﬂf —> RSO(2) =
Z[t] has image Z[t + t~1], so we are functionally in the situation of Proposition 5.4 and in
particular

RHeg Z|t]

~ — ~t-Z[t+t7Y
— —1
RKG + RHE, — Z[t+t71]

is of rank one over Z[t + t~1].
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802 * Suppose Z(K™)y # Z(K™)j.

803 Write T for the two-dimensional torus I?Ie_ff : ITI;}f in H. Then after factoring out A/F we
804 have to deal with the inclusions of H = H' x T in (H' x IZ;—FH) -S1, where idy factors out of
805 these inclusions but we claim nothing particular about the two inclusions T —— Keiff - Sh
806 Factoring out H’, we arrive at H = T and K* ~ Keiff ®r S!, where |F| < 2.

807 The inclusions T — KT induce inclusions RK* =~ (RT)<wi> —— RT, where w+ gener-
808 ates WK* =~ 7Z/2. Identifying RT? with the group ring ZX of the character group X =
809 X(T) = Hom(T,S'), these can be seen as induced by two reflections of the vector space
810 t" =~ R? which preserve the integer lattice X(T) =~ Z?. Under this identification W =
811 (w_, w4 ) becomes a dihedral subgroup D, of GL(2,Z). These are classified: they can only
812 be Dy, D¢, Dg, D12 and are conjugate to the standard presentations for the Weyl groups of
813 types Do = Aj x Ay, Az, By = Cp, and Gy as well as a second Dg < WG, not generated by
814 root reflections, which hence does not occur [Tah71, Prop. 1][Mackg6]. The root lattice Qw
815 and weight lattice Py corresponding to reflection groups W of this type in R? are unique
816 (up to equivariant isomorphism) and there are examples, most of which we produce imme-
817 diately following the present argument, showing any intermediate lattice between Qu and
818 Py occurs as X for some cohomogeneity-one action.

In all of these cases, we need to see

RT

O =
(RT)@-) 4+ (RT)<w+>

is a free cyclic module over (RT)". One is tempted is to use Theorem 3.21, but it can
happen that RT is not free over (RT)". Instead our answer comes from the Stiefel diagram.
The ring RT is free on the Z-basis X. Quotienting by (RT)-> + (RT){“+’, annihilates X%~
and X{*-2 and induces relations

w_0=—0 for 6 ¢ X@-,

w0 =—6 for 6 ¢ X@+,
819 since 6 + w_0 € (RT)“~ and 6 + w, 0 € (RT)W+ . It follows @ admits a Z-basis given by
820 those characters of T lying in the interior C of a fundamental domain.*®
821 On the other hand, (RT)" is spanned by orbit sums S0 = 3 v /stabo WO- These are indexed
822 by W-orbits of X, of which there is precisely one per character 6 in the closed fundamen-
823 tal domain C. Drawing out the diagrams, one checks for each lattice type that there is
824 a minimal strongly dominant integral weight Ay, which makes § «— 6 - Ay a bijection
825 Cn X «— CnX.'7 Recall that if X is given the partial order determined by setting o > 6
826 just when 6 lies in the convex hull of the orbit W - ¢, then given ¢,6 € X n C, the difference
827 S(00) — So - SO is a sum of terms of lower order [Adams6g, Prop. 6.36]. If we filter ® with
828 respect to this order, then it follows the (RT)"-module structure on the associated graded

16 The notation C is meant to suggest a Weyl chamber, even though our dihedral group is just a group of symmetries
of a Z? lattice, not a priori the Weyl group of anything, because the same reasoning goes through.

17 1If X is the lattice spanned by the fundamental weights dual to the simple roots of the root system for W, so that
half the sum of positive roots is an integral weight p, then [Adams69, Lem. 5.58] we have p = Ag. But these are not all
the cases.
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module gr® is given by So - 0Ag = (00)Ao, so @ is the free cyclic (RT)"-module generated
by Ag as claimed. O

Remark s5.11. It is interesting to note that all of the exceptional cases occur as the “degree-
generating actions” tabulated by Piittmann [Piitog, §5.2][GrWZo08, Table E, p. 105]. The actions of
Fy on S® and Spin(3) on S'3 already came up in the “no circular isotropy” case, and the others
are among the “two circles” cases, as per the following examples.

Example 5.12. The dihedral group D, a Coxeter group of Killing—Cartan type D, is realized as
the Weyl group of a cohomogeneity-one action with H =~ T2 as follows. One has an isomorphism
SO(4) = Spin(3) ® Spin(3) and can consider the diagram

72

G ~SO(4), K =Spin(3) ® Spin(2), K*' =Spin(2) ® Spin(3), H = Spin(2) ® Spin(2) = T.
(4) pin(3) L) pin(2) pin(2) ) pin(3) pin(2) ) pin(2)

Write T = Spin(2) x Spin(2) and RT = Z[s,t,s 't"']. Then W = WSO(4) =~ S, x {+1}. Since
SO(4) is not simply-connected [Ste75], we see RT = Z[s*!t*1] is not free over

RSO(4) = (RT)W = Z[s +s L+t +t7 st +s 1L, s+ st71,

illustrating the proof of the H:;; = SO(2) case in Theorem 0.4 cannot be run through Theorem 3.21
in all cases.

Instead considering the two-fold covers inside G = Spin(4) = Spin(3)?, one obtains a Weyl
group of type D, again, but now RT = Z[s, t,s~'t71] is free over

RSpin(4) = (RT)W = Z[s +s '+t +t 1, st +s71t71],

and one can apply Theorem 3.21 again. The space acted on is 5% * S? ~ S°.
We leave it to the reader to construct an analogous example with G = SO(3) x SO(3).

Example 5.13. The dihedral group Dg, a Coxeter group of Killing—Cartan type A», is realized as
the Weyl group of a cohomogeneity-one action with H =~ T? as follows. Consider the diagram

G =U(@3), K~ =U(2) xU(1), KT =U(1) x U(2), H=U®1)>

In the notation of the proof of Theorem 0.4, the irrelevant torus A = Z (U(B)) ~ Sl is the group of
diagonal matrices and F = (¢?™/3). After factoring out A/F, one has the corresponding subgroups
of SU(3), and the manifold is S”. The reduced K* are both isomorphic to U(2), and one has
W = WSU(3) = X3 with w_ = (1 2) and wy = (2 3). Since SU(3) is simply-connected and it is
easy to check the coset condition applies, one could also apply Theorem 3.21.

Example 5.14. The dihedral group Dg, a Coxeter group of Killing—Cartan type BC,, is realized as
the Weyl group of a cohomogeneity-one action with H =~ T? as follows. Consider the diagram

G=SO(5), K =U@2)x{l1}, K'=S0(2)xSO@3), H=S0(2)xS0(2)x{1}=T,

where all subgroups are block-diagonal, U(2) @ {1} being embedded in the block-diagonal SO(4) ®
{1} in the expected manner. Then WG = ¥, x {£1}? is a Coxeter group of type B, acting on t* as
the dihedral group Dg and is generated by w_ = ((1 2),1, 1) and w; = (id, 1, —1). Theorem 3.21
does not apply as stated, as SO(5) is not simply-connected, but the relevant part of Steinberg’s
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proof [Ste75] only requires that RSO(5) be polynomial, which it is, and one can check the coset
condition holds.
One can also consider the cover

G = Spin(5) = Sp(2), K~ =U(2), K+ =U(1)@Sp(1), H=U1)®UQ1)=T,

which generates the same W.

Example 5.15. The dihedral group Diy, a Coxeter group of Killing—Cartan type G, is realized as
the Weyl group of a cohomogeneity-one action with H =~ T? as follows. Consider the adjoint
action of the compact exceptional group G on its Lie algebra g, =~ R!. This restricts to an
action on the unit sphere S13 under the norm induced by the Killing form, and the orbits are
given by the intersection of S13 with a Weyl chamber in the Lie algebra t* of a maximal torus,
cutting out an arc of the unit circle S! < * of angle 71/6. The principal isotropy group fixing a
point on the interior of the arc is T? itself and the singular isotropies fixing the endpoints are two
nonconjugate copies of U(2) [Miyo1]. The reflections w. generate the dihedral group WG, = Dy».
As G is simply-connected, one can check the coset condition and apply Theorem 3.21 again.

6. Equivariant formality

In this final section, we let G —~ M be a cohomogeneity-one action with M/G a closed interval as
in the first fork 0.2(a) of Mostert’s dichotomy 0.1 and use the structure theorems for K& (M) in
the previous two sections and the representation theory of Section 3 to characterize equivariant
formality of such actions.

Recall that K-theoretic equivariant formality means surjectivity of the map K¢ (M) — K*(M)
forgetting the G-equivariant structure on a complex vector bundle. This condition, first studied by
Matsunaga and Minami [MatM86]'® is stronger than the condition that K% (M; Q) — K*(M; Q)
be surjective, which Fok [Fok19] named rational K-theoretic equivariant formality and showed is
equivalent to cohomological equivariant formality in the traditional sense [GorKMg8] that the re-
striction H}(M; Q) — H*(M; Q) along the fiber inclusion in the Borel fibration M — Mg — BG
be surjective. Goertsches and Mare [GoeM14, Cor. 1.3] showed a cohomogeneity-one action of a
compact, connected Lie group G on a smooth closed manifold M with orbit space an interval
is equivariantly formal if and only if tkG = max{rk K~,rk K"}, so the same holds of rational
K-theoretic equivariant formality and the rank equation is a necessary condition for K-theoretic
equivariant formality over the integers. The converse also holds, at least with the standard re-
striction on fundamental groups.

Theorem 6.1. Consider a cohomogeneity-one action of a compact, connected Lie group G with 1(G)
torsion-free on a smooth closed manifold M such that the orbit space M/G is an interval and the com-
mutator subgroups of the exceptional isotropy groups K* are the products of simply-connected groups
and SO(odd) factors. Then the action is K-theoretically equivariantly formal if and only if tkG =
max{rk K=, rk K*}.

Proof. We consider the Hodgkin-Kiinneth spectral sequence [Hodgkin, Intro., Cor. 1, p. 6] for
the left multiplication G-action on X = G and the given action on Y = M, a (Z x Z/2)-graded

18 though Hodgkin had already dubbed the map “forgetful” [Hodgkin, p. 72]
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left-half-plane spectral sequence which starts at
E>™* = Torga(KEX, KEY) = Torg s (Z, KEM)
and, given the hypothesis on 711G, converges to
KE(X xY) = KE(G x M) = K*(M).

The forgetful map K& (M) — K*(M) we wish to show is surjective can be identified [Hodgkin,
Prop. 9.1, p. 71] with the edge map

KE(M) — 7Z lg@GKE(M) = Ey* — E%.

In each case we will verify the groups Toryx; 1(Z, K M) = 0 vanish, showing the spectral sequence
collapses and the edge map is a surjection. We will repeatedly use the following facts. First, if
K/H is an odd-dimensional sphere, then rk K = 1 + rk H, while if K/H is an even-dimensional
sphere, then rk K = rk H. Second [AtH61, Thm. 3.6], for I closed and connected of full rank in G
we have K!(G/T') = 0 and K°(G/T) free abelian (of rank |[WG|/|WT|). Third [GonZ17, (7), p. 19],
the groups Torlfg(Z, RT') vanish for I' < G closed and connected with rkG —rkI' < |p|, so that
particularly Torxg 2(Z, RT) vanishes for I € {K*, H}.

Suppose rk G = tk H + 1.

In these cases we know that one of K* has rank greater than that of H, and our hypothesis
on K* implies that R(K*)’ is polynomial [Ste75], so the corresponding restriction RK* — RH is
surjective by Propositions 3.10 and 3.13 and the Mayer—Vietoris sequence of Theorem 4.1 shows
K& (M) vanishes, leaving a short exact sequence of RG-modules K% (M) — RK~ x RK* — RH.
Applying the derived exact sequence of the functor Z ®gg —, we find Torx;*(Z, K% M) vanishes
as above. Since in fact the E; page is only inhabited by Eg’o and E; 1’0, we know the former of
these is K%(M) and the latter K!(M). Thus the forgetful map will be surjective if and only if also
Torgs(Z, KA M) = K}(M) = 0. Using the Mayer—Vietoris sequence of the standard cover, we must
show K°(G/K~) ® K°(G/K*) — K°(G/H) is surjective and K!(G/K~) ® K} (G/K*) — K'(G/H)
injective.

For surjectivity, assume without loss of generality that rkG = rkK*, so that K!(G/K™) is
zero and K°(G/K™) is free abelian; in particular, then the Atiyah-Hirzebruch spectral sequence
H*(G/K*) = K*(G/K") collapses. There is an evident bundle map

K+/H—>*

|

G/H —~ G/K*

|

G/K* =G/K*

inducing a map of Atiyah-Hirzebruch-Leray—Serre spectral sequences. We have just seen the
right spectral sequence collapses, and the map then shows all differentials out of the zero row
of the left spectral sequence must vanish as well. Particularly this means that the row E;ZO is a
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quotient of Ei* = K*(G/K™); and since K*/H is an odd-dimensional sphere, K*(K*/H) is an
exterior algebra A[z] on one generator z € K!(K*/H), so that

E, = H*(G/H;K*(K*/H)) =~ H*(G/H) ® Az].

Since each diagonal thus contains only one nonzero entry, we have E,, ~ K*(G/H) as groups and
thus, since odd columns are zero, EX’ ~ K°(G/H). This is a quotient of the row E; O~ H*(G/KT),
so the collapse H*(G/K*) =~ K%(G/K™) of the Atiyah-Hirzebruch spectral sequence on the right
shows K°(G/K*) — K°(G/H) is surjective.

Injectivity is obvious if K!(G/K*) = 0, so now assume as well that rkK~ =tk H = rk G — 1.
We consider the map of Hodgkin—Kiinneth spectral sequences corresponding to X = G and
G/H =Y — Y’ = G/K™. These are concentrated in the 0-row and again by the vanishing of
Tor<~2, the spectral sequences both collapse at E, so the map K'(G/K~) — K'(G/H) may be
identified with the map TorEé(Z, RK™) — TorEé(Z, RH). But as K~ /H is an even-dimensional
sphere by assumption, Proposition 3.20 shows RH is free of rank two over RK™, so one has a
short exact sequence RK™ — RH — RK™. Applying the derived exact sequence of Z ®gr; — and
the vanishing of Tor 2, we see TorEé(Z, RK™) — TorEé(Z, RH) is injective as claimed.

Suppose rk G = rk H.

Since K!(G/K*) = 0 = K}(G/H) in this situation, the sequence of Theorem 2.11 separates into
the two short exact sequences

0 — K%(M) — RK™ x RK" — B -0,

0 - B — RH — K5(M) — 0

2

of RG-modules. From the vanishing of TorS~* we get RG-module isomorphisms

Torge 2(Z,KE¢M) = Torgt (Z, B) ~ Torga(Z,KEM)  (n>1),

and from Theorem 0.4 we also have an RG-module isomorphism K2 (M) = KL (M), so the higher
Tors are 2-periodic. But Z has finite projective dimension over RG (indeed, the Koszul algebra
RG ® K*G is a resolution of length rk G), so these higher Tors vanish. O

Remark 6.2. The last sentence in this proof, the observation it concludes the proof, and the request
for such a result in the first place are all due to Marcus Zibrowius.
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