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Abstract

The notion of exactness in an abelian category generalizes to notions of exactness and
coexactness, due to Moore, in any pointed category. For about sixty years, various authors
computing cohomology of various things have insisted on coexactness. This brief note illus-
trates these definitions in a few well-known algebraic categories and elaborates conditions
under which exactness and coexactness are equivalent notions.

1. Infroduction

The notion of exactness from the category of abelian groups generalizes well to abelian categories,
but already fails to make sense in other categories of algebraic objects. In the category of unital
rings, for instance, the image of a ring map is a (unital) subring of the target, but the kernel is an
ideal, which fails to be a subring unless the map is identically zero.

One can repair this failure in categories with a zero object by defining, but one finds exactness
splits into two dual notions, exactness and coexactness, originally discussed in the context of
commutative or cocommutative connected Hopf algebras [MS68, p. 762].

These definitions rely on new notions of kernel and cokernel, image and coimage, which may
be somewhat counterintuitive. The image of a morphism f: A — B is defined as the kernel of
its cokernel, usually not usually agree with the set-theoretic image f(A) = {f(a) : a € A}, which
is not usually the kernel of anything. For example, in the category of groups, the categorical
image is the normal closure <bf ()bl :aec A be B> of the set-theoretic image, whereas in the
category of augmented unital k-algebras, it is the sum k + (f(A)) of the image of the unit and the
two-sided ideal generated by the set-theoretic image. One sees after a moment of reflection that
the only reason the classical version of exactness works in categories of modules is that there all
monomorphisms and epimorphisms are regular.

It was coexactness that was relevant to the author’s thesis, and he remembers trying to justify
to his advisor the presence of the irritating co. This note may be considered a belated answer. In
correspondence about these concepts, Larry Smith suggested another reasonable pair of defini-
tions of exactness and coexactness which we will call weak. Weak exactness and weak coexactness
turn out to be equivalent to one another, but not generally to exactness or coexactness.

Acknowledgments. This note began as an email to Larry Smith, who has always been a gracious
and entertaining correspondent and is responsible for two of the definitions. The other inspiration
is his advisor, Loring Tu.



2. Categorical generalities

Let (¢, +) be a pointed category, meaning * is both an initial and a final object in €. The object =
is called the zero object. For any two objects X,Y € %, we denote again by = the unique frivial
morphism X — * — Y. Given an arrow f: X — Y, recall that, if they exist,

¢ the kernel ker f is the equalizer Ker f — X of f and #: X — Y/ or equivalently the final
morphism k: K — X such that fok = =;

e the cokernel coker f is the coequalizer Y — Coker f of f and #: X — Y, or equivalently
the initial morphism c: Y — C such that co f = x;

e the image im f is ker(coker f): Imf — Y;

* the coimage coim f is coker(ker f): X — Coim f.

Because coker(f) o f = *, one has always an image factorization

X L2 fmp 2y
of f and dually, since f o ker(f) = %, a coimage factorization

X COlmf COlmf fu)lm

If fim is epic, we say f induces an epimorphism to its image, and that if f.oim is monic, that it
induces a monomorphism from its coimage.
There exists the following theorem about these factorizations.

Proposition 2.1 ([Mac78, Lemma VIIL1, p. 189]). Let € be a pointed category with all equalizers and
all monomorphisms m normal in the equivalent senses that they are the kernel of some morphism. Then
every arrow of € induces an epimorphism to its image.

Dually, if € has all coequalizers and all epimorphisms are normal in the sense of being cokernels, then
every arrow of € induces a monomorphism from its coimage.

Of course in many categories of interest, like that of augmented unital k-algebras, neither of
these hypotheses is true. But the category k-Hopf{ of commutative connected Hopf algebras over a
tield does have the former property and the category of cocommutative connected Hopf algebras
has the latter [MS68, p. 756].

These factorizations appear together the below diagram along with two further morphisms.

Ker f

im AA im
N / \
coker f
coim f Jeoim

Coim f Coker f

To explain the new arrow r, note first that * = coker(f) o f = coker(f) o feoim © coim(f). Since
coim(f) is epic, one also has * = coker(f) o fecoim, meaning fe.im factors as im f o r for a unique



r: Coim(f) — Im(f). Dually, to explain g, note that * = f oker(f) = im(f) o fim o ker(f), but
since im(f) is monic, we also have * = fin, o ker(f), implying fim factors as ¢ o coim(f) for a
unique /: Coim(f) — Im(f).

We claim that ¢ and r are the same map f: Coim(f) — Im(f). Indeed, one has

im(f) o7 ocoim(f) = feoim © cOIM(f) = f =im(f) o fim = im(f) o £ o coim(f),
but im(f) is mono while coim(f) is epi.

Lemma 2.3. In the factorization diagram (2), the map f is epic if and only if f induces an epimorphism
to its image, and is monic if and only if f induces a monomomorphism from its coimage.

Now consider a sequence

xy 23z 4)

in ¥ and assume the kernel ker g: Ker(g) — Y exists. If the composite g o f is %, then by the
definition of kernel, f factors through ker g, say as

f ker
X L Ker(g) “5 v (5)

Dually, if we assume the cokernel coker f: X — Coker(f) exists, then by the definition of coker-

nel, g factors through coker f, say as

<oker/, Coker(f) 5> Y. ©)

Definition 2.7 ([MS68, p. 762]). We say the sequence (4) is exact at Y if the factor map f of (5)
is an epimorphism, and one says the sequence is coexact at Y if the factor map g of (6) is a
monomorphism.

Again assuming g o f = * and the kernels and cokernels exist, note that then

g oim(f) = go coker(f) oim(f) =

and consequently im(f): Im(f) — Y factors through ker g, yielding the arrow ¢: Im(f) —
Ker(g) in the diagram

Im(f)

f im \Yf
X

e Y. (8)
N
Ker(g)

As im f and ker ¢ are monomorphisms, so also is e. The right triangle of (8) commutes by defini-
tion, and both compositions X — Y are f. The left triangle commutes as well because

ker(g) o f = f = im(f) © fim = ker(g) o €© fim

and ker ¢ is monic. Dually, since coim(g) o f = *, we find coim g factors through coker) via some
epimorphism c. The two fit together in the following diagram, in which yx is defined to be the
composition coker(f) o ker(g).



Imf Coim g

fim/ \im coimﬁg ﬁn
%
X e Y c Z
\ kerg/ Eker f /
f S/ 'Y g

Kerg Coker f

X

Definition 2.10 ([Smi15]). We say the sequence (4) is weakly exact if e is an isomorphism and
weakly coexact if ¢ is an isomorphism.

Curiously, these definitions are not just dual, they are identical.
Proposition 2.11. A sequence in a pointed category is weakly exact if and only if it is weakly coexact.

First proof. Fix an object Y in a pointed category ¢ and recall [Mac78, p. 189] that
coker - ker

forms a Galois connection (an adjunction of preorders) between the slice category ¢ /Y whose
objects are arrows to Y in ¢ and the slice category Y /% whose objects are arrows from Y. If e in
(9) is an isomorphism, so that im f = ker g in %/Y, then the cokernels

coker(f) = coker(ker(coker f)) = coker(im f) = coker(ker g) = coim(g)

will be isomorphic in Y/%, and the isomorphism will be precisely c. Dually, if ¢ is an isomor-
phism, then writing coker f =~ coim g we see the kernels

im(f) = ker(coker f) = ker(coim g) = ker (coker(ker g)) = ker(g)
will be isomorphic, the isomorphism given by e. O

Second proof. Weak exactness of (6) is equivalent to ker ¢ factoring through im f. Indeed, right-
multiplying the equation im f = ker(g) o e by an inverse e~! shows ker g factors through im f.
Conversely, the existence of a factorization kerg = im(f) o e’ would imply ¢’ is monic and
that im f = ker(g) oe = im(f) o€’ o e. Left-cancelling im f, this would mean ¢’ oe = id. Right-
multiplying by ¢’ to get ¢’ ceoe’ = ¢’ and then left-cancelling ¢’ since it is monic, we see ¢/ = ¢~ 1.

On the other hand, ker g factors through im f = ker(coker f) if and only if
X = coker(f) oker(g) = =

if and only coker(f) factors through coim(g) = coker(ker g). But by the dual of the argument in
the preceding paragraph, coker(f) factors through coim(g) precisely if ¢ admits an inverse. [

As implied by the names, the weak notions follow from the others.

Proposition 2.12. If a sequence in a pointed category is exact, then it is weakly exact, and if it is coexact,
then it is weakly coexact.



Proof. We first note that e is the kernel of x in (9). Indeed, coker(f) o ker(g) oe = coker(f) o
im(f) = , and if we are given another morphism / with coker(f) o ker(g) o h = *, then ker(g) o h
must factor through im f, say as

ker(g) oh = im(f)oj = ker(g)oeoj,

and cancelling ker g, we find h = e o j. Exactness means that f is an epimorphism, so ¢ must be
as well. But an epic equalizer is an isomorphism,” so the sequence is weakly exact.
The proof for coexactness is dual. O

This proof in fact shows e will be an isomorphism precisely if it is epic. If fin, is epic as well,
then f = eo fim will be too. A converse also holds.

Proposition 2.13. Let (¢, *) be a pointed category. Consider a sequence - L8 with trivial composi-

tion » = g o f. Coexactness of the sequence will imply exactness if and only f induces an epimorphism to
its image, and exactness of the sequence will imply coexactness if and only if g induces a monomorphism
from its coimage.

Proof. 1f the sequence is coexact, it is weakly coexact by Proposition 2.12, hence weakly exact by
Lemma 2.3. This means e = id in (9), so that f = fim; but the sequence is by definition exact if f
being epic, while f induces an epimorphism to its image if fin, is. The proof of the dual statement
is dual. O

Example 2.14. In the category of modules over a unital commutative ring k, every monomorphism
is a kernel and every epimorphism a cokernel, so by Proposition 2.1, every morphism induces
both an epimorphism to its image and a monomorphism from its coimage. Then Proposition 2.13
says coexactness is equivalent to exactness for all sequences.

At this point it becomes necessary to disabuse oneself of the notion these conditions might
always be equivalent.

3. Examples

In this section we elaborate on some examples distinguishing these notions. Let k be a commuta-
tive ring with unity. The category of augmented unital k-algebras with zero object k is equivalent
to the category of nonunital k-algebras, with zero object 0; transitioning back and forth is simply
removing or adding back on a copy of k with multiplication defined so that 1 € k becomes the
unity.

We let Alg denote any of the commonly considered categories of k-algebras and k-algebra iso-
morphisms. For example, it could be the category of connected commutative graded k-algebras,
the category of ungraded augmented unital associative algebras, the category of Lie algebras,
or the category of all nonunital algebras. The category Alg is pointed by k in the augmented
unital case and by 0 in the nonunital case. We will consider the latter for ease of notation, which
amounts to considering reduced cohomology in the original case of interest.

We will discuss kernels, cokernels, images, coimages, in Alg, which always exist, as well as
epimorphisms and monomomorphisms.

! Indeed, suppose e is the equalizer of v,w: A 3 B. Since voidy = woidy, it follows id 4 factors through e, say as

idy =eoe’. Then e/ = ¢’ ceoe’ and, since ¢ is epic, ¢/ = e~ 1.



Kernels: A composition K 5 A 1, Bis zero if and only if one has a containment 5(K) < f~1(0) of
sets, so it follows ker f is the inclusion of the ideal f~1(0), the traditional ring-theoretic kernel.

Monomorphisms: If f: A — B is monic, then left-cancelling f from foker f =0 = f 00, we see
£~1(0) = 0, so monomorphisms are injections. Conversely, if f is an injection, it is left-cancellable
on the level of functions, hence a monomorphism.

Cokernels: A composition A 1, B % Cis zeroif and only if f(A) < ¢71(0). Since ¢~1(0) is an ideal,
this is equivalent to the two-sided ideal (f(A)) generated by f(A) being contained in ¢~1(0). It
follows that coker f is the quotient map from B to B/ A = B/(f(A)).

Epimorphisms: If f: A — B is epic, then right-cancelling f from coker(f)of = 0 = 0o f, we
see B = (f(A)). We will see in Example 3.1 that this necessary condition is not sufficient. Sur-
jections are epimorphisms, as are localizations in the event the domain is unital, but general
epimorphisms do not admit a simple description.

Coimages: Given f: A —> B, its coimage is the cokernel of the inclusion f~1(0) — A, namely
the quotient map A — A/(f~1(0)) onto the traditional ring-theoretic coimage. The second
map feoim: A/(f~1(0)) — B in the coimage factorization is an injection by definition, hence a
monomorphism.

Images: Given f: A — B, its image is the kernel of the quotient map B — B/(f(A)), namely
the inclusion (f(A)) — B. The first map fim: A — (f(A)) in the image factorization is not
typically an epimorphism without further restrictions on the type of algebra in question.

Example 3.1. Let A be a k-algebra and f is the inclusion of A in B = A®y k[x,y]|. Then B = (A),
so fim = f, which is not an epimorphism because the identity and the A-algebra map sending x
to y and y to x are distinct but both restrict to the identity on A.

Proposition 3.2. The notions of coexactness, weak coexactness, and weak exactness of a sequence
alBic
in (Alg,0) each are equivalent to (f(A)) = g~1(0), but exactness holds if and only if additionally A —
(f(A)) is an epimorphism.
Proof. Since feoim is always a monomomorphism but fi,, is not always an epimorphism, this
follows from Proposition 2.11, Proposition 2.12, and Proposition 2.13. O
f

To see this explicitly, consider a sequence A — B &, C in Alg, so that the diagram (9)
becomes

B/g~1(0)

\/
/\ e

(f(A))

(3)




Coexactness is injectivity of §: B/(f(A)) — C, while weak coexactness is ¢ : B/(f(A)) —
B/¢~1(0) being an isomorphism, which is equivalent since gcoim: B/¢~!(0) — C is an injection
by definition. But this is the same as e: g7'(0) — (f(A)) being an isomorphism. On the other
hand, assuming this, exactness is the same as A — (f(A)) being epic, which is not generally
the case.

The difference becomes even more stark when we specialize and consider instead a category
(Algp, 0) of positively-graded k-algebras. We will have to reconsider epimorphisms and images.

Epimorphisms: If f: A — B is epic, then we have seen B = (f(A)). With the positive grading,
the converse also holds, because in fact f must be surjective. In case B is commutative, this
is an application of the graded Nakayama lemma [NSo2, Prop. A.1.1] but the argument holds
more generally: We have B; = By n (f(A)) = f(A1) for degree reasons. Suppose inductively that
B<n = @, Bj is contained in f(A). Since B = (f(A)), we know B, is spanned by homogeneous
degree-n elements of

f(An) + B<nf(A) + f(A)B<p + B<nf(A)Ban + f(A)B<nf(A)B<n + B<nf(A)B<nf(A) +- -+,
but we have assumed B, lies in f(A), concluding the induction.

Images: Given f: A —> B, the first map fim: A — (f(A)) in the image factorization is not
typically an epimorphism; as we have seen, it must then be a surjection, which is the case if and
only if (f(A)) is an ideal of B.

Examining Equation (3) again with the understanding that epimorphisms are surjections, we
have shown the following.

Proposition 3.4. The notions of coexactness, weak coexactness, and weak exactness of a sequence
Aatipic

in (Algy,0) (or equivalently, in connected, nonnegatively-graded) k-algebras, with zero object k) each are
equivalent to (f(A)) = g~ 1(0), but exactness holds if and only if additionally f(A) = (f(A)) in B.

We will be more brief about the category (Grp, 1) of groups and group homomorphisms, with
zero object the trivial group, recall that the monomorphisms in Grp are the injections and, less
trivially, the epimorphisms are the surjections ([Macy8, Exer. 5, p. 21]*). The kernel of a group
homomorphism ¢: G — H is the inclusion Ker¢ —— G of the set-theoretic kernel, and the
coimage is the surjection G — G/ Ker(¢).

The second map ¢coim in the coimage factorization G — G/Ker(¢) — H is the composite
of the isomorphism onto the set-theoretic image given by the first isomorphism theorem and its
inclusion in H, hence an injection, hence a monomorphism. Thus by Proposition 2.13, coexactness
and weak coexactness are equivalent in (Grp, 1).

As for coexactness, the cokernel of ¢: G — H is the initial surjection out of H annihilating
¢(G), namely the one quotienting from H normal closure {p(G)) generated by h(g)h~" for h € H
and g € G. Then im ¢ = ker(coker ¢) is the inclusion {¢(G)) < H. The first map in the image
factorization, G — ¢(G) — {¢(G)) = Im¢, is epimorphic if and only if it is surjective, which

2 or http://ncatlab.org/toddtrimble/published/epimorphisms+int+the+category+of+groups
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happens if and only if the set-theoretic image of ¢ is normal in H. This is not generically the
case; consider for example the case that ¢ is itself the inclusion of a non-normal subgroup. By
Proposition 2.13 again, then, weak exactness does not imply exactness in (Grp, 1).

Proposition 3.5. The notions of coexactness, weak coexactness, and weak exactness of a sequence
¢ Lutk

in (Grp, 1) each are equivalent to {¢(G)) = ~1(0), but exactness holds if and only if additionally ¢(G)
is already normal in H.
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