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0. INTRODUCTIONt 

Consider a differentiable fibre bundle 

o = (E,IT,X,G/H,G), 

where G is a compact, connected Lie group and H a compact, 

connected subgroup of G, E and X are differentiable manifolds, 

and TT:E -*X is a diff erentiable map. One would like to 

compute the cohomology of the total space E in terms of 

the cohomology of the base space X, and certain algebraic 

invariants of the imbedding of H into G. Specifically, 

there exists a universal bundle 

0(G,H) = (BH,f,BG,G/H,G) 

and a classifying diagram 

G/H = G/H 

> • 

E BH 

f 

x g  ,B0 

One would like to obtain some sort of isomorphism 

H*(E;K) « TORH*(BG?K)^H*'X,K^,H*^BH,K^' 

where H*(X?K) is regarded as a right H*(BG;K)-module via 

the multiplicative map g* and H*(BH;K) is regarded as a 

left H*(BG;K)-module via the multiplicative map f*. 

One does have, by results of Ellenberg and Moore [ll][l2], 
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an algebra isomorphism 

H*(E;K) » Torc*(BGjK)(C*(XjK),C*(BH?K)), 

where C*(X;K) is regarded as a right differential C*(BGjK)-

module via the multiplicative map g^ and C*(BHjK) is regarded 

as a left differential C*(BG;K)-module via the multiplicative 

map f . 

In a portion of his Princeton University thesis, Baum [l] 

gave an elegant partial answer to the question above. 

Considering the special case where the coefficient field 

K is the reals R and the base space X is a point *, Baum 

showed... 

THEOREM A: Let G be a compact, connected Lie group 

and H a compact, connected subgroup of G. Form the homogeneous 

space G/H. Then, regarding R as a right H*(BG;R)-module 

via augmentation and H*(BHjR) as a left H*(BG;R)-module 

via the natural map f*»H*(BG;R) -*H*(BH|R), we have an algebra 

isomorphism 

H*(G/H;R) * torH#(BG;R)(R,H*(BH*R)). 

Under the hypotheses of Theorem A it follows that 

H*(BGjR) is a polynomial algebra and C*(BG?R) is graded 

commutative. Using these facts, Baum constructs a multiplicative 

homology isomorphism 

0SH*(BG»R)->C*(BG;R) 

and similarly a multiplicative homology isomorphism 
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j2f:H*(BH{R)->C*(BH;R). 

Then he makes use of various naturality properties of Tor 

to pass from H*(G/HjR) « ̂ orC*(BG;R) 

torH*(BG;R)(R.H*(BH*R))• 

In this thesis we generalize Theorem A in two distinct 

directions. First, holding the base space to be a point, 

we generalize the coefficient field. Second, holding the 

coefficient field to be R (or the rationals Q, in light 

of recent work by Sullivan), we generalize the base space. 

In Chapter I we describe the various introductory 

material which will be needed later. I. 1 contains algebraic 

preliminaries, I. 2 contains geometric preliminaries. 

In Chapter II we prove the following theorem on the 

cohomology of homogeneous spaces,,. 

THEOREM B: Let G be a compact, connected Lie group 

and H a compact, connected subgroup of G. Form the homogeneous 

space G/H. Suppose that either 

(i). K has characteristic 0, 

or 

(ii). K has characteristic p, and H*(G;K), H*(H;K) 

have no p-torsion. 

Then, regarding K as a right H*(BG|K)-module via augmentation, 

and ,H*(BHjK) as a left H*(BG|K)-module via the natural map 

f*sH*(BGfK) ->H*(BHiK), we have a module isomorphism 

H*(G/HSK) « "torH*(BG[K)(K,H*(BH,K))' 

Tha nrnnf is in the spirit of Baum's proof of Theorem A, 



Under the hypotheses of Theorem B it follows that H*(BG jK) 

is a polynomial algebra? but C*(BG;K) is not, in general, 

graded commutative. C*(BG;K) is, however, homotopy commutative 

(via ^-products) in a very strong way. Using these facts, 

we construct a strongly homotopy multiplicative (shm) homology 

isomorphism 

*ei' e2« V • * «H*(BG|K)-^C*(BG?K). 

Using the concept of shm (due to Clark Stasheff C2l]][^22j, 

and Stasheff and Halperin [23]) we extend the notion of 

torsion products to strongly homotopy modules. Then we 

use a result of Baum [l][2] to reduce to the case of G and 

a maximal torus T of H, a result of May [16] and Gugenheim 

and May [13] which shows the existence of a multiplicative 

homology isomorphism 

a:C*(BT?K) ->K*(BT?K) 

which annihilates u^-products, and various naturality 

properties of this new TOR to pass from H*(G/H?K) « 

* TorC*(BG|K)(K>C*(BH'K)) t0 torH*(BG|K)(K,H*(BH,K))* 

II. 1 contains the algebraic material on tor, Tor, 

and TOR, described in terms of the two-sided bar construction. 

II. 2 gives a description of the shm map from H*(BG?K) to 

C*(BG?K) in terms of ^-products. II. 3 contains the proof 

of Theorem B. 

Theorem B has been of considerable interest to a number 

of mathematicians. Among those who have made significant 

contributions are* Baum ClX^]# Borel H. Cartan [,5]» 
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Gugenheim and May [13], Husemoller, Moore and Stasheff [1*0, 

May [16], Munkholm [17][l8], Stasheff [2l][22]f and Stasheff 

and Halperin [23]. Several of the above have announced 

proofs of a more or less general theorem along the lines 

of Theorem B. 

In Chapter III we prove the following theorem on the 

real and rational cohomology of differentiable fibre bundles... 

THEOREM C: Let 

0 = (E, 17, X, G/H, G) 

be a differentiable fibre bundle with X a homogeneous space 

formed as the quotient G'/H* of a compact, connected Lie 

group G* by a compact, connected subgroup H* of deficiency 

0 in G». Suppose that either K is the reals R or the rationals 

Q. Then, regarding H*(X;K) as a right H*(BG;K)-module 

via the natural map g*:H*(BG;K) —>H*(X;K) and H*(BH|K) as 

a left H*(BG;K)-module via the natural map f*:H*(BG»K) ->H*(BH;K), 

we have an algebra isomorphism 

H*(EjK) » torH*(BG;K)(H*(X;K),H*(BH;K)). 

The proof is again in the spirit of Bairn* s proof of 

Theorem A, Under the hypotheses of Theorem C it follows 

that C*(X|K) is graded commutative; but H*(X;K) is not, 

in general, a polynomial algebra. However, utilizing various 

Koszul constructions involving the cohomology and cochains 

of G* and of H*, we construct a collection of multiplicative homdog; 

isomorphisms relating H*(X;K) and C*(X;K). Then we make 



use of various naturality properties of Tor to pass from 

H*(EJK) « TorC*(BG;K)(C*(XJK),C*(BH|K)) to 

torH*(BG;K)(H*(X|K),H*(BH|K)). 

III. 1 contains the algebraic material on tor and Tor, 

now described in terms of the two-sided Koszul construction. 

III. 2 contains the proof of Theorems A and C. 
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I. 1. ALGEBRAi 

Fix K to be a commutative ring with unit. 

A GRADED MODULE A over K will be a sequence 

{ A^ i = 0,1,2,,,,] of K-modules, An element a £ Am is 

also considered to be an element of DEGREE m in A. So 

if K and a,b eA have degree m, then ka and a + b are 

also elements of degree m in A, 

A BIGRADED MODULE A over K will be a doubly-indexed 

sequence {A. . I i = 0,1,2,,,.? j = 0,1,2,...! of K-modules. 
i» J 

An element a £ A is also considered to be an element 
m,n 

of BIDEGREE (m,n) in A, If A is a bigraded module over 

K, we can form the ASSOCIATED graded module over K, also 

denoted by A, by setting A, = © A. .. 

If A and B are graded modules over K, then a K-MODULE 

H0M0M0RPHISM f:A—>B of DEGREE p is a sequence { f^ I i = 0,1,2,...$ 

of K-module homomorphisms >Bi+p. If a £ A has degree 

m, then f(a) denotes an element in B of degree m + p. 

The KERNEL of f is a graded module over K defined by (Ker(f))m = 

= Ker(f ). The IMAGE of f is a graded module over K defined 
m 

by (lm(f))m = l«(fB_p). 

If A is a graded module over K, then a SUBMODULE B 

of A is a graded module over K such that B^ is a submodule 

of Ai for each i = 0,1,2,... For example, if f«A-»B is 

a K-module homomorphism, then Ker(f) is a submodule of A 

and Im(f) is a submodule of B. If a graded module B over 
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K is a submodule of a graded module A over K, then the 

If A and B are graded modules over K, then A0B is 

the graded module over K defined by (A®B)k = i©rAi®B^. 

If ac A has degree m and b * B has degree n, then a®b denotes 

an element of A®B of degree m + n. By considering K to 

be the trivially graded module over K which is K in degree 

0 and 0 in all other degrees, A®K and K®A are canonically 

isomorphic to A. If A^A^B-^B,, are graded modules over K, 

and and f2lA2~^B2 are K-module homomorphisms, 

then f1@f2:A1@A2->B1®B2 is the K-module homomorphism 

defined by f1®f2(a1®a2) = f1(a1) @ f£(a2) for all a.± i Ax, 

A GRADED ALGEBRA A over K is a graded module over K 

together with a pair of degree 0 homomorphisms ̂ iK—A and 

A:A®A->A of K-modules such that the diagrams below commute * 

A® A® A > A ® A 

A 

A® A > A 
A 
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fx is called the UNIT of A and A is called the MULTIPLICATION 

map of A. If a U has degree m and b £A has degree n then 

ab denotes the element A(a®b) of degree m + n. A graded 

algebra A over K is said to be AUGMENTED if there exists 

a degree 0 homomorphism £tA—>K of K-modules. A is said to 

be GRADED COMMUTATIVE if ab = (_i) (De§(a) b)) ba for 

all a.b-tA,. A is said to be COMMUTATIVE if ab = ba for 

all a,b A. 

If A and B are graded algebras over K then A® B is 

also a graded algebra over K with unit given by the composition 

K-^K®K—^A®B and multiplication given by (a^ b1) (a2® b2) = 

= (-1) (DeS(b3_)) (Deg(a2)) (a^) ® (b^) for all alta2e-A 

and 

If A and B are graded algebras over K then a K-ALGEBRA 

HOMOMORPHISM or MULTIPLICATIVE map f«A —>B is a K-module 

homomorphism of degree 0 such that the diagrams below commutet 

A® A »B®B 

-» B 

If A^Ag.B^Bg are graded algebras over K and f^A^B-j^ 

and ^2jA2~^B2 are K"alSet>ra homomorphisms, then 
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f 1 ®f2,Ai^ A2~~~*B1® B2 *"s a K"alSe^ra hemomorphism as well. 

If A is a graded algebra over K then a LEFT A-MODULE 

M Is a graded module over K together with a K-module homomorphism 

gsA<S>M->M of degree 0 such that the diagrams below commutet 

v®1 

K(g)M 

A®M 

A® A® M A01 *A®M 

l®g N  

A ® M 

g 

g 

The notion of RIGHT A-MODULE is defined analogously. 

A GRADED COALGEBRA A over K is a graded module over 

K together with a pair of degree 0 homomorphisms ^ :A—>K 

and ViA—>A(g>A of K-modules such that the diagrams below 

commutei 

K® A 

JK8> 1 

~>A ® A 

1®*| 
A® K 

A® A® A ASA 

1®V 

A® A^ 
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?l is called the COUNIT of A and v is called the COMULTIPLICATION 

map of A, 

If A and B are graded coalgebras over K then a K-COALGEBRA 

HOMOMORPHISM or COMULTIPLICATIVE map ftA—>B is a K-module 

homomorphism of degree 0 such that the diagrams below commutet 

A ®  A  » B ® B  

VA ^6 

->B 

A DIFFERENTIAL graded module A over K is a graded 

module over K together with a K-module homomorphism dtA—»A 

of degree +1 such that d ° d = 0. If A is a differential 

graded module over K, d is called the DIFFERENTIAL, Z(A,d) 

denotes the graded module Ker(d) over K, B(A,d) denotes 

the graded module Im(d) over K, Since d ° d = 0, it follows 

that B(A,d) is a submodule of Z(Afd). We form the quotient 

graded module H(A) = H(A,d) = Z(A,d)/B(A,d) over K. Z(A,d), 

B(A,d), and H(A,d) are called, respectively, the CYCLES, 

BOUNDARIES, and HOMOLOGY of A. 

If A and B are differential graded modules over K, 

then the set Hom(A,B) of K-module homomorphisms from A to 

B is a differential graded module over K as well; the grading 
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is by homomorphism degree, and the differential is given by 

d(f) = dfiof + (-i)Deg(f) f o dA for each f * Hom(A, B) • 

One checks easily that d°d = 0. 

If A and B are differential graded modules over K, 

then f *Hom(A,B) is said to be a DIFFERENTIAL K-module 

homomorphism if f ° dA = dg° f, 

A FILTERED graded module A over K is a graded module 

over K together with a collection {F^A i i = 0,±1,±2,...I 

of submodules such that KJF1*- = A and F^SF^A whenever 
ice 

i $ i .  If A  is  a  diff e r e n t i a l  g r a d e d  m o d u l e  o v e r  K  the n  A  i s  

a DIFFERENTIAL FILTERED graded module over K if the filtration 

also satisfies d(FiA)^FiA for all i = 0,±1,±2,... If A 

is a graded algebra over K then A is a FILTERED graded ALGEBRA 

over K if the filtration in this case satisfies F^'F^AtF1*^ 

for all i = 0,-tlf ±2,... s j = 0,±1,±2,;.. 

For further ctetails on algebraic preliminaries see, 

for example, Cartan and Eilenberg [7] or MacLane [15]. 
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I. 2. GEOMETRY; 

A continuous map of topological spaces TT:Y-*B is said 

to be a FIBRE MAP if B is path-connected, TT is surjective, 

and any commutative diagram 

P*10? 

in 

P* I 

£ Y 

TT 

g B 

where P is a triangulable space, can be filled in as shown. 

Fixing a base point b^ cB we define F = TT 

then unique in the sense that the fibres over any two points 

have the same singular homology, F is called the FIBRE, 

Y the FIBRE SPACE, and B the BASE SPACE. The entire collection 

is called a SERRE FIBRATION. 

Given a Serre fibration F4Y-^B and a continuous 

map of topological spaces fiX-*B, we form the INDUCED SPACE, 

denoted X^BY, by setting X * gY = £(x,y) * X * Y I f (x) =TR(y)i . 

In this case there exist natural projections TT*:X * gY-^X 

given by TT*(x,y) = x and f*«X - BY-*Y by f*(x,y) = y for 

each x *X and y « Y. In fact, we have the following commutative 

diagram 

10 

* *B Y  

IT 
X -

f* -> Y 

TT 
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If X = !bac is a basepoint of B and f is the inclusion 

map, then X * gY = 1 (x,y) « X * Y I f(x) = ir(y)Tr = 

= 5 y tY I bQ = ir(y)] = F, so in this special case the commutative 

diagram above becomes 

tr ip 

For further details on geometric preliminaries see, 

for example, Cartan and Eilenberg [7 ] or MacLane [15]. 
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II. 1. tor. Tor, TOR AND THE TWO-SIDED BAR CONSTRUCTIONt 

The major theorem in this chapter expresses, under 

certain reasonable hypotheses, the cohomology of a homogeneous 

space as a certain torsion product. The proof makes considerable 

use of various more complicated torsion products, so it is 

best to describe them first in detail. Each new torsion 

product will be seen to generalize the previous one. Thus, 

of course, they also become more and more unwieldy? essentially 

only the simplest of these products is actually computable. 

Roughly speaking, our proof will express the cohomology 

of a homogeneous space first in terms of the middle torsion 

product, pass to the most complicated, and then in one fell 

swoop to the simplest, as we desire. 

Each torsion product will be defined in terms of some 

form of the two-sided bar construction. It is worth noting 

that in each case the two-sided bar construction could 

also be described by defining the so-called bar construction, 

tensoring on the two-sides, and noting that the additional 

structure, namely the differential, is induced naturally 

from the various components. 

The bar construction is due originally to Eilenberg 

and MacLane [10], 

For the remainder of this chapter fix K to be a field. 

The following material is valid in a somewhat more general 

context but this will not be needed. A will denote a graded 
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algebra over K with augmentation £ , Define A = Ker(e.), 

Now set B0(A) = K, and, for each positive integer n, write 

Bn(A) = A® ... (n).,, ® A. 

Finally set 

B(A) = I B(A). 
n 

An element [a-J .. .! a^] = [a-^] <8>... <8> [aR] * B(A) will have 

INTERNAL degree £ Deg(a.), EXTERNAL degree -n, bidgree i •! ± 

<LDeg(a.),—n), and hence degree t Deg(a.) - n in the associated 
isl 1 J-

graded module over K. B(A) is equipped with a natural 

coproduct 

ViB(A)—*B(A)® B(A) 

defined by 

' • • • ' anl) = Cai' • • • 1 Cai+i' • • •'anl» 

where [ ] will signify 1£K. There is also a natural counit 

.n given by -y(k) = k for k tK£B(A)0, and = 0 elsewhere. 

With this structure B(A) becomes a graded coalgebra over 

K. 

(a), tort 

Suppose that M is a right A-module and N is a left 

A-module. We form the complex M®B(A)®N with the natural 

differential d£ given by 
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dE(m®[a1 l . . .  Iap]®n) = (-l)Deg(m)ma1® [a2 | . . .  i  ap] ®n + 

+ £ (-l)Deg(m) + ,4Deg(aj) " im®Ca1!...|a.ai+1i...|ap]®n + 

+ (_1)Deg(») + S^gU.) - Pm®[a1|...|ap_1]®apn. 

dE is called the EXTERNAL differential, since it acts on 

external degree. We will call the complex v, 

(M®B(A)®N, d£) 

the FIRST TWO-SIDED BAR CONSTRUCTION. Observe that the 

signs have been chosen so that dg 0 d£ s 0. The first two-

sided bar construction thus has the structure of a differential 

graded module over K. 

DEFINITION! We define tor^(M,N) to be the homology 

of the first two-sided bar construction! 

torA(MfN) = H(M®B(A) ®N, d£). 

REMARKi It is worth noting that torA(M,N) could be 

defined in considerably greater generality. Specifically, 

one could make use of projective resolutions. See Baum [l], 

for example. Then one would check that the first two-sided 

bar construction is, in fact, a specific projective resolution. 

REMARK: There exist relatively easy ways to compute 

tor.(M.N) in the case where A is a polynomial algebra. 
A 

See, for example, Baum and Smith [3] for an exposition of 

the two-sided Koszul construction. We will have more to 

say about the two-sided Koszii construction in III. In 
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the major theorem in this chapter A will turn out to he 

a polynomial algebra. 

REMARK: Suppose A,M, and N are graded algebras over 

K and fiA—and giA—>N are multiplicative maps. Then 

we can regard M as a right A-module by defining a map 

M® A —>M by m® af—>mf (a), and similarly we can regard N as 

a left A-module by defining a map A<S>N->N by a<g>ni-^g(a)n. 

(b). Tor* 

Now suppose that A is a differential graded algebra 

over K, M is a right differential A-module, and N is a 

left diffferential A-module. We again form the complex 

M®B(A)®N, this time with the natural differential dD = 

= d£ + dj, where 

dI(m®[a1l ...|a ]®n) = dm® [ax I... | ap] On + 

+ I (-l)Deg(m) +|lDeg(aj) " (i"1)m®[a1| ...| dai| ...|ap]®n + 

+ (-l)Deg(m) + ?1Deg(ai) " pm oCa-j^l ... Iap] ®dn. 

d-j- is called the INTERNAL differential, since it acts on 

internal degree. We will call the complex 

(M®B(A)®N, dQ) 

the SECOND TWO-SIDED BAR CONSTRUCTION. Observe, again, that 

the signs have been chosen so that dj * dj 5 Oflfv&g&ri&Qz and hence 

that The second two-sided bar construction 

thus has the structure of a differential graded module 
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over K. 

DEFINITION: We define TorA(M,N) to be the homology 

of the second two-sided bar construction: 

TorA(M,N) = H(M®B(A)®N, dD). 

REMARK: We note, again, that TorA(M,N) could be defined 

in considerably greater generality. Specifically, one could 

make use of differential projective resolutions. See Baum [l][2] 

or Smith [20], for example. Then one would check that the 

second two-sided bar construction is, in fact, a specific 

differential projective resolution. This is essentially 

done in Smith [20], 

REMARK: There exists, again, a description of TorA(M,N), 

in the case where A is a polynomial algebra, in terms of 

the two-sided Koszul construction. See Baum and Smith [3] 

or III. 

REMARK1 Observe that by assuming the differentials 

on A, M, and N are zero, d-j. disappears? and Tor is therefore 

a generalization of tor. 

REMARKi Suppose A, M, and N are differential graded 

algebras over K and fiA—and giA->N are differential 

multiplicative maps. Then we can regard M as a right differential 

A-module and N as a left differential A-module in precisely 

the same way as in (a). 

REMARK: The idea of homological algebra with differential 
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operators is due to Borel, H. Cartan, Eilenberg, MacLane, 

and Moore. The relationship between homological algebra 

with differential operators and homological algebra without 

differential operators is the following theorem due to 

Eilenberg and Moore [ll][12]s 

THEOREM 1: Let A be a differential graded algebra over 

K, M be a right differential A-module, and N a left differential 

A-module. Then there exists a spectral sequence (Er, dr), 

called the EILENBERG - MOORE SPECTRAL SEQUENCE, such that 

(i). Er TorA(M,N), 

(ii). Ex = H(M)®B(H(A))®H(N) with external differential, 

i.e., E-j^ is the first two-sided bar construction on H(M), 

H(A), and H(N), 

(iii). E2 = torH(Aj(H(M),H(N)). 

REMARK: The Eilenberg - Moore spectral sequence is 

obtained by filtering B(A) on external degree, that is, 

setting 

FqB(A) = lm® [a-jJ ... Iap]®n I p^q5 . 

For details on spectral sequences arising from filtrations 

see Cartan and Eilenberg [7] or MacLane L15]• For a proof 

of Theorem 1 in a somewhat more general setting see Eilenberg 

and Moore [ll][l2]# Baum [l], or Smith [20] 

THEOREM 2: Consider the following commutative diagram: 
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N-,< - A-, 5 »M, 
I I f 

f g h 

N24 A2 g M2 

Suppose A1# A2, M1# M2, Nx, and N2 are differential graded 

algebras over K while f, g, h, a, P, Y, and 6 are differential 

multiplicative maps* thus TorA (M1,N1), TorA2^Mi'Nl^* 

TorA (M2,N2), TorA (M^Ng), and TorA (M2,N1) make sense 
2 2 2 

by a remark above. 

(i). The map BTor^(l,l): ̂ ®B(A2) 

defined by 

BTor (lfl)(m®[a1|...iap]®n) = m®[g(a1) | ... |g(ap)]®n 

is a map of differential graded modules and therefore induces 

a map 

Tor (1,1)« TorA (MpN^-^Tor^ (M1>N1). 
® 2 1 

Furthermore BTorg(l,l) induces a map Torg(lfl)r of the 

corresponding spectral sequences such that 

Tor (1,1) ̂(m® [a^| ... | ap]® n) = m® Cs*(a^) I • • • ig*(ap) n, 

(ii). The map BTor^l.f)! B(A2) ® N2~>M2® B(A2)® 

defined by 

BTor-^l.f) (m®[a1| ... |ap]®n) = m®[a1i ... iap]®f(n) 

is a map of differential graded modules and therefore induces 

a map 
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Tor1(l,f) * TorA2(M2fN2)->TorA2(M2,N1). 

Furthermore BTor^ld) induces a map Tor^l.Dj. of the 

corresponding spectral sequences such that 

Tor1(l,f)1U®[ail ... i a p ] ® n )  = • ®[a1 l...lap]®f#(n). 

(iii). The map BTor^h, 1) * M2® B(A2) 0 N2->M1® B(A2) ® N2 

defined "by 

BTor1(h,l) ( B ® [ a 1 l  . . .  i a p]®n) = h(a) ® [a-^ ... Iap]® n 

is a map of differential graded modules and therefore induces 

a map 

Tor,(h,l). TorA (M2,N2)-*TorA (M1(N2). 

Furthermore BTor^h.l) induces a map Tor1(h,l)r of the 

corresponding spectral sequences such that 

Tor1(h,l)1(m®[a1 l...iap]®n) = h»(m) ® [a^ ... lap] ®n. 

REMARK, One way to generalize Theorem 2 would he to 

consider and M2 to be right differential Af and A2-modules, 

N1 and N2 to be left differential and A2-modules. respectively, 

and f and h to be merely differential K-module homomorphisms 

which are g-semilinear (This means simply that they preserve 

the appropriate module structure). In this thesis Theorem 

2 will be sufficient. 

_ . / ^DegCm) + £ Deg(a.) - * for 
NOTATION: Let a{ l) = l-U 1* J 

each i = 0,,,,,p. 
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PROOF OF THEOREM 2 :  The  p roofs  tha t  BTor g ( l , l ) ,  BTor^ l . f )  

and  BTor x (h ,  1 )  a re  maps  o f  d i f fe ren t i a l  g raded  modules  a re  

d i rec t  ca lcu la t ions*  

( i ) .  dBTor g ( l , l ) (m®[a 1 i  . . .  | a p ]®n)  =  

d(m ®[g(a 1 )  i . . .  Ig (a p ) ]  ®n)  =  o (  0 )  (mggfa^® [g (a 2 )  I . . .  ig (a p )  ]  ®n)  +  

go( i ) (m®[g(a 1 ) l  . . . l g (a i )g (a i + 1 ) l . . .  Ig (a p ) ]®n)  +  

o (p ) (m®[g(a 1 ) |  . . .  igUp^joagUp)! ! )  +  dm®[g(a 1 )  I . . .  ig (a p ) ]®n +  

£  c ( i - l ) (m®[g(a , ) l  . . .  | dg (a i )  I . . .  Ig (a  ) ]®n)  +  
i=l x  

o(p) (m®[g(a 1 ) l  . . .  !g (a p ) ]®dn)  =  

a (0 ) (meg(a 1 )®[g(a 2 ) l  . . .  Ig (a p ) ]®n)  +  

£  c (  i )  (m® [g (a^)  I . . .  I S ( a i a i+ i )  I •  •  > I S ( a p )  ]  ®n)  +  

a (p ) (m®[g(a 1 ) l  . . .  Ig (a p_i)]®ag(a p )n )  +  d rngCgU^ I. . . .  g (a p )  ]®n  +  

| a ( i - l ) (m®| :g (a 1 ) l  . . . l g (da i ) | . . . !g (a p ) ]®n)  +  

c (p ) (m®[g(a ; L )  i . . .  Ig ( a p ) ]®dn)  =  BTor g ( l ,  Dd tm®^!  . . . I  a p ]  ®n) .  

( i i ) .  dBTo^Cl . f )  (m®[a 1 i . . .  i a p ]  ®n)  =  dUa^ i . . .  | a p ]®f(a )>=  

O(0) (m6(a 1 )®[a 2 | . . . i a  ]®f (n)  +  

| |  a  ( i )  (m®[a 1 |  . . .  I a ± a i + 1 l . . .  | a p ]  ®f(n) )  +  

a  ( p H m ® ^ !  . . . l a p ^ l s f r U p m n ) )  +  d m ® ^ !  . . .  | a p ] ® f ( n )  +  

d ( i - l ) ( m ® [ a 1 l . . . l d a i t . . . i a p ] ® f ( n ) )  +  
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a(p)(m® [a-J . . .  iap] ®df (n)) = o(0) (m6(a1)® [a2  I . . .  iap] ®f (n) + 

m 
E o(i)(m0[a1l . . .  t aiai+1i-«* iap]®f(n)) + 

a (p ) (m®[a 1 i  . . .  l a p - 1 ]®f (Y(a p ) n ) )  +  dm® [a - j J  . . .  j  a p ]  ®f ( n )  +  

i  c( i - l )  (m®[a - .  i  . . .  i da . l  . . .  i a  ]®f ( n ) )  +  

t f ( p ) (m®[a 1 i  . . .  | a p ]® f (d n ) )  = BTor^l.f) d (m®[a 1 l  . . .  i a p ]®n) ,  

(iii). The proof of (iii<) is completely analogous to the 

proof of (ii). 

The remainder of Theorem 2 now follows immediately. 

COROLLARY 3: Under the conditions of Theorem 2... 

(i). If g#«H(A2)-^H(A1) is an isomorphism, then so is 

Torg(l,l)»TorA2(M1 ,N1)^TorAi(M1 ,N1). 

(ii). If f#:H(N2)- i>H(N1) is an isomorphism, then so is 

Tor^( 1,f) :TorA (M2 ,N2)->TorA (M2 ,N1). 
2 2 

(iii). If h#:H(M2)->H(N1) is an isomorphism, then so is 

Tor1(h,l) xTorA (M2 ,N2)-^TorA (M-^,N2), 
2 2 

PROOFi In the Eilenberg - Moore spectral sequence the 

induced maps Torg(l,l)^, Tor^(l,f)-L and Tor-^(h,l)1  are 

isomorphisms. 

DEFINITION> Suppose A and B are differential graded 

algebras over K and f.gxA-^B are differential multiplicative 

maps. We say that f and g are STRONGLY CHAIN H0M0T0PIC 
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AS MULTIPLICATIVE MAPS if there exists a sequenced ,D ,D 

of K-module homomorphisms, with D°:K->B and, for each positive 

integer n, 

Dn: A® . •. (n). . .® A->B, 

such that 

(i). Dn has degree -n for each n. 

(ii). D° is the identity, 

(iii). dDn(a,® ...0a) -Lo(i-l)Dn(a10M.®da.8„.0an) 
JL irl 

= £ a(i)Dn"1(a1® ...®a.ai+]L® . ..®an) + 

+ a(n)Dn"1(a1® ..an-1)f (an) - a(l)g(a1)Dn 1(a2® ... ®an). 

WARNINGi The summation on the left hand side of (iii) 

is not ± Dndj the discrepency is due to exterior degree. 

THEOREM Suppose A, M, and N are differential graded 

algebras over K, and f,g«A-»N and h:A-»M are differential 

multiplicative maps. If f and g are strongly chain homotopic 

as multiplicative maps, then TorA(M,N) is unambiguously 

defined; that is, TorA(M,N) is the same whether N is regarded 

as a left differential A-module via f or via g: 

(TorA(M,N))f « (TorA(M,N))g. 

An analogous result is true for TorA(N,M): 

(TorA(N,M))f « (TorA(N,M))g. 

PROOF: We form M®B(A)®N with the differential d^ 



obtained via f and with the differential d formed via g. 
o 

Now construct the map 

BD* : (M® B(A)<S) N, df )->(M®B(A) ® N, dg) 

by setting 

F * 
BD*(m®[a1 i . . . Iap]®n) = m®[a1l... |a±] ®Dp"x(ai+1® ... ®a. 

We claim that BD* is a map of differential graded modules; 

the proof is a direct calculation: dgBD*(m®[a-^ ... ap](g)n) = 

5 o (0) (mh(a1) ® [a2| ... | ai]®Dp 

£|o(J)(«®Cai| ...l*jaj+1l ...|ai]®Dp_i(ai+1® ...®ap)n) f 

£,C (i+l) (m®[a1l ...lai]®g(a .+1)DP-i-1(a.+2®...®ap)n) + 

f . . 
6 dm®[a1l ... iai]®Dp"1(ai+1® ...® ap)n + 

£ ? 0 ( j~l) (m® La^l • • • l(^aj1 • • • ap)n) + 

io(i)(m®[ail ... la.]®dDp" 

V 0 • 
I o(i)(-i)Heg(aj)-(p-1)(ra®[a1i ...I ai]®Dp_i(ai+1® ...®ap)dn) 

? • 
o(0)(mh(a1)® [a2|... lai]®Dp-1(ai+1® ...®ap)n) + 

£ S a( 3)(m®[a1l ...|a^+1l ... lai]®Dp"1(ai+2 ® ...® ap)n) + 

F 9 

£ dm © La^ I • • • ! a3 ® Dp (a^,^^ ® ® ap) n + 

£ £ o( j-l)(m®[a1l ... ida^ I ..., ai]®Dp_1(ai+1® ... ® ap)n) + 

£ o(p)(m®[a1| ...|ai]®Dp-i(ai+1® ...®ap)dn)] + 



c(i)(m®[a1l ...|ai]®dDp"1(ai+1^ ...$ap)n) + 

E a(i+l) (m® [a^I... ia^]®g(a^+1)Dp ^ ̂ (a^+2® • • • &ap)n) ] 

~_i a(O)(mh(ai)0[a2i ...iai]0Dp"1(ai+1®...®ap)n) + 

E ...Ia.a.+1 ...ja^^D15 1(ai+1® .. .©ap)n) + 

Ep dm®[a^l ... ia^] ®DP ®ap)n + 

L Zo( j-l)(m® [a 11... I da J ... ia^]® D p  *(a^ + 1® . •. ® a p)n) + 

| o( p)(m®[a1l... lai]®Dp"1(ai+1® v, .®ap)dn)]+ 

~EEo( i) (-l)B?.eg^ak^ (m<g[a, |... | a.]®Dp i(a.+10.. .®da.®.. .0a 

+ E E c( j) (m® [a1l ... [ai]® Dp"i'1(ai+1® ... ®ajaj+i^ •.•®ap)n) + 

E a(p)(m®[a^f...ia^]®Dp ^ • • • ® ap_^)f (ap)n) ] 

£ a(0) (mhCa-j^)® [a2 l... la^]® Dp i(a^+1® ... 0 ap)n) + 

E E o( j )(m<S>[a1l ... ̂  .a .+3J • • • lai] V*9'11*1+1® '' '0 ap)n) + 

E E^a( j)(m® [a-, i ... la.]® Dp"1"1(ai+1® ...®a^a;.+1® ...®ap)n) + 
Uo j'lfl •*" 

£ a(p)(m®[a1l... lai]®Dp"1"1(ai+1@ ... ® ap_i)f (ap)n) ] + 
J:b J" 

E dm®[a1l ... lai]®Dp"1(ai+1® ...®ap)n + 

E E a( j-l) (m®[a1 I ... Ida . I.. • Ja-] ®DP *(a^+1® • • •®ap)n) + 
jn J- J 

£ £ o(j-l)(m®[a1l...la.]®Dp_i(ai+1®...®daj® ...®a )n) + 
i-m -*• x 

£ a(p)(m®[a1l...|ai]®Dp~:L(ai+1® ...®ap)dn) =• 
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= BD*df(m®[a1i ...ia ]®n). Therefore BD* induces a map 

D*: (TorA(MfN))f-*(TorA(M,N))g. 

Furthermore BD* induces a map D*r of the corresponding 

spectral sequences such that 

D*1(m®[a1l ... iap]®n) = m0[a1i ... I ap] 0D°(l)n = 

= m®[a^l ... lap]®n. 

Thus D*^ is the identity on E^ = H(M) @B(H(A)) ̂ H(N). 

The second assertion ®f Theorem k is proved analogously, 

REMARKt Observe that D"*" must satisfy, up to signs, 

dD1 - D1d = f - g. 

Thus D1 is a chain homotopy between f and g. It is interesting 

to note that a stronger condition than just a chain homotopy 

is necessary to guarantee an isomorphism of Tor here. 

In the special case where A is a polynomial algebra, however, 

a simple chain homotopy is sufficient. The proof of this 

fact depends on an explicit calculation involving the two-

sided Koszul construction, and will be needed in III. 

See Baum and Smith [3] or III for details. 

(c). TOR: 

In Theorems 2 and k, the comparison theorems for Tor, 

it is obvious that the fact which makes the proofs go through 

is the existence of a map of differential graded modules 
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between the appropriate two-sided bar constructions. The 

following question therefore naturally arises* What are 

the most general conditions under which there exists such 

a map? 

The answer is precisely the shm theory due to Clark [8], 

Stasheff [2l][22]f and Stasheff and Halperin [23]. These 

papers, particularly Stasheff [21], will serve as basic 

references for (c). Unfortunately only Clark [8] and Stasheff 

and Halperin [22] have appeared in print. 

NOTATION* For convenience let S(n,k) denote the collection 

of all k-tuples of positive integers whose sum is n* 

S(n,k) = SU-l V I S H = n^* 

We begin with a result due to Halperin* 

THEOREM 5* Suppose A and B are differential graded 

algebras over K, and it^t^ty , is a sequence of K-module 

homomorphisms with 

f * A® •. • (n).. • ® A—>B 
n 

for each positive integer n, such that fR has degree 1-n 

for each n. Then the map 

Bf„: B(A) ~*B(B) 

defined by 

Bf,([a1i ... I a^]) = ax® ... ® a^) I... I t ̂»n-ik+l® * * * ® V 
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is a comultiplicative map. 

REMARK: In fact, the above correspondence is one-to-one. 

PROOF OF THEOREM 5: We simply observe that 

(Bf#®Bf») V([aii ...lan]) = 

= (Bf»® BfJ(£ [a^ ... Iap®[aj+1l... !an]) = 

= £ (£ £ gf, (a.® ...® a. ) 1... if* (a,, +,® ... ®a.)] ® 
x--*s<j,K r  1i J- 1i Ak J  k J  

®£ £ [fj (a, j® ••.»•,»)] = 

= v Bf#([a1l...ian]). 

NOTATION: Now regard B(A) as a differential graded 

ooalgebra over K by identifying B(A) with the oanonically 

isomorphic K®B(A)®K and imposing the differential dQ 

of the second two-sided bar construction. 

THEOREM 6: Suppose A and B are differential graded 

algebras over K, and Jf^fj.f3, is a sequence of K-module 

homomorphisms with 

fn: A®...(n)...®A~>B 

for each positive integer n, such that 

(i). fn has degree 1 - n for each n 

(ii). dfn(ax® ...®an) - £ o(i-l)fn(a1® ... ® dai® ... ® V = 

= £ o(i)[fn_1(a1® ... ®aiai+1®.-h)' ® 

- fi(a1® ... ®ai)fn_i(ai+1® ...gajj)]. 
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Then the map 

Bf#: B(A)-*B(B) 

is a differential comultiplicative map. 

DEFINITION: A sequence^ \f1?f2,fy ...] satisfying the 

conditions of Theorem 6 is called a STRONGLY HOMOTOPY 

MULTIPLICATIVE map (or simply an SHM map) from A to B. 

Sometimes, by abuse of notation, the first map f^A-vB 

is called shrn. 

REMARK: In fact the mapping \ from the set of shm 

maps from A to B into the set of differential comultiplicative 

maps from B(A) to B(B) defined by 

A({f j, f 2»f ̂ ) = 

is a one-to-one correspondence. 

WARNING: The summation on the left hand side of (ii) 

in the definition of an shm map is not fn^? again the 

discrepancy is due to exterior degree. 

REMARK: Observe that f2 must satisfy, up to signs, 

(df2 - f2d)(a1®a2) = fjUjag) - fjCa-^f^). 

Thus f2 is a chain homotopy measuring how far f1 deviates 

from being a multiplicative map. f^ is a chain homotopy 

of chain homotopies, and so on. 

REMARK: Suppose A and B are differential graded algebras 
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over K and f:A->B is a differential multiplicative map. 

Then the sequence ff,0,0,0,..,] is clearly an shm map. 

Unfortunately, even if the first term f^ of an shm map 

^fftfgtfy ...1 from A to B is a differential multiplicative 

map, it does not follow that f2 = f^ = f^ = ... =0. 

PROOF OF THEOREM 6t Pick an arbitrary element (i^» • • •»ij^) £ S(n,k 

and an arbitrary element j* ll,«..,ki . Let 0(p) denote 
p 
L i . Now note that m-1 HI 

(i). in the expression dDBf*([a1I...Ian]) 

(a). the term [f^ (a-j^ ®... ®a^ ̂  ) i ... I 

|fm^a0( j-D+l®"*® a6( j-l)+m^fi .-m^ae( j-l)+nH-l® ®a0( j ' • • •' 
J 

jfi (ae(k-l)+l®,"(2> an^ appears once for each ms{l,...fi^ , 
k 

with sign a(0(j-l)+m), arising from 

(ilt... ... ,ik) * S(n,k+1) i 

(b). the term [f^ (a^®®a0^)I...I 

ldfi.^ae( j-l)+l® •••®ae( j))i (ae(k-l)+l®',#®an^ 
J £ 

appears once, with sign o(0(j-l)), arising from (i^,...,i^)£ S(n,k); 

(ii). in the expression Bf^dD([a1|... jan]) 

(a). the term [f ̂ (a-^® 

ifi.-l(a0( • "®a0( j-l)+ma0( j-l)+m+l® ' " ®a0( jp'" *' 
J 

ifi ̂ ae(k-l)+l® •••®an^ appears once for each m til ij-1?, 
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vith sign a(e(j-l)+m), arising from 

i^» • • •»^ j—i* *3+1''# <c ^' 

(b). the term [fi^(a-L® ... ® a0^ ) i .. .1 

lfi,(ae(a-i)+i®"*® dae(j-i)+m®"-®a0( 
J 

ifi (ae(k-l)+l® • • • ® an^ appears once for each m < Jlf... #i^ { , 
k 

vith sign o(0(j-l)+m-l), arising from 

i^t • • •» i j _ 2* ®»^j+l' • •"' z S (n, k+1) • 

Nodding out by the sign a(3-l), we notice that (i) and (ii) 

cancel. Finally, d]-)Bf^([a1i ... | an]) is the sum of the 

terms (i)(a) and (i)(b) over all choices of (i1#...,ik)e S(n,k) 

and j t U,...,kif while Bf*( [a-^l ...! aR]) is the sum of 

the terms (ii)(a) and (ii)(b) over all such choices. 

This completes the proof. 

REMARK: Even normally simple operations tend to be 

somewhat subtle when dealing with shm maps. For example... 

(i). Suppose A,B, and C are differential graded 

algebras over K, : { f1,f2,f^,...} is an shm map from 

to B, and ?g1#g2.gy is ̂  shm from B to c« 

I s  must define the composition shm map 

I  §2.f & 2  ' 1'^*2 *  ̂ '3* * * *^ 

from A to C by the rule 

A (AQg^, gg t t  •  •  •  \  )0 ̂ ^2.' ̂2 9f 3' • • • ^ • 
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There are two important special cases: If {flff2,f. 1 

is an shm map from A to B and g is a differential multiplicative 

map from B to C, then we have 

Ug.0,0.0, ...1 )n s g°fn. 

If f is a differential multiplicative map from A to B 

and ?g1#g2»g^»•••\ is an shm map from B to C, then we 

have 

( ^ 2 '  § 3  =  ^ f )  •  

(ii). Suppose A,BfCf and D are differential graded 

algebras over K, J"f^,f2,f y .. ,i is an shm map from A to 

B, and ig^fg2,g^,...J is an shm map from C to D. We would 

like to define the tensor product shm map 

^fl'f2'f 3'' * 'i ® ̂ *^1'^2'§3' * * * ̂  

from A®C to B®D. We can do this, but there is an unnatural 

choice to be made. We can define the shm map 

[f1,f2,f3,...5 ®fi,0,0,0,. 

from A ®C to B® C by setting 

(!f1,f2,f3,...] ® li,oIo,o,...5)n((a1®c1)®...®(an®cn)) = 

= f ̂ ( 3- 2 ® ® 3.^ ) ® C ̂ • 

Similarly we can define the shm map 

U,0,0,0,...} ® lg1,g2,gj, •. .i 
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from B®C to B®D by setting 

( [1,0,0,0, ...] ®lgltg2,gy... 1 )n( ® (bn®cn)) = 

= br . ®gn(c1® ... ®cn). 

Finally, we can define the shm map 

? 1' ̂  2' ̂  3 • * **1 ^ • • • i 

from A ®C to B®D as the composition 

(1fltf2,f3,.. .}®?1#0P 0, 0,. ..i)°(U,0f 0, 0,. ..]®?g1#g2,g^f...? ). 

The unnaturality arises because we could just as well define 

the above tensor product shm map as the compositon 

(\l, 0,0,0, . . .}®tglfg 2tSy .. .1 )D . . .} ®\X,0,0,0, .. .} ). 

We do not believe that the two definitions above necessarily 

coincide. In any case we shall have no occasion to use 

this general form of the tensor product shm map, 

THEOREM 7: If A and B are differential graded algebras 

over K and ff^f^fy .,.} is an shm map from A to B, then 

the map Bf# induces a map 

f#s TorA(K,K)—»TorB(K,K). 

Furthermore Bf* induces a map f*r of the corresponding 

spectral sequences such that 

f*!(Eai' ... ianD = (â ) ' • • • 'f]_*(an) 1 • 

COROLLARY 8: Under the conditions of Theorem 7, if 
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:H(A)—*H(B) is an isomorphism, then so is 

f#s TorA(K,K)->TorB(K,K). 

REMARK? Theorem 7 and Corollary 8 may be regarded as 

a preview of the analogs of Theorems 2 and ^ which are to 

come. First, however, we must look at more general structures: 

DEFINITION: If A is a differential graded algebra 

over K then a LEFT STRONGLY HOMOTOPY A-MODULE M(or simply 

a left SH A-module) is a differential graded module over 

K together with a sequence 0f K-module 

homomorphisms with 

gn: A® ,. . (n). .. ® A ® M~*M 

for each positive integer n, such that 

(i), g^ has degree 1 - n for each n 

(ii), dgn(a1® ... ®an® m) 

- £ o(i-l)gn(a1® .,. ® dai® ... ®an ® «0 

= £ o(i)[gn_1(a1® ... ® aiai+1® ... ® a^® m) 

- ... ® aA • •. ® an® m))]. 

The notion of RIGHT STRONGLY HOMOTOPY A-MODULE is defined 

analagously, 

REMARK: Said differently, a sequence Jglfg2,gy ... j 

exhibits M as a left sh A-module provided the sequence 

gn: A €>. • • (n)... ® A-»Hom(MtM) 
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of adjoints is shm. 

REMARK: Observe that g0 must satisfy, up to signs, 

(dg2 - ggdHa^agOm) = g1(a1a2®n) - g1(a1® g]_(a2® n)). 

Thus g2 is a chain homotopy measuring how far deviates 

from providing the structure of a left differential module, 

g^ is a chain homotopy of chain homotopies, and so on. 

REMARK: Suppose A,M, and N are differential graded 

algebras over K, ?ff2, fy • • • is an shm map from A 

to M, and is an shm map from A to N. 

Then we can regard M as a right sh A-module and N as a 

left sh A-module by defining the sequence 

f : M® A® ® A-^M 

by the rule 

fp(m®a1® ...®ap) = mfp(a10 ... ® ap), 

and defining the sequence 

£p: A® ...(p)...® A® N^N 

by the rule 

gp(a1®... ®ap®n) = gp(ax ® ® ap)n. 

CONSTRUCTION: Now suppose that A is a differential 

graded algebra over K, M is a right sh A-module via the 

sequence \f^,f2,f^,...1 , and N is a left sh-A-module 

via the sequence{g1,g2,•••1 • We again form the complex 
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M0B( A) ® Nt this time with the natural differential dT = 

= d-j. + ds, where 

ds(m® [a1l ... Iap]®n) = 

= Z o(. ® ) (f i(m® a^ ... ®a^)® Cai+i! • • • 'ap] ®n) + 

+ Z o(i)(m®[_a^l... aiai+l' • • • ap-^ 

+ L o( f )(m®[a1I..Jai]®gp_i(ai+1® ...®ap®n)). 

ds is called the STRONGLY HOMOTOFY MODULAR (or simply the 

SHM) differential. We will call the complex 

(M®B(A)®N, dT) 

the THIRD TWO-SIDED BAR CONSTRUCTION. Observe, again, 

that the signs have been chosen so that d^ ds + dg' dj + 

+ dj-dg = 0 and hence that dT°dT = 0. The third two-sided 

bar construction thus has the structure of a differential 

graded module over K, 

DEFINITION : We define T0R^(M,N) to be the homology 

of the third two-sided bar construction: 

TORA(M,N) = H(M® B(A)® N, dT). 

REMARK: Although we believe it is possible, we do 

not yet know how to define T0RA(M,N) in greater generality. 

In particular, it would be extremely useful to be able 

to describe T0RA(M,N) in the case where A is a polynomial 

algebra in terms of some form of two-sided Koszul construction, 

as results in III will suggest. 



REMARK: Observe that if M is a right differential 

A-module via a map f:M®A-»M and N is a left differential 

A-module via a map g:A®N~*N, then the sequence f,0,0,0,...! 

exhibits M as a right sh A-module, the sequence |g,0,0,0,..,j 

exhibits N as a left sh A-modiile, and we have d^ = d^j 

thus TOR is a generalization of Tor. 

REMARK: Again filtering B(A) on external degree, the 

proof of the following analog of Theorem 1 goes over essentially 

word for word: 

THEOREM 9: Let A be a differential graded algebra 

over K, M be a right sh A-module, and N be a left sh-A-module. 

Then there exists a spectral sequence (Er, dr), which 

we will also call the EILENBERG - MOORE SPECTRAL SEQUENCE, 

such that 

(i). Er =* T0RA(M,N), 

(ii). E1 = H(M)® B(H(A))® H(N) with external differential, 

i.e., E1 is the first two-sided bar construction on H(M), 

H(A), and H(N). 

(iii). E2 = torH^A)(H(M),H(N)). 

THEOREM 10: Consider the following commutative diagrams: 

v 5 Al B >M2 

fn Sn 

V,®. „(n)... ®N Y«-W.-®YA e ... (n)... ® A 6Q- W -0fM2 ® ... (n)... ® M, 
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Suppose Alt A2, M1# M2, N1§ and N2 are differential graded 

algebras over K while {f lf f2,f y • •. } , t g2» i » 

and 5h1,h2,h^, ...} are shm maps, and a, p, Y, and 6 are 

differential multiplicative maps? thus TorA^(M1,N1), 

TORa (M1,N1), TorA (M2,N2), T0Ra (MlfN2) and T0RA (M2,N1) 
2 2 2 2 

make sense by remarks above. 

(i). The map BTOR (1,1): B^® B(A2)® ->M1® B(A1)® Nx 

defined by 

BTOR (1,1) (m ®[a, I ... la ]®n) = m ®Bg»([a1l ... Iap]) ® n 
O* & 

is a map of differential graded modules and therefore 

induces a map 

TOR (1,1)» TOR. (M, .N.)—»Tor, 
2 1 

Furthermore BT0R_ (1,1) induces a map TOR (1,1) of the 

corresponding spectral sequences such that 

TOR (1, 1)-, (m®[a, I... ia ]®n) = m®[g1*(a1)i ... ig1#(a )]®n. 
S* x * 

(ii). The map BTOR1(l,f*)i M2 ®I(A^®N2->M2® 

defined by 

STOR1(l,f»)(m®[a1l...lap]0n) = 

lm®[a1l...la.]®fp_i+1(YUi+1)® ... ® Y(ap)®n) 

is a map of differential graded modules and therefore 

induces a map 
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Furthermore BTOR^dff*) induces a map T0R^(l#f*) of the 

corresponding spectral sequences such that 

T0R1(llf#)1(m®[a1i ... Iap]®n) = m&Ca^J ... Iap]®f1#(n). 

(iii). The map BTOR-^(h#,l): Mg® BCAg) ®©B(A2) ® N2 

defined by 

BT0R1(h#tl)(m®[a11 ... Iap]®n) = 

?ohi+1(m®6(ai)® ...®6(ai))®[ai+1|... Iap]®n 

is a map of differential graded modules and therefore 

induces a map 

TOR1(h^,l): TorA (M2,N2)-»T0RA (M^Ng). 

Furthermore BTOR1(h#fl) induces a map TOR^h*,!) of the 

corresponding spectral sequences such that 

T0R1(h^,l)1(m®[a1i... iap]®n) = h1#(m)® [a^ ... 1 ap]® n. 

JROOFi The proofs that BTORg^(l,l), BTOR^l.f*), and 

BTOR1(h##l) are maps of differential graded modules are 

direct calculations* 

(i). dDBTORg (l,l)(m® [axl... iap]®n) = 

dD(m®Bg*([a1l ... |ap]) ®n) = 

t o{0) (mB(gi(a1® ... ® ai)) ® Bg*([a i+1l ••• iap])®n) + 

£ o(p)(m®Bg.([a;Ll ... lai])® a(gp_i(ai+1® ... ®ap) )n) + 



dm®BgK .( [a- jJ . . .  Iap ])® n + a(p) (m®Ig^^ I . . .  |ap ])  ® dn) + 

o(0)(m®dDBg#([a1 l , . . lap ])®n) = 

E.a(0)(m3(g i(a1® .. .® a^ ) ® Bg»([a i + 11...  lap ])® n) + 

? a(p) (m® Bg#([a1 l  . . . la^])® a(gp_i(a i+i® • • • ® a p) )n) +  

dm® Bg^C^a^l . . . Iap ])® n + o(p) (m®Bg#([a1 l  .  •.  I ap ])® dn) + 

a(0)(m ig)Bg#dD([a1 l  . . .  iap ])® n) = BTORg #( l ,  l )dT(m®[a1 l  . . .  lap ]®n). 

( i i ) .  d T B T O R 1 ( l , f * ) ( m ® [ a 1 i  . . .  i a p ] ® n )  =  

E dT(m® [a1 l  . . .  Ia i ]  ®fp . i+ i (  ><a i+i)® . . .  ® >(ap)® n)) 

£ dm®[a i l  . . .  la i ]0fp - i + 1(Y(a.+ 1)0 .. .®Y(ap)0n) + 

i £ o( j - l )  (m® [a, l . . .  Ida.l  . . .  Ia± ]  ®fp . i+ i (Y(a i + 1)® . .  .0y(a p) ® n)) + 
J- J *  

I  c(i)(m®[a i i  . . . la i ]®dfp_ i + 1(Y(a i + 1)® .  . .  ®Y Up) ® n)) + 

£ a(0)(m6(a i)® [a2 l . . .  ia1 ]®fp_ i + 1(Y(a i + 1)® .. .®Y(ap)®n)) + 

£ £ a(j)(m®[a1 i  . . .  la^a^l. . .  ia± ]  ®fp_ i + 1(Y (a i + 1) ® . .  .®Y (ap) ® n)) + 

£ i  o(j)(m®[a i l . . .  Ia i ]®f^_ i( Y(a i % 1)^ . . .  -® YCa^) ) fp . j + 1( yU j+i)® 

. . .  ® Y(ap)® n)) = £ dm®[a1 l  . . .  Ia i ]  ®fp_ i + 1( Y(a i + 1) ® • • .®Y(a p) ® +  

t i o(j- l)(ra®[a-.  I . . .  Ida. I  . . .  I a1 ]  ®fp_i+ 1( Y(a1 + 1) ® . . .  ®Y(ap) 3 n)) + 
j:o J-.J J. J ^ 

£ ? o( j- l )  (m®[a i l  . . .  ia i ]®fp_ i + 1(Y(a i + 1)® . . .  ® yU^) ® . . .® a 

Y(ap)®n)) + Eo(p)(m®[a1 |  . . .  ia i ]  ®fp_ i + 1( Y(a i + ]) ®.. .®Y(a p) 3 d n)) +  



£ a(0)(m6(a1)®[a,l...lai]®f i+1(Y(ai+1)® ...®Y(ap)®n)) + 
j.-0 

££ o(3)(m®[a1l...la.a.+1i...lai]®fp_i+1(Y(W®"'®Y(aP)® 

£ £ a(3)(m®Ca1i... laj]®* p.j.lYCa^)® ... ® YCa^a^)® ... ®Y(ap 
i--c •*" " 

+ £c(p)(m®[a1l ... la^ ®fp_i( Y(ai+1)® ... ® Y(ap-1) ® Y(ap)n)) 

BTOR1(l,f*)dD(m®[a;Li ... lap]®n). 

(iii). The proof of (iii) is completely analogous to 

the proof of (ii). 

The remainder of Theorem 10 now follows immediately. 

COROLLARY 11: Under the conditions of Theorem 10... 

If g1#iH(A2)-»H(AX) is an isomorphism, then so is 

TOR (1,1):T0Ra (M^N^To^ (M^). 
o* 2 — 

If f :H(N ) —>H(N-,) is an isomorphism, then so is 
1^* 2 1 

T0R^( 1,f*) 'TorA . 

If h1#iH(M2)—H(M1) is an isomorphism, then so is 

T0R1(h»,l)»TorA (K2.N2)-^*0RA2(MltN2). 

In the Eilenberg - Moore spectral sequence the 

induced maps T0Rff (1,1)1( TOR^l,^!, and TOR^lW.Dj. 

are isomorphisms. 

DEFINITIONi Suppose A and B are differential graded 

algebras over K and Ff ''' - an<* 

are shm maps from A to B. We say that it^.f z,ty 

(ii). 

(iii). 

PROOF: 



and ?g1,g2,g3,...1 are STRONGLY CHAIN HOMOTOPIC AS SHM 
< 0 1 2 

MAPS if there exists a sequence ;D ,D ,D , ...j of K-module 

homomorphisms with D^:K—?-B and, for each positive integer n, 

Dn: A® . . . (n) . . A-*B, 

such that 

(i). Dn has degree -n for each n. 

(ii). D° is the identity. 

(iii). dDn(a10 . ..®an) - £ s (i-l)Dn(a10 ... ®dai'^ ... 2) 

= £ a(i)Dn"1(a1® ... ® ''• ®an) * 

+ a(^Al)D1(a1® ...® ai)fn-i(ai+l® an^ 

- L a(i)gi(a1® ...® ai)Dn i(ai+10 ... ̂ an) • 

REMARK; Observe, of course, that the notion of strongly 

chain homotopic shm maps generalizes the notion of strongly 

chain homotopic multiplicative maps in the usual way. 

THEOREM 12: Suppose A, M, and N are differential graded 

algebras over K, and anc* '§i» &2' ̂3' '' * 

are shm maps from A to N, while >h^»hg.h^,...: is an shm 

map from A to M. If 12'^J''''* ^1* ̂29 "" " 

are strongly chain homotopic as shm maps, then T0R^(M,N) 

is unambiguously defined? that is, T0R^(M,N) is the same 

whether N is regarded as a left sh A-module via f or via g. 

(TORA(MfN))f^ « (TORA(M,N))g#. 

An analogous result is true for TORA(N,M): 
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(T OR A (N , M) ) f  «  ( TOR A ( N ,M) ) g ^ .  

PR OOF:  We  f o rm  M ®B(A )0N  wi th  t he  d i f f e r en t i a l  d -j.# 

o b t a ined  v i a  I f l f f 2 , fy . . . t  and  w i th  t he  d i f f e r en t i a l  

d g  ob t a ined  v i a  . .  •  ?  .  N ow  cons t ruc t  t he  m ap  

BD*:  (M <S> B (  A)  0  N,  d f  )  (MO B(A)  €>  N ,  d g ^ )  

by  s e t t i ng  

BD*(m0[a 1 l  . . .  i a  ]®n )  =  £  m®^! . . ,  l a - ^ ]®D p ~ 1 ( a i + 1 ® . . .®a p ) n .  

We c l a im  t ha t  BD*  i s  a  map  o f  d i f f e r e n t i a l  g r aded  modu le s i  

t h e  p roo f  i s  a  d i r ec t  c a l cu l a t i on :  d g  BD*(m®£a^ l  •  •  •  ( a p ]  ®n)  

Z  L  a ( 0 ) ( mh . ( a ,®  . . .  0  a . )  ® [ a . . J . . .  I a . ]  ®D p " 1 ( a i + 1 ® . . .  ®a  )n )  +  
V© •jii J  J -  J  J  

2 2 <J( j) (ra® [a^l ... la^a^^l ... I a^] ® Dp ...® ap)n) + 

2  £  u f jXn i ig i ^ i  . . .  l a^® g j_ i ( a i + 1 ® . . .  ®a . j )D p  ^ ( a^ + 1 ®  . . .  ®a p ) n )  +  

£  dm®^!  . . .  l a i ]®D p - 1 ( a i + 1 ® . .  .®a p ) n  +  

£  £  a (  j - l ) (m®[a , l  . . .  I da .  I . . .  l a . ]®D p - 1 ( a i + 1 ® . . .  ® a  )n )  +  
y.O j-.| J- J x c 

y * 
£  a ( i ) ( r a ® [ a ] L i  . . .  i a i ]®dD p " 1 ( a i + 1 ® . . .®a p ) n )  +  

2  o (p )  (m® [ a 1 i  . . .  l a ^ ]  ®D P  ^ (a^ + 1 ® . . .  ® a p ) dn )  =  

[2 2 cr( o) (mhj(a^® ... ® a^) ® [aj+1i ... I a.^® Dp_1(ai+1® ...®ap)n) + 

H  d( j ) (m®[a 1 i . . . i a j a . + 1 i . . . i a i ] ®D p - i ( a i + 1 ®. . .®a p ) n )  +  

2  dm®[a - L i  . . .  l a i ]®D p - 1 ( a i +  . .  .®a p ) n  +  
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L  i  o ( j - l ) ( m ( 8 ) [ a 1  I  . . .  I d a .  i . .  .  l a i ] ® D p " 1 ( a i + 1 ®  . . .  ® a D ) n )  +  
j "  i  J  "  

£  « ( p ) ( a ® [ a i l  . . .  i a i ] ® D p _ i ( a i + 1 ®  . . . ® a p ) d n ) ]  +  

H d K m S t a j l  . . .  i a i ] ® d D p _ 1 ( a i + 1 ®  . . . ® a p ) n )  +  

£  i o (  j ) ( m ® [ a 1 l  . . .  i a i ] ® g ^ _ i ( a i + 1 ®  . . . ® a ; j ) D p " ; i ( a ^ + 1 ® . . . ® a p ) n ) ]  =  

[ £  i  < J ( 0 ) ( m h ^ ( a 1 ®  . . .  ®  a . . )  ®  [ a j + 1 1  . . .  l a ^  ®  D p - 1 ( a i + 1 ®  . . . ® a p ) n )  +  

£  £  o ( 5 ) ( m ® [ a 1 l  . . .  i a 5 a ^ + 1 l . . . l a i ] ® D p _ 1 ( a i + 1 ® . . . ® a p ) n )  +  

£  d m ® [ a 1 l  .  . .  I  a 1 ] ®  D p - 1 ( a i + ^ ®  . . .  ®  a p ) n  +  

£  £  < J (  j - l ) ( m ®  [ a , l  . . . | d a . l . . . | a i ] ® D p - 1 ( a i + 1 ®  . . . ® a  ) n )  +  
!*•» 3-.] -1- J 

£  < 3 ( p ) ( m ® [ a 1 i  . . .  l a i ] ® D p _ 1 ( a i + 1 ®  . . . ® a p ) d n ) ]  +  

[ £  £  C (  j - i )  ( m ®  [ a ^  . . .  '  a . ]  ® D p _ 1 ( a i + 1 ®  . . .  ® d a ^ ®  . . .  ® a p ) n )  +  

£  £  0 < 3 ) ( B ® [ a i l  . . .  i a i ] ® D p - 1 " 1 ( a i + 1 ® . . .  ® a j a j + 1 ®  . . .  ® a p ) n )  +  

£  £ .  o ( p j ( m ® [ a 1 i  . . .  I  a j ]  ® D 3 - 1 ( a i + 1 ®  . . . ®  a j ) f p _ j ( a i + l ®  • • • ® a p ) n ) ]  

|  £  ̂ ( O H m h ^ a - , ®  . . . ® a ; j ) ® [ a ^ + 1 l . . . i a i ] ® D p " ; L ( a i + 1 ® . . . ® a p ) n )  +  

£  £  ° ( j ) ( m ® [ a 1 l  . . . i a j a . + 1 l  . . .  i a . ]  ® D p - 1 ( a i + 1  ® . . .  ®  a p ) n )  +  

£  £  o (  j ) ( m ® [ a 1 l  . . .  l a i ]  ® D p " 1 _ 1 ( a i + 1 ®  . . .  ®  a ; j a ; j + ; L ®  . . . ® a p ) n )  +  

£  £  0 ( p ) ( m ® [ a i l  . . . i a i ] ® D j " 1 ( a i + 1 ®  . . .  ® a . ) f p _ j ( a i + 1 ®  . . .  ®  a p ) n )  +  

£  d m ® [ a 1 l . . . l a i ] ® D p " i ( a i + 1 ®  . . . ® a p ) n  +  

£  £  ° U - l ) ( m ® [ a , i  . . . j d a . l  . . . | a i ] ® D P  ( a i + 1 ®  . . .  ® a p ) n )  +  
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2 E^cQ-l) (m® [a-jj  . .  .ia1]®Dp - J-(a i + 1® .. ,® da^® . . .  ®ap)n) + 

7 n-i a(p) (m®[a1l  . . .  I a^]<g>Dp~ (a i + 1<g) . . .  ® ap)dn) = 

BD*d„ (m®[a-,i  . . . la ]®n). Therefore BD* induces a map 

D*: (TORA(M,N)) f->(TORA(M,N))g # .  

Furthermore BD* induces a map D* r  of the corresponding 

spectral sequences such that 

D*1(m®[a1i  . . .  iap]®n) = m ®[a1l . . .  lap]®D°(l)n = 

= m®[a^l . . .  Iap]®n. 

Thus D*-^ is the identity on E1  = H(M) ® B(H(A)) ® H(N). 

The second assertion of Theorem 12 is proved analogously. 
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II. 2. THE SHM MAP FROM H*(BG;K) INTO C*(BG;K): 

For the purposes of the main theorem of this chapter 

we shall require our shm map { 6-^, ®3» • • • * from H*(BG;K) 

into C*(BG?K) to have certain very desirable properties. 

However, to begin with we shall simply sketch an existence 

proof for an shm map 02*^3* ''without any particular 

special properties. 

DEFINITION t Let A be a differential graded algebra over 

K and A denote its multiplication. A is said to be STRONGLY 

HOMOTOPY COMMUTATIVE (or simply SHC) if A = A-j_ is the first 

term of a sequence JA^ A£, A3,...} of K-module homomorphisms 

with 

A n« A ® . . . (2n). . . ® A~»A 

for each positive integer n, such that 

(i). A n has degree 1-n for each n. 

(ii). If we denote by ci the element a^®^* A^A, for 

each i = 1 n, then (d^n + A^Kc^ ... <S>cn) 

= Z (-l)x( A n_1(c1® • • -® °ici+x® ••• ®CI1) 
in 

- A i(c1® ...® ci) A n«i^ci+i® ' • • ®cn))• 

WARNING: We are nearly saying that A = A ̂  is the first 

term of an shm map 1.A A ̂ , A 3,... \ from A® A into A, 

but not quite; the discrepency is, as usual, in the signs. 

REMARK: Consider the cochains C*(X;K) of a topological 
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space. Recall that C*(X?K) is a differential graded algebra 

over K with multiplication given by u-product 

CM C*(X?K)®C*(X;K) ~»C* (X ?K). 

Recall also that there exists a 1-product 

Uxs C*(XjK)® C*(XjK) —KJ* (X;K) 

which makes our u -product homotopy commutative, i.e., 

(i). uj has degree -1. 

(ii). dfaujb) = ab - (-l)De£(a)Deg(b)ba - daw jb 

- (-l)Deg(a)aw1db. 

(iii). (abw.O - (-l)Deg(a)a(bw1c) + (-l)Des(b|Beg(cl(a, xc)b 

(iii) is known as the HIRSCH FORMULA. It is interesting 

to note that no such anaolog of (iii) exists for (au^bc), 

The following theorem is based on work of Dold [9]'• 

THEOREM 1: If X is a topological space then C*(X?K) 

is she. 

SKETCH OF PROOF: We agree that AT = u :C*(X |K) <2> C*(X?K) » 

C*(XjK) shall be the first map of the sequence. Construct 

A 2s C*(X?K)® ...(4)...®C*(XiK)~*C*(X;K) 

by setting 

A 2^al® ̂ 1® a2® ̂M1) ai^i °la2^2* 

This is justified because (dA g + A 
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= (-l)Dee(al)da1(b1o1a2)t>2 + (-l)2Deg(al)a1b1a2b2 

_ (_1)2Deg(a1)+Deg(b1)Deg(a2)aia2bib2 _ 

. (_i)2DeS(ai)+Des(bi^a1(b1 vj.jda2)b2 + 

( j 2Deg (ai) +Deg( a2 )+Deg( bx) -1^ ̂  ̂) ̂ + 

(-l)Des^al^+1da1(b1 ̂  ia2)b2 + (-l)2DeS(al)a-1(<ib1w1a2)b2 + 

(_1)2Deg(a1)+Deg(b1)ai(biWida2)b2 + 

(_1)2Deg(ai)+Deg(a2)+Deg(b1)a^(bi ̂ ^agjdbg = a-jb-^bg 

- (-l)De«{a2)+De«(bl)a1a2b1b2 = A1(C1)A1(o2) - A^o^). 

Now the main theorem in Dold £9] may stated: 

Hom(C*(X jK)® ..•(n)...® C*(X jK), C*(X*...(n)...*X|K)) 

is acyclic. Using this fact and the strict symmetry of 

the topological diagonal, we construct the higher maps 

Ao» A|^»A y {  

To construct the map A consider the map 

Vji C*(XfK)® ...(6)...®0*(X|K)-*C*(X,K) 

defined by 

v3(c1®c20c3) =a1(C1) A 2(c2®c3) - A2(c1c2®c3) 

- A2(c1® c2) a 1(c3) + A2(c1®c2c3). 

iConsidering the figure 
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A2(C1® CgjA^Cj) 

Al(°lc2^^03^ \ 

A2(C1C2® °3) 

A j^( cic2°3^ 

A1(ci)A2(c2.i0 Cj) 

^l( c2c3) 

^2(cl®^2^3^ 

We thus observe that is a cycle? hence is a boundary! 

that is, there exists 

A .C*(X»K)© ,. . (6)... ® C*(X|K)->C*(X|K) 

such that 

(i). A ̂  has degree -2 

(ii). (dA ̂  + A3d)(c1© c2® c^) = ® c2® c^), as 

desired. 

To construct the map A^» consider the map 

V , ,c* (X (K) ® ...(8)...®C*(X|K)-C*(X|K) 
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defined by 

Vif(c1® c2® c^) = A1(c1) A ̂ (c2® c^© c^) - A^(c1c2© c^0 c^) 

- A2(ci© c2) A 2 ĉ3® + A3 Ĉ1® C2C3'^ C4^ 

+ A^Ccj© c2® Cj) A-j_( c^) - A^( c^3 c20 c^c^) 

Considering the figure 

a1 ĉ1c2 Â1 ĉ3^ 1 ĉ4^ 

Aj^(c^C2) 2(C^0C^) 

A j ( c ^ c 2 )  A ^ ( )  

A  2 ^ ° 3 C 4 ^  
A^( c 2®C2 )Ag (c^jDc^) 

Ag( 

\ A^ ( ® )^2. ̂c 2 ̂A2 ̂ ̂  3 Ĉ4 ̂ 
\ AX^ ̂]_)Aj( ̂ 2)Aj( c^)A^( C^) 

\ \ 

a2 ̂ cIc2®c3c4^ 

Â ( cic2c3ci^) 

7> 
•  «••• —  -  — 

A^( C^)a^( c2 â1^ ®3®Zf^ 

.^-—2. ( C ) A £ ( ® 20^ 3 ̂ A1 ̂ *4^ 
7^(c1) 2̂(ĉ S»c3cZ|.) 

^1(c1)a3(c2S>c3®c4) 

AJ_( ĉ ) Aj_( c2c3)A1( clf,) 

^ 1 ̂ A2 ̂ ̂  2 ̂ 3®°^ ̂ 

77 
/ ,  

/ A]/ ci)A^( c2c-^C^) 

A2^ c1®c2c3°4^ 
A^(cjS)C^C^C^) 
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We thus observe that is a cycle? hence is a boundary* 

That is, there exists 

A^:C*(X?K)® . . .(8) . . . ®C*(X?K) ->C*(X?K) 

such that 

(i). A ̂  has degree -3 

(ii). (dA ̂  + A i+d)(c1®c2® c^® c^) = V^(c1® c2® cy® c^), 

as desired. 

Continuing in this manner, we construct all the higher 

A n's. 

THE0REM_2: Suppose H*(X?K) = P[x^,...,xn] is a polynomial 

algebra. Then there exists an shm map 

from H*(X?K) into C*(X?K) such that 0^ induces the identity 

in homology. 

PROOF» Write H*(X;K) = P^, ... ,xn] « P[x1]© ..P[xn], 

Now for each generator x^, i = l,...,n, of H*(X?K)f choose 

an arbitrary representative cocycle u^*C*(X;K). Define 

a multiplicative map 

P[xi]->C*(X?K) 

by setting X^(x^) = u^ and extending multiplicatively. (This 

makes good sense because P[x^] is commutative.) Then, forming 

the tensor product we have a multiplicative map 

X-L® . . Xn* H*(X?K) ->C*(X;K) © . .. (n). ..® C*(X;K) 
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Next, let 1 aJ, Ag. A^,...} denote the (up to sign) shm map 

from C*(X|K)® ...(n)...®C*(X|K)->C*(X|K) defined inductively 

(1). A*. AJ, = $1,0,0,0,...} ( 

(2). A3,...} = lAlt A2, A3,...l 1 

and, having defined ?a"-1,A g"1, A j"1,... I , define 

(n). }a", AJ, a", ...} = 

= iA^,A2>A2,,--}°(iA^^,^2 • ̂  2 »»««}®h,0,0,0,...j). 

At this point there are still sign problems. However the 

composition 

10I»^2»^3',#'^ = ' X-l® . .ln, 0, 0, 0, . . .]•• JAj# A 2t Ay . . 

is indeed an shm map from H*(XfK) = P[x^,...fxn] into C*(X»K): 

The sign discrepancy arising from And disappears, since 

H*(X;K) has 0 differential. The sign discrepency arising 

from apparant difference between (-1)1 and c(i) is non-existant 

as well, since all elements in a polynomial algebra P^x-^, •. •, x^] 

have even degree unless the characteristic of K is 2 — in 

which case all signs are irrelevant. 

Furthermore j2f^(x^) = u^ for each i = l,...,nj Hence 

induces the indentity in homology. 

REMARK: We observe that another example of an she algebra 

is C*(ftXiK), the chains on the loops of an H-space X. For 

details see Clark [8]. 
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REMARKi We now come to a very important theorem. We 

shall describe an inductive algorithm for computing the terms 

of an shm map [ 0^, 02, 0^, .. J from H*(BG|K) into C*(BG?K) 
with nice properties. The proof will be, of course, an 

inductive argument as well, and we shall present the first 

several steps of this induction in addition to the general 

inductive step. We apologize in advance for being so wordyj 

our excuse is that the arguments involved will become clearer 

and more natural. 

THEOREM 31 Suppose H*(X|K) = P[x1,...,xn] is a polynomial 

algebra. Then there exists an shm map 

t ®1> *''*" 

from H*UlK) into C*(X»K), written in terms of w- and u±-

products, such that 0-^ induces the identity in homology. 

PROOF: We note first that in writing our inductive algorithm 

for le1#e2,e3,...1 it will always be the case that the 

right hand side of any ^-product which appears will be 

a single representative cocycle of P[x^,..., xn]. In particular 

it will have even degree unless the characteristic of K is 

2 *— in which case all signs are again irrelevant. Thus 

the formulas for -products are somewhat simplified. 

We have 

(ii)'. d(av^1b) = ab - ba - da u-jb. 

(iii) •. (abuxc) = (-l)Deg(a)a(bUjC) + (au^b, 

INDUCTIVE ALGORITHM: To define 01:P[x1,...,xn] ̂C^(XfK) i 
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we proceed in the usual ways For each generator x^, i = l,...,n, 

of H*(X;K), choose an arbitrary representative coeycle u^* 

C*(X|K), Now for each monomial define 

e1(x®1 . . .x£") =u®'... C 

Finally, extend linearly to all of H*(XfK). (One observes 

that Q1 induces the identity in homology, since ©^(x-^) = u^, 

i 1,.•.,n.) 

Next, assume we have written •••»en_i in "terms of 

^ - and ^-products. To define 

ens H* (X |K)® ...(m)...®H*(X|K)->C*(X|K) 

we define first 

e (A,® ...0 Aw ,®x) m 1 m--L 

where A,, . ,, ,A , are monomials in H*(X;K) and x = x. is 
1 m-1 i 

a generator of H*(X>K)j For each j = l,...,m-l, write 

Aa = Bo co' 

where B. = x?'1 .. .x?* consists of all elements of A. with 
J J. l J 

indices Si, and consists of all elements 

of A. with indices > i. Now set 
J 

em(Ai® ''' ®Aa-i®x) = ®ia-l{Al® •••®An-2®Bm-l)^(Cn-l)wlu^ 

" 6a-2^Al® ''' ®Am-3 ®Bm-2Bm-l^92^Cm-2 ®Cn-l^ ̂ l"-' 

+ effi_3(Al® • • • ®AB_4® Bm-3Bm-2Bm-l)[e3(Ca-3 ®Cm-2® Cn-1) u lu^ 
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- ... ± e1(B1. . .Bm_1)[0m<_1(C10 .. Cm->1) uxu] = 

f ( . . .  ®  A . ^ ®  B . . .  6 ^ ( 0 . ®  . . .  ®  C ^ )  U ^ ] .  

Now to define ^(A^® ...® Am_i® Am)» where Am = xi'''#xn^ 

is a monomial in H*(X|K), we use the above rule and set 

emUi® ...®ab_i®Ab) = + 

VA1® • • • ® Am-2® Am-lxl® xl^ul *" ,un" + 

0m(A1® ...®AB_2®Am_1xf®x1)uf«1..u»« + ... * 

VA1® • • *® Am-2 ®Am-lxl" * *xn' 3 xn' = 

VA1® ® Am-2 ® Am-lxl ' * ,Xi 1 ®xi)ul •••un * 

Finally,extend linearly to all of H*(XjK)® .,.(m),.,0 H*(X;K), 

NOTATION i To justify our definition of Gm(A]_® • • • ® Am_i® x) 

we must show, inductively, that dem(Ai® • • • ®Am-1® aSrees 

with the appropriate version of the right-hand side of the 

definition of shm. 

To help our exposition we shall write d0m(A^0 . ..®Am_^®x) 

as the sum of eight components 

I + II + III + IV + V + VI + VII + VIII, 

where 

(1). I consists of all elements of the form 

e^(Ax0 ...^A.lO.^fA.^ ...® 

(Cj® . . i (B> Cm_T ) U 1U]' 



6o 

(2). II consists of all elements of the form 

0i-l(Al® ...® aJaj+I® ...®Ai.1®Bi...Bm-1). 

Cm-1^ Ulu-^ 

(3). Ill consists of all elements of the form 

®i-l(Al® ' • *® Ai-2® Ai-lBi"' ' 

(4). IV consists of all elements of the form 

e1.(A1® ... .. B[n_1) Vi(Ci® • * • ® cm-l)u> 

(5). V consists of all elements of the form 

ei(A1® .. .© Ai_1® Bj_- • •Bm_i)*em_i(ci® • • • ® Vi) • 

(6), VI consists of all elements of the form 

ejU]® ...® Ai_1® 

(7). VII consists of all elements of the form 

ei(A1© ... ®ci+j-l)^luJ-

(8). VIII consist of all elements of the form 

0i(A1® ...® Ai_1® Bi.. •Bm_1) s 



We shall write the other side, in turn, as the sum 

of four components 

i + ii + iii + iv, 

where 

(1). i consists of all elements of the form 

®m-l(A1 ® •' • ® AkAk+l ® • * • ® Am-1® x) 1 

(2). ii consists of all elements of the form 

ek(Al@ ... ® Ak) em_k(Ak+1® ... ® a^X) . 

(3). iii consists of all elements of the form 

®m-l(Al® •••®Am-2®Am-Xx)-

(^). iv consists of all elements of the form 

em-l(Al®'--®Am-l)u-

With this in mind, the general plan of attack is to 

prove.., 

I = ii. 

II + VIII = i. 

Ill + VI = 0. 

IV = iv. 

V + VII = iii. 
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In addition, we remark that we shall find it useful 

to prove, for each m, the general fact (called "Fact #m")that 

em(A1® ...®Am) = £ e^® ... ®A1_1®Bi...Bm)em_1+1(ci® ...®Cm). 

So with all the above in mind, we proceed as follows: 

CASE OF 60 GIVEN 0-^ Observe first that Fact #1 is 

trivial: 

e1(A1) = e1(B1)e1(c1). 

Now we justify the definition of ®2^1® x) • • • 

We have 

I = 0. 

II = 0. 

III = 0. 

IV = +01(B1)01(C1)u. 

V = -01(B1)u01(C1). 

VI = 0. 

VII = 0. 

VIII = 0. 

We also have 

i = 0. 



ii  = 0. 

i i i  = -8 (Ajx). 

iv = +01(A1)u. 

Now we check 

I  = i i :  Nothing to prove. 

II + VIII = i :  Nothing to prove. 

III + VI = 0: Nothing to prove. 

IV = ivj This is fact #1: ©^(B^)0^(C^)u = 0^(Aj)u. 

V + VII = i i i :  This is fact #1 applied to A -jX = (B^xJC 

e1(B1)ue1(c1) = 01(B1x)e1(c1) = e 1(A1x). 

Next we justify the definiton of OgCA^G&Ag).. .  

First decompose A2  into any product 

A = A*A** 
2 2 2 ' 

such that the indices of all  elements of AJ are ^ the 

indices of all  elements of A|*. 

Now notice that OgU^Ag) must satisfy 

de2(A1^A2) = e 1(A1 ) e 1(A2) -  e1(A1A2).  

On the other hand 02(A^® A|) ®i(A|*) + 02(A-^A^®A|* 

must satisfy 



d[e2(A1@A|)ei(A|*) + 6g(A^A|®A|*) ] = [6.^) e^A*) e^A**) 

- e1(A1A*)e1(A|*)] + [e1(A1A|)01(A|») - e-^A^Ai!*)] = 

e1(A1)01(A2) - SjUjAg). 

Notice that the right hand sides of the above equations 

are equal. There is a certain amount of subtlety involved 

in what follows-. By virtue of the above equality we are 

justified in defining 

e2(A1^A2) = e2(A1^x^...x^) = e2(A10x1)uf.,.^' + 

+ e2(A1x1® x^1"'.. .x^1) f 

except that we have not yet defined the last term. However, 

by exact repitition of the above argument we are justified 

in defining 

62(A1X1® xl' • #xti} = e2(A1x1®x1)uf...u^ + 

+ 02(A1x^x1'. .xn), 

except that we have not yet defined the last term. Continuing 

in this manner, we are ultimately left with the problem 

of defining OgUjxf ...x£®xn). But this is, of course, 

no problem at all. This justifies the definition:. 

e2(A1®A2) = £^ e2(A1x»' 

We also observe that now by definition we have 

62(A1®A2) = e2(A1®A|)e1(Aj*) + e^A^jSAi*) , 
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since both sides are equal to the double summation above. 

In particular, this implies that 

e2(A1®A2) = e2(A1® B2)e1(c2) + e2(A1B2®c2), 

which is a first step towards proving Fact #2. 

CASE OF GIVEN 6^6^ In order to complete the proof 

of Fact #2, we first note that 

02(A10C2) = ei(Bi)e2(Cl®C2) 

is obvious. Second, applying this to A-^B2 (= (3^B2)C-^ ) 

and C2, we obtain 

egUjBgSCg) = e^BjBpe^c^cp. 

Adding this to the last result of the previous case (Case e2) 

we obtain 

e 2 ( A 1 ®A 2 )  =  02 ^®  B ^ e ^ Cg)  +  e 1 (B 1 B 2 ) e 2 ( c 1 ® c 2 ) ,  

which is Fact #2. 

Now we justify the definition of O^(A^S) A2 ® x)... 

We have 

i  =  +  e 1(A1 ) e 1 (B 2)[e1 ( c 2 ) o 1 u ] .  

II = 0. 

HI = - e1(A1B2)[e1(c2)O1u], 

iv = - 62(A1® B2)01(C2)U - e1(B1B2)e2(c1® c2)u. 



v  =  +  B g U j ®  B g M ^ C g )  + e1 ( B 1 B 2 ) u e 2(c1®c2), 

v i  =  +  e 1(B1B 2 ) e 1 ( c 1 ) [ e 1 ( c 2)W x u ] ,  

v n  =  +  e 1 (B 1 B 2 ) [ e 1 ( c 1 )W j u j e ^ C g ) .  

VIII = - e1(B1B2)[e1(c1c2)UJU]. 

W e  a l s o  h a v e  

i  =  -  G 2 ' A 1 A 2 ®  '  

i i  =  +  e 1 ( A 1 ) 0 2 ( A 2 ®  x ) .  

i i i  =  +  e 2 ^ A l ®  A 2 x ^  '  

i v  =  -  6 2 ( A -L0 A2)U. 

N o w  w e  c h e c k  

I  =  i i :  T h i s  i s  b y  d e f i n i t i o n *  6 1 ( A 1 )  0 - L (  B j )  [  C 2 )  u  x u ]  

6 1 ^ A 1 ^  9 2 ^ A 2 ®  x ^  *  

I I  +  V I I I  =  i :  T h i s  i s  b y  d e f i n i t i o n :  

e 1 ( B 1 B 2 ) [ e 1 ( c 1 c 2 ) ^ 1 u ]  =  e g U j A ^ x ) .  

III + VI = 0: This is fact #1 applied to A-jBg (= (BJB2)C^)I 

e l(B1B2)01(C1 ) [e l(C2)u1u] -  e 1 (A 1 B2)[61 (c 2 )u  J_u] = 

[e1 (B 1 B2)61(c1) - e1(A1B2 ) ] [e1(c2)u1U] = 0. 

IV = ivs This is fact #2: 62(A1® B2) 8^(C2)u 
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+ e1(B1B2)e2 (c 1 ®c2)U = 02(A.,®A2)U. 

V + VII = iil: This is fact #2 applied to k± and AgX (= (B2x)C2> 

EGUJ® B2)U6]L(C2) + E1(B1B2)U02(c1®c2) + 01(B1B2)[01(c1)W]U]e;IP2) 

= ©GU-,® B2)U01(C2) + ©GCBJBGCJ® X)61{CZ) + 

01(B1(B2x))02(C1®G2) = ©GCA^ B2)U01(C2) + 02(A1B2®x) ©3^(02) + 

01(BL(B2X))E2(CI® C2) = 02U10B2x)01(C2) + 

0l(Bl(B2x))e2(Cl®C2) = ®2(Ai®A2x)' 

Next we justify the definition of 0^(A^® A2®A^) 

First decompose into any product 

A = A*A** ^ ̂  * 

such that the indices of all elements of are the 

indices of all elements of A^*. 

Now notice that 03(A-^® A2®A3) must satisfy 

d0^(A-^® A^® A^) = 01(A1)02(A2®A3) - 02(A-lA2®A3) 

- 02(Ax® A2) 0jl(A3) + 02(A1®A2A3). 

On the other hand e^A^® A2® A*) + e3(Aj® A£A* S>A**) 

must satisfy 

D[03(A1® A2®A*)01(A«) + 03(AX® A2A*®A^*)] = 

[01(A1) 02(A2®A|) 01(a*»)-02(a1a2® A^) ©^A**) 
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- e2(A1®A2)e1(A*)e1(A**) + e-jU-j,® A^'jejU^*)] + 

[e1(A1)e2(A2A*®A^) - 92(A1A2A*®A^*) - e^®A^)d^Ay) + 

BgUj® AgA^A^*)] = [ei(A1)62(A2® A^)61(A^») + 61(A1) 62(A2A^® A^*) 

- [e2(A1A2® A*)e1(A*») + e2(A1A2A5®A5')] - e2(A1®A2)^A5)eL(A*») 

+ e2(A1® A2A*A**) = e1(A1)92(A2®A^*) - e2(A1A2®A5A3*) 

- BgUj® A2)ei(A*A^) + 62(A1®A2A3) = ^(A^ 62(A2® A3) 

- e2(A1A2®A3) - e2(Ax® A2)el(A3) + a2(A1 ® A 2A3). 

Notice, again, that the right hand sides of the above 

equations are equal. So we play the same game as in the 

previous case (Case 62)s By virtue of the above equality 

we are justified in defining 

03(A1®A2®A3) = e3(Ax® A2®x![:, ,.X^) = OjfA^ A2® x1)u^' + 

+ 0^(A^® ̂ 2X1 ̂ xl* * * ,xn^ ' 

except that we have not yet defined the last term. However, 

by exact repitition of the above argument we are justified 

in defining 

e^A-^ A2xx® . .x^) = O^A-j® A2Xx® • • • un* 

+ e3(A1® A2x^®X^2...X^), 

except that we have not yet defined the last term. Continuing 

in this manner, we are ultimately left with the problem 

of defining e^A^ A2xj*.. .x£-1® xR). But this is, of course, 
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no problem at all. This justifies the definition 

6 (Aj® A2® A3) = Is 03(A1® kzx\ ®Xi)u| ...u£ . 

We also observe that now by definition we have 

e3(A1®A2®A3) = 03(A1®A2®A*)61(A**) + 63(A1® A2A*®A*»), 

since both sides are equal to the double summation above. 

In particular, this implies that 

e3(Ax®A2®A3) = 03(Ax® A2®B3)61(C3) + 03(A1®A2B3®C3)f 

which is a first step towards proving Fact #3. 

CASE OF 0,, GIVEN In order to complete the 

proof of Fact #3, we first note that 

e3(A1®A2®c3) = ® 2 (a x ® b2) 02(c2® Oj) + e 1 (B 1 B 2 )03(c1®c2®c3). 

To see this, we first consider a special case... 

03(A1®A2®y) = 02(A1® B2)02(C2®y) + e1(B1B2)03(c1® C2®y), 

where, in our notation, y = x. is a generator of H*(XSK) 

of index greater than the index of x (e.g., y Now 

write 

c i =  D i E i '  

C2 = D2E2' 

where, for each k = 1.2, consists of all elements of 

Ck with indices £ j, and Ek consists of all elements of 
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Ck with indices > j. We have 

63(A1®A2®y) = 03(B1D1E1® B2D2E2®y) = 62(A1® BgDg) ujV] 

* ei(BlDlB2D2)te2(El®E2)^XV^ = e2(Al®B2)0l(D2)t6l(E2)Oiv] + 

e2(Ai^2®D2)[6;L(E2)^;LV> 01(B1B2)01(D1D2)[e2(E1®E2) uxv] = 

«2(A1® B2)e2(c2® y) + e1(B1B2)e2(c1®D2) [e^EgJujV] 

- e1(B1B2)e1(D1D2)[e2(E1®E2)o1v] = e2(A1®B2)e2(c2®y) + 

6l(BlB2)e2(CX®C2® y)' 

as desired. By repeated application of this we now have 

03(A1®A2®C 3) = O3(a1®a2® = 

Y>3(AI® A2XI+I' • 

jlifXe2(Al®B2)e2(C2xi+l,,"Xp ®XP)UP '"n'4" 

01(BlB2) ©3(0^ c2xf;^.. .x*"1® xp)uj>l..»&] = 

e2(A1®B2)[|ll|»2(c2xiV1.. .x^-1® xp)uj>;.jift] + 

0 i (B1B 2) lpE ,1,63 (o 1 ® G 2X i+i • • •x^1®*p>u^---4r] = 

e2(Al® B2)e2(c2®c3) + ®1(b1b2)03(c1® c2© c3), 

as desired. Applying this fact to A^» •^2^3.-^"" 

and 0y we obtain 

03(A1® A2B3® c3) = 02(AX® B2B3)02(C2®C3) + 01(B1B2B3) 03(0^̂ 3), 

Adding this to the last result of the previous case (Case 03) 
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we obtain 

e3 (A 1 ®A 2 ®A 3 )  =  e3(A1 ®A 2 ® + 

+ e2 (A1®B 2B3 )02(c2®c3) + e1(B1B2B3)e3(c1®c2®c3),  

which is Fact #3. 

Now we justify the definition of 0^(A^® Ag® x) • •, 

We have 

i  = + e1(A1)62(A2® B3)[e1(c3)w1u] -  OgCA^ A2)e1(B3)[e1(c3)^1u] 

-  e1(A1)e1(B2B3)[e2(c2®c3) wxu]. 

N = -  e2(A1A2®B 3)[e1(c3) UJU],  

I I I  =+ 0 2 (A 1 ® A 2 B 3 ) [0 1 (C 3 )  W X U] + 0 1 (A 1 B 2 B 3 ) [0 2 (C 2 ®C 3 )U1«1. 

IV =+0 3 (A 1 ® A 2 ®B 3 )  0 1 (C 1 )U + 0 2 (A 1 ® B 2 B 3 )0 2 (C 2 ®C 3 )U + 

E X(B 1 B 2 B 3 )  0 3 (C 1 <2)  C 2 ® CJ)U. 

V = -  0 3 (A 1 ® A 2 ® B 3 ) u 0 1 (C 3 )  -  0 2 (A 1 ® B 2 B 3 ) u 0 2 (C 2 ® C j )  

-  6 1 (B 1 B 2 B 3 )U0 3 (C 1 ® C 2 ® C 3 ) .  

vi = -  02(A1 ®B2B3)01(G2) | ;01(C3 )U 1 U] 

-  0 1 (B 1 B 2 B 3 )  0 1 (C 1 ) [0 2 (C 2 ® C^UJU] 

- ©^BjBgBj) ©2(0^ u xu]. 

VII  = -  0 2 ( A1 ®B 2 B 3 ) [ 0 1 (C 2 )  



72 

- e1(B1B2B3)[e1(c1)u1u]e2(c2®c3) 

«f 6-j^( B^BgB3) £ 02(C^® C2) u 3) • 

VIII = + OgUj® B 2B3)[e l(C2C3) + E 1 (B 1B 2B 3 ) [E2(c1c2®c3)o 1U] 

- e 1 (B 1B 2B3)[e2(c1®c2c 3 )U 1U].  

We also have 

i  = .  e3(A1A2® a3® x) + e3(A1® a2a3® x). 

i i  =+ ®^(A]_) ®3(A2® A3® x) -  92(a^® a2) ©2(a3® x). 

i i i  = -  e3(A1® A2® Aye). 

iv = + ©3(A1® A2®A3)u, 

Now we check 

I  = i i :  This is by definition: 0^(A-^) 02(A2© B3)[0^(^3)iu^ 

- e 2 (A 1®A 2 )6 1 (B3)[e1(c 3 ) W 1u] -  e 1 (A1)e 1 (B 2B3)[e2(c2®c3)o 1U] 

= [0 1 (A1)e 2 (A 2®B 3 ) [0 1 (C 3 )U1u]- 0 1 (A 1 )0 1 (B 2B 3 ) [0 2 (C 2®C 3 )W 1U]] 

- 62(ax® ag) © 2 (A 3® x) = 0 1 (A 1 )0 3 (A 2® A3 ® x )  -  0 2 (A 1® A 2 )0 3 (A 3® 

II + VIII = i :  This is by definition: 

-  02(a1a2®b3)[01(c3)u ju] + 02(A1®B2B3)[01(C2C3)w1u] 

+ e 1 (B 1B 2B3)[e2(c1c2®c3)w xu] -  0 1 (B 1B 2B3)[02(C10C2C3) u 1 U] 

-  [0 2 (A 1A 2® B 3 ) [0 1 (C 3)^ 1 u ]  -  EL (B 1B 2B 3 ) [0 2 (C 1C 2® C 3 )U 3_U]]  +  
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[[egtA^® BgB^) [fi^CCgCj) w iu] -  w  1UJ-I 

= -  e3(AjA2® A3® x) + ®3(A^® AgA3® X) ,  

III + VI = Ot This is Fact #1 applied to A-jBgBj ( = (B-jBgBjjG^) 

and Fact #2 applied to A^ and AgB3  (=(B2B3)C2)i  

+ ezUj® A2B3)[e1(c3)o1u] + e1(A1B2B3)[e2(c2®c3)o1u] 

-  02(A1® B2B3)61(C2)[61(C3)u1U] 

-  01(B1B2B3)e1(c1)[e2(c2 ® c 3 ) u 1u] 

-  e1(B1B2B3) e2(c1® c2)[e1(c3)u xu] = 

[02(A1®A2B3) -  e2(A1® BgBjJOj^CCg) -  01(B1B2B3)02(C1®C2)]" 

• C®i(C3) U lu] + 

[01(A1B2B3) -  01(B1B2B3)01(C1)Ie2(C2® C3)oxu] = 0+0 = 0. 

IV = ivs This is Fact #3s 03(AJ® A2  ®B3) 8j_(cpu + 

02(A1®B2B3) 02(C2®C3)u + 01(B1B2B3)03(C1® C2® C3)u = 

A2® A^)U. 

V + VII = i i i :  This is Fact #3 applied to A^ f  k^ t  and 

A^x (« (B^x)C^): 

e3(A1®A2®B3)u01(C3) + 02(A1® B2B3)u02(C2® C3) + 

01(B1B2B3)u03(C1® C2® Cj) + 02(A1® B2B3)[01(C2)u 1u]01(C3) + 

01(B1B2B3)[O1(C1)u1tt]e2(C2®C3) + 
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-eL (B 1B 2B3)[0 2 (C 1® C 2 )U1u]eL (C 3 )  = e^A^ A2® B 3)u61(C 3 )  + 

[e2(A 1®B 2B3)[e1(c2)^1u] + e 1 (B 1B 2B3)[e2(c1®c2)  ̂ 1u]]e1(c3) + 

01(A 1®B 2B3)u9 2 (C 2®C 3 )  + 0 1 (B 1B 2B3)Ce I (C 1 )U  ̂ 102(02® C 3 )  + 

e I (B 1B2B3)ue 3 (C 1® C2® C3) = [03(A1® A2® B 3)u *• 

63(a1® A2B3®x)]e1(c3) + [egUj® b2b3)u + 62(a1b2b3® x)]e2(c2®c3) 

+ e1 (B 1B 2 (B3x))e3(c1® c2®c3) = S JCA J® A2® b3x)61(c3) + 

e2(A1® B 2 (B 3X) ) 02(C2® Cj) + e1(B1B2 (B3x))e3(c1® c2®c3) = 

en(A1® A2® kjx.).  

Next we justify the definition of 6^(A-^® A2® A3® A^). 

First decompose into any product 

H =  W' 
such that the indices of all elements of are ^ the 

indices of all elements of A]**. 
Now notice that 0^(A^® A2® A3® Aj^) must satisfy 

dQ^Aj® A2® A^® A^) = 01(A1)e^(A2® A A^) - O^AjAg® A^) 

-  e2(A1® A2) 02(A3® A^) + 03(Ax® AgA^g) A^) + O^A-j® A2  ® A3) e 1(AZ f) 

- ©3(A1® A2® A^). 

On the other hand 0^(A^® A2® Ay3 AjJ) ©^(AJJ*) + 

+ e^A-^ A2® A3A$®A$*) must satisfy 
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dLV Ai® a2® A3® + eif(A1®A2®A3A5®Ar2 = 

[e-jU^OjUglSAj® AjJOjUfl*) - 93(A1A2® A3®A5)e1(A^*) 

- e2(A1® A2)e2(A3® A^)E1(A5*) + E3(A1® A2A3® AJ^CAJ*) + 

6 3(A 1®A 2® A 3)e 1(A5)e 1(A5*) - 9 3(AJ® A 2® Ay^^uj*)] + 

[eL(A1)93(A2® A3AJJ®A5*) - 93(A1A2®A3A5®A5*) 

- 92(A1®A2)92(A3A5®A^) + 93(A1®A2A3AJ»A5«) + 

93(A1® A2® A3A^)91(A5*) - 93(A1® AgOAy^AI'H = 

[91(A1)93(A2®A3® A5)9X(A5*) + 01(A1)03(A2® A3AJ®A5*)] 

- [93(A1A2®A3®A5)01(A5») + 03(A1A2®A3A5®A5*)] 

- [92(A1®A2)92(A3® A^)91(A5*) + 02(A1®A2)92(A3A|®A5*)] + 

[03(A1® A2A3® AJJ)01(A5») + 93(A1® A2A3A5®AJ*)] + 

e3(A1®A2® A3)01(A5)91(A5*) - 03(A1® A2@ A3AJA5*) = 

91(A1)03(A2® A3® A$A£*) - 93(A1A2®A3®A5A5») 

- 92(A1® A2)92(A3®A$A$») + 03(AX® AgAj® AJAJ*) + 

93(A1®A2® k^Q^k^) - 03(A1® A2®A3Ai).) = 

ei^Al^ 03<A2® A3® A^ ~ e3(A1A2®A3®A,) " e2(Aj® A2)92(A3® Ajj) + 

93(A1® A2A3® A^) + 93(A1® A2®A3)91(ALF,) - 93(AX® A2® KJA^). 

Notice, once again, that the right hand sides of the above 

equations are equal. So we play the same game as in the 
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previous cases; By virtue of the above equality we are 

justified in defining 

ei+(A1®A2® A3® A^) = e^(A1®A2® A3<g)x|.. ,x&0 = 

G^A-^® A2® A3® x^)u^' .. .uPp + 6^(A^® A2® A^Xj® ...x^--), 

except that we have not yet defined the last term. However, 

by exact repitition of the above argument we are justified 

in defining 

e^CAj® A2® A3xx® X^"1. . .x£n ) = 

e^(A1® A2® A3X1® xi)u^2.. .u^n+ A2<2) A3xi® xi^ 

except that we have not yet defined the last term. Continuing 

in this manner, we are ultimately left with the problem* 

of defining fyfAj® Ag0 Ayc^.. .xgfox^ . But this is, of 

course, no problem at all. This justifies the definition 

e4(A1® A2® A3® A„) = I1 VAi® A2® A3x|' ...xHsxpuf1...u£». 
We also observe that now by definition we have 

e^(Ax® a2® A3® A^) = e^Aj® A2®A3® + 

+ e^Uj® AgOA^OAJ*), 

since both sides are equal to the double-summation above. 

In particular, this implies that 

e^(A1®a2® a3®a^) = ©^(a^ a2®A3®b^)e1(ci+) + 

+ 0^(A^® A2® A3B^® G^), 
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which is a first step towards proving Fact #4-. 

CASE OF 6 GIVEN e, . . . .. e_ : We observe that we know 
m lJ *- ni-j. 

by induction (from the last result of Case that 

Vl(Al® = Vl(Al® •" ®Am-20Bm-l)6l(Cm-l) 

this is a first step towards proving Fact #(m-l). 

In order to complete the proof of Fact #(ia-l), we first 

note that 

Vl(Al® • • -® Am-2®'Cm-1) = t ' •'® Ai-1® Bi' * -Bm-2> * 

' 6m-i(Ci® 

To see this, we consider again a special case first... 

em-l(Al®-'-®Am-2®y) = C®i(Al® • • • ® Ai-1® Bi'' ' 

' 6m-i(Ci® Cm-2®y)' 

where,in our notation, y = x. is a generator of H*(XjK) 

of index greater than the index of x (e.g., y £ C r a-i)« 

Now write 

Ck = DkEk 

for each k = l,...,m-2, where Dk consists of all elements 

of Ck with indices ^ j, and Ek consists of all elements 

of Ck with indices > j. We have 

6m-l(Al® ••*®Am-2®y) = 6m-l(BlDlEl® "•® Bm-2Dm-2Em-2®y) = 
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ii ("1) l0i(Al0 Ai-l®BiDi"'Bm-2Dm-2^em-i-i(Ei® ••• ®Em-Julv-

=  IU "1 ) m" it  VA1 0  • - •1 0  Ak-1® Bk .  .  .  .Bm - 2).  

'  ei-k+l^Ck® ' '*® ci-l®Di* • , Dm-2^0m-i-l^Ei® • "® Em-2^ =  

St (-DB" i«k(A1® .  .,® Ajc_1® Bk . .  .Bm_2) • 

' [®i-k+l(Ck® -  "® Ci~l® Di '  • , Dm-2^em-i-l^Ei® • "® Era-2^ u  lv^ =  

E ejc(Ai® • • .® B k .  • , B m-2^ em-k^Ck® * "® Cm-2® '  

is desired. By repeated application of this we now have 

Sm-1^A1® • • *® Am-2®Cm-l^ =  6m-l*Al® • • *® Am-2 ®xi+l* * , J tn" * =  

em-l ( Ai® Am-3® Am-2xi+l*"xp 1® xp ) up "* • , un" =  

Ii  ®k ( Al® •••®Ak-l® Bk , , , Bm-2 ) em-k ( Ck® Cm-3® 

® ®m-2xi+i*'  •xp~1® x p^up'^ '  •uta" = 

rtil Tu G c 

Pi Eflfv ek^Ai® •••®Ak-l®Bk" , Bm-2^em-k^Ck® ••'®Cro-3® 

ft C x?i- fifty q  = ^ m-2 i+1' • • p ®x p> P •••un 

it- 2 

S S^Aj® .  .  .0 \_i® Bk .  .  .Bm_2) 6m_k(Ck® .. .® C^), 

as desired. Applying this fact to Ai» • • • >A m_3» A m-2Em-l 

{ = ( Bm-2Bm-l ) Cm-2 )  m i  Cm-1' w e  o b t a i n  

em-l ( Ax® •••®Am-2Bm-l®Cm-l )  =  I ei^Ai® • • • ® Ai-1® Bi '  •  ̂ m-l5 '  

'  Vi'Ci®-®U' 

Adding this to the assumed result mentioned above, 
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ve obtain 

em-X(Al®"-®Am-2® Cm-1) = E ei(Ai® • • • ® Ai-l® Bi* • ' 

which is Fact #(m-l). 

^ow we justify the definition of 0 (A,® , ,,®Am ,®x)... mi m—± 

We have 

1 = 1+j 93<ai® • • • ® ®i-j{A j+l® • • -® Ai-1® Bi' • >Bra-l) ' 

X = £ £(-l)m"i+^+10i_1(A1® ..,® AjA 

" ̂ ®m-i ̂ ̂  i ® • • • $ ̂m-1) ̂  iu ]• 

IX = Zx (-1) * * * ® ̂i— 2® ̂i—l^i* * *^ni—1^ * 

'£em-i(Ci0 

V = (-Drrei(A1®... Ai-1®Bi...Bm-1)em-i(ci@ ...®cm-1)u. 

V = I ...®Ai_1®Bi...Bffi_;L)uem_i(ci® 

VI = £ £( -l)m iei(A1® ...® Ai_1®Bi...Bm_1)6j(Ci® ..,® Cj^^) • 

lu^* 

VII = fli(A1® ...® Ai_1®Bi...BB_1)e«j(C1® ... ®Ci+j_x)^f]' 

' em-i-j(Ci+J® •" 
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fHI = . |1:-1 )m"1 + ; i + l e i (A i® . .  .0 B i # .  .Bm - 1 )  •  

' I -em-i- l (C i® • •  •  ® C jC j+ l® • "® Cm-1^ lu^ '  

' /e a lso have 

hvZ 4 
L  = £ ( _ 1 )  m-l ( A  © # •  •  © ^ i^ i+l® * *"  ̂  ̂ m-1® • 

L i  = | l - l )1 + 16 i (A1® . " ® A i ) e m . i (A i + 1®...®Am .10x),  

L i i  = (- l )m - 1em_1 (A1® • •  •© Am_2® A [ n_1x).  

Lv = (- l )mem_1 (A1®...®Am_1 )u.  

ow we check? 

= i i i  This is  by def in i t ions t '  S(- l )m - i + J '9 . (A,® .  . .®A.)« 
is> ls» 3 1 J 

®i- j ( A j+ l® A i -1® B i ' '  • •  «® c m_i)u  iu ]  =  

:E(-1) j+ 1 ( - l )m - i + 10 (A.® . . .® A.)6,  . (A. ,  ,® . . .®A. , )  1 -i-'j'1 3 l J 1-3 J+i- 1-1 i m-i 

[em_i(Ci® . . .® 0^)0^]  = (-x) j + 1  

(  -1)  j+ 1e .(A,® . . .® Aj)  ®m_j(Aj+ 1® . . .® Am_ x® x).  

I  + VII I  = i» This is  by def in i t ion:  

- l )m~ ; L + ; '+ 181_1 (A1® .  . .® AjA3 + 1® . . .® A j__1® B i . .  .B^) '  

l>m-i< c i® •••®Cm-l ) u lu^ +  

| f_1 )m - i + i , t , ; Le i (A1® . . .® A i_1® B i . . .Bm_1 ) -

-em-i- l^C i® •••® C jC j+ l® •••® c m_2.) , - 'xu3 =  



81 

| (-1)^i-l)m-1+1^.i(A1® ...® A.Aj+1® ...® Ai_1®Bi...Bm_1). 

"tVi(Ci® "•® Cm-l)u lu^ + S(-1)m~1+l9i(A1® ...® Ai_1®Bi...Bm_;L) 

" • • • ® c jc j+i® • • *® Cm-l^u iu3 J = 

t (-X) 3 UA1® • • -® A jA j+i® • • -® Am-1® x> • 

III + VI = 0: This is Fact #k applied to AlfA2,...,Afc 

and AkBk+1., .Bm_^ (= (B^.. for each k = l,...,m-2: 

' £em-i-j ̂Ci+j® • * *® Cm-1^ °lu = 

^-1) 0k(A1® . . • © Ak_]® AkBk+1- • •Bm-^em-k-l(Ck+1® * * *® °m-P U1*J 

wlTn-l 

ep^Ai® • • Ap-1® Bp« • 0k-pfl^Cp® • • • * 

tGm-k-l^Ck+l® ' • Cm-1^ Ulu = 

2(-l) [e^A-j® ...® Ak-1® AkBk+1. ,.Bm-1) 

" ri6p^Al® ' *m® Ap-1® Bp'' ,Bm-l^ek-p+l^Cpc^ •'#® Ck^ ' 

t0m-k-l(Ck+l® ' • •0Cm-l^ lu Si 0 = 0# 

IV = iv: This is Fact #(m-l): 

^(-l)mOi(A1® ...® Ai-1®Bi...Bm-1)em-i(Ci©...®Cm-1)u = 

-1) 0m«i(A1(g) ..Am-1)u. 

+ VII = iiij This is Fact #(m-l) applied to A^,...,Am_2> 



and Am_lX (= (B]n_1x)Cm_1). 

m+1 
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f|i'1(-l)m"j01(A1® ...®A1_1® Bi"-Bm-l)tej(Ci® • 

m-i-j i+j m-1 

i; (-l)mflek(A1® ...®Ak_1®Bk...Bm_1)u0m.lc(Ck®...®Cm_1) H-

rS-1)m"k+i0i(Al® • • -® Ai-1® Bi- • ' 

•LV^® ...sc^)UlU]em_k(ck® = 

lo-J 
h (-1)""1\(Ai® •. • ®Ak.i® Bk. • - Vi)uVk(ck® • • • ®c»-i) + 

I I ( -l)m-1(-l)k-i-1ei(A;L® . . .® Ai_1® Bv . • BJc_1BJc. . .B^) • 

g (-i)m-1ek(A1® ...©Ak_1®Bk...Bm_1)uem_k(ck® ...©c^) + 

!! (-Dra-1ek(Ai® ...®Ak.1Bk...Bm_1ex)em_k(ck® ...sc^) = 

g (-Dm-1ek(A1® ...®Ak_1®Bk...Bm_2(Bra_1x))em_k(ck® ...®cin_1) 

= (-1)m"l0m-l(Al® •••®Am-2®Vlx)-

Next we justify the definition of ® Am) 

First decompose Am into any product 

A = A*A**, 
m  m m '  

such that the indices of all elements of A* are ^ the 

indices of all elements of A**, 
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Now notice that Am) must satisfy 

d6m(AI® '' ' ®Am) = jil ("1^6B.l(Al® *' • ®AiAi+l® '' • ®Am) 

- 6i(A1® ... ® kt) Vi(Ai+l® • • • ® V1 

On the other hand #m(Aj ® ® Am_i® A*) e^(AJ*) + 

VA10 '' Am-lAm ®Am*^ mUSt satisfy 

dt®m(Al® Am-l®Am)ei(Am*) + 6m(Al® ' * *® VlAm ®Am#) ̂ = 

fj2(-l)i[em(A1® ... ® A-i^i+i® •••®Am-l®Am)6l(Am*) + 

VAi® • • •© AiAi+l® • • *® Am-XAm®Ar) 

- 0i(A1® ...® Ai)9m.i(Ai+1® •••®Am-l® AS)01(A") 

- eI(A1® . • • ® Ai) em_i(Ai+l® •'-® Am-lAm® Am*^-I + 

•••®VlAm)ei(Ar) + Vl(Al®-®VlASA;*> 

- eB_1(A1® ... ® Am_1) e1(AJ) •1(AS*)-V1(A1® • • *® A»-lAm) ei(Am#) > 

F i ' ( •  "  ®  A i A i + l ®  "  •  ®  A m )  

- e. (Ax® ...® Ai> Vi(Ai+i® '' *® A®* -5+ 

( ~l)m"1[®m-l(Al ® • • * ® Am-2® Am-lAm) " 0m-l(Al® ' * * 0Am-l} #1(A«) ] 

= |Vl)i^m.i(Ai® ...® AiAi+l®--'0^5 

- fljUj® ...® Ai)6m_i(Ai+1® ...® Am)3 • 

Notice, one last time, that the right hand sides of the 

above equations are equal. So we play the same game as 



in all the previous cases: By viftue of the above equality 

we are justified in defining 

VA1® * • *® Am-1® Am) = 6m(Al® •••®Am-l®^i -" •Xn" } 

em(Ai® • • Am-X® • •unt+ ®m^Al® '' Am-lxl® X1 

except that we have not yet defined the last term. However, 

by exact repitition of the above argument we are justified 

in defining 

em(A1® ...®Am_1x1®x1)u|r2...uP»+ VA1® •••®Am-lxl®Xl2,*,Xn'l) 

except that we have not yet defined the last term. Continuing 

in this manner, we are ultimately left with the problem o± 

defining fl^Aj® ...® A(n_1xgi .. .x^1® xn). But this is, of 

course, no problem at all. The justifies the definition 

6m(A1® ...®Am) = | !em(Ai® • • • ® Am-lxl "'*xi 1®xi
)uf *,,Un )# 

We also observe that now by definition we have 

em(A1® ...® Am) = em(A1® ...®Am_1®A*)01(A**) + 

+ em(A1®...®Am_1A»®A«), 

since both sides are equal to the double summation above. 

In particular, this implies that 

0m(A1® ...® Am) = ejAj® ...®Am_i®Bm)ei(Cm) 

+ em(A1® ...® cB). 
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which is a first step towards proving Fact #a. 

This completes the proof of Theorem 3« 

REMARK: We observe that each term in the quantity 

0m(Ai® ..Am) contains precisely m-1 (^-products. In 

particular, unless m = 1, each term in .  .-® A m) 

contains at least one ^-product. This will he important 

in what follows. 

EXAMPLE: Suppose P[x1,...,Xn] is a polynomial algebra 

over K, where n We compute ©^(x^® x^, 

a randomly selected examples 

V X5 & X1X2X3X^® X2 ® Xx ) = ^(Xj.SX-jXgX^® UCSj^Xg) ̂  luxl 

- e2(x5®x1)[e2(x2x3x^.®x2)u1u1> e1(x1)[e3(x5®x2x3xi).®x2)o1u1] 

= o - [u5 u 1u1][ [e1(x2)[e1(x3xi+)u1u2)]] xui-l + 

tt1[Le8(x5®x2)[o1(x3xlf)w1u2]- e1(x2)[e2(x5®x3x^)o1u2]]o1u1] = 

-  [ « 5 U ! U ^ ]  +  u 1 [ I L u 5 a L u 2 ] [ u 3 u 4 u 1 u 2 3 ] ^ u 1 ]  

- u1[[|2(x5®x3)u^ + e2(x3x5®x1^)]o1«2]ulul] = 

- iUgluiUj.] - "iCLCu^ U^]] uxu2] vjUjl. 

Notice that each term contains preciesely 3 u j-products. 

as in the remark above. We can reduce still further, if 

we desire , by using the Hirsch formula. 
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REMARK: It is known that H*(BG;K) is a polynomial algebra 

in the cases 

(i). K has characteristic 0? 

(ii). K has characteristic p and H*(G;K) has no p-torsion. 

Thus in these cases Theorems 2 and 3 apply to give shm 

maps 

1 t $2 * ̂ 3» • • •1 

and particularly 

^®1' ' ®3f ®' 

from H*(BGjK) into C*(BG;K) with all the desired properties. 
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XI. 3. THE COHOMQLOGY OF HOMOGENEOUS SPACES: 

We have finally developed nearly all the machinary 

needed to state and prove the major theorem in this chapter, 

which is the following result on the cohomology of homogeneous 

spaces* 

THEOREM 1: Let G be a compact, connected Lie group 

and H a compact, connected subgroup of G. Form the homogeneous 

space G/H, Suppose that either 

(i). K has characteristic 0, 

or 

(ii). K has characteristic p, and H#(GjK), H*(HjK) 

have no p-torsion. 

Then, regarding K as a right H*(BG|K)-module via augmentation, 

and H*(BH»K) as a left H*(BG|K)-module via the natural map 

f*tH*(BG;K) —>H*(BHjK), we have a module isomorphism 

H»(G/HIK) « •torH#(BGLK)(KPH*(BH!K)). 

REMARK: The proof of Theorem 1 is based on several 

important results, and we delay the proof until these have 

been introduced. 

The first such result is due to Eilenberg and Moore [ll][l2]. 

Suppose we are given a Serre fibration F->Y-^->B and a 

continuous map of topological spaces f»X—*B. We have the 

following diagram 



Y 

x>bY f* 
Y 

^ Y 

TT* TT 

x  — 
I -
B 

This gives rise to the following diagram in cochains 

C*(F;K) 

C*Q 

TT* 
# 

:*BY;K) 

C*(X|K) 

f* # 

t t  

C*(FfK) 

C*(YjK) 

C*(B|K) 

Therefore we can regard C*(X;K) as a right differential • 

e*(B|K)-module and C*(YjK) as a left differential C*(B;K)-

module in the usual way. Thus Torc*(BjK) (C*(X?K) ,C*(Y;K)) 

is defined, 

THEOREM 2» Given a Serre fihration F->Y~->B and a continuous 

map of topological spaces f:X—»B, there is a module isomorphism 

Ot Torc#(0|K)(C*(X|K)fC*(Y>K))-^H*(XxBY|K). 

REMARK: For a proof of Theorem 2 see Eilenberg and 

Moore [11][12], Baura [l], or Smith [20]. We shall apply 

Theorem 2 to differentiable fibre bundles, and in particular 

to homogeneous spaces. So let 

0 = (E,n,X,G/fa,G) 



be a differentiable fibre bundle, where G is a compact, 

connected Lie group and H a compact, connected subgroup 

of G, E and X are differentiable manifolds, and IT:E->X 

is a differentiable map. We then have a universal bundle 

c(G,H) = (BH,f,BG,G/H,G) 

and the following classifying diagram 

G/H ='- G/H 

E > BH 

In the special case X = * is a point we are reduced to 

the following classifying diagram 

G/H = G/H 

n 

G/H -» BH 

! f  

* > BG 

So now we have two corollaries of Theorem 2t 

COROLLARY 3t Given a differentiable fibre bundle 

a = (E,TT,X,G/H,G) there is a module isomorphism 

at TorC„(BG|K)(C*(X;K),C*(BH|K))-^H*(E|K) . 

COROLLARY kt Given a homogeneous space G/H there is 
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a module isomorphism 

Oi Torc*(BG?K) (K»C*(BH*K) )-^H*(G/H|K) • 

REMARKi We shall make use of Theorem 2 in the following 

manner* By Theorem II.1.1 there exists an Eilenberg -

Moore spectral sequence (Br»^r) such that 

t0rHMB;K)(H*(X,K)'H*(Y*K)) = E2 ̂  

Eqd= TorC4,(3;K)(C*(XjK),C*(Y;K)) * H*(X 0Y|K). 

In particular (Corollary b), there exists an Eilenberg -

Moore spectral sequence (Er,dr) suc^ that 

torH*(BG,K)(K'H*(BH,K)) = E2 

E ® =  T o r C * ( B G , K ) ( K ' C * ( B H , K ) )  *  

Thus for the purposes of Theorem 1 we would like to prove 

that E0 = E in the Eilenberg - Moore spectral sequence 
2 CD 

for G/H. The following theorem is due to Baum [l][2], 

and may be interpreted as saying that it is sufficient 

to prcve that E2 = E^ in the Eilenberg - Moore spectral 

sequence for G/T, T a maximal torus of H. 

THEOREM 5: If G/H is a homogeneous space and T is a 

maximal torus of H, Then E2 = E^ in the Eilenberg - Moore 

spectral sequence for G/H if and only if E2 - in the 

Eilenberg - Moore spectral sequence for G/T. 

REMARKs To exploit this reduction to the case of a 

torus T. we use a result announced by May [,l6]» The theorem 
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is based on work of H. Cartan [6], and is proved in explicit 

detail in the appendix of Gugenheim and May L13D• 

THEOREM 6: There exists a differential multiplicative 

map 

< X J C * ( B T J K ) - * H * ( B T J K )  

which induces the identity in homology and annihilates 

^products. 

REMARK: We give a rough sketch of this proof; for further 

details see Gugenheim and May L13H• 

Recall that BT = B ( S 1 «...(n)..S1) is the Eilenberg 

MacLane space K(Z® ... (n)... ®Z,2). (See, for example, 

H. Cartan [6] or Eilenberg and MacLane [10].) Write n = 

= Z ® ,.. (n)... ® Z. Then, letting FTT denote the group 

ring of IT over K, write B(0)(«) = FIR, and, inductively, 

B(n)(ir) = B(B(N~1)(IT)). Recall the W construction (due 

originally to Eilenberg and MacLane [10]), which we may 

iterate analogously. By results of May we can replace the 

cochains and chains of BT by the cochains and chains of 

W(2>U). Using this fact, we construct a differential 

comultiplicative map 

E I B ( 2 ) ( T R ) - > C » ( B T | K )  

which respects the homotopy cocommutativity and induces 

the identity in homology. 

Now (IT) and B^(TT) are homotopy cocommutative 
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via maps 

O^IL^ (tt)-*B^(it)® B(1) (it), 

^^:B^2^(TT)->B(2^(it)® B^2^(TT), 

respectively. Also BH*(K(it, 1) JK) is homotopy cocommutative 

via a map 

^ 1iBH#(K(tt, 1) ;K) -»BH*(K(tt,1)|K)<2> BH*(K(it,1) |K). 

These homotopies are defined inductively and satisfy certain 

naturality properties. 

Next, utilizing the little constructions K of H. Cartan [6], 

we construct by induction differential comultiplicative 

maps 

Y1IH.(K(*,1)|K) = KFTT ->BFir = B(1)(IT), 

Y2IH#(BT(K) = H#(K(IT,2)IK) = KH»(K(«,1) (K) ->BH»(K(IRtl) |K) 

which induce the identity in homology, 

By a fairly straightforward inductive argument, May 

shows that 

O]Y2 E 0. 

Next, he defines 

6:H*(BTJK)->BHS(K(ir,l)LK)->B(B(1)(Tr)) = B(2)(it) 

as the composition 

6 = BfY1)^2. 



Then "by naturality it follows that 

°16 =°IB(Y1)Y2 = (B(Y1)®B(Y1))n1Y' = o 

Finally, we let a be the dual of the composition 

0*6,J-L(BTJK)->C*(BT|K). 

Clearly a satisfies the conditions of Theorem 6. 

PROOF OF THEOREM 1: By Theorem 5 we are reduced to 

proving Theorem 1 in the special case where the subgroup 

of G is a torus T. We have the following classifying diagram* 

G/T 

G/T 

G/T 

-> BT 

f 

+ BG 

This gives rise to the following diagram in cochains* 

C*(G/T ?K) 

C*(G/T|K) 

K 

C*(G/T; o 

C*(BT|K) 

f* 

C*(BG(K) 

It also gives rise to the following diagram in cohomologys 



K*(G/T»K) H* (G/T i K) 

I I  

H* (G/T! K) •* H*(BT|K) 

f* 

K H*(BG|K) 

Next consider the following diagram: 

C*(BG(K) * K 

(*) a 

H*(BT|K)<— H*(BGjK) * K 

where 

(i). a is the map given by Theorem 6j 

(ii). 61 is the first term of the slim map 6-^, ©2» • • • 

from H*(BG»K) to C*(BG»K) given by Theorem II.2.3. 

Now the preceeding diagram certainly commutes in homology, 

since (of^), = f*. But H»(BT|K) and H*(BG|K) have 0 

differentials. In other words, (*) actually commutes. 

So 

Also, unless m = 1, the composition 

of#e :H*(BGiK)® .. . (m)..,® H*(BG(K) -»H*(BTjK) 
m 

is identically 0, because each term of 6m contains at least 

of#01 = f*. 

one Uj-product, f^ commutes with o^-products, and a 

annihilates u^-products. 

These remarks imply that the shm map 
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Uctf*,o#o,o,...I )«(\elfe2,e3,...} ) 

is identically equal to the (actually strictly multiplicative) 

shm map 

ff*,0,0,0,...} . 

Utilizing Corollary Corollary II,1.3» Corollary IIJ.1. 

we now have a string of module isomorphisms,,. 

H*(G/T|K) 
A 

» a 

TorC*(BG,K)^'C*(BT,K)) 

« Tor^(1,a) 

TorC*(BG|K)^K,H*^BT,K^ ̂ 

w T0Ra (1,1) 
9* 

^®j£*(BG|K)f^,H*(BT|K)) 

r= — 

"t°rH*(BG jK) ̂K,H*^BT,K^ ̂' 

This completes the proof of Theorem 1, 

REMARK: One might conjecture (as Hirsch did) the existence 

of a module isomorphism 

H*(G/HIK) « ̂ orH*(BG|K)(K»H*(BH|K)) 

along the lines of Theorem 1 in total generality. However, 

Schochet [19] has given a counterexample. 



III. THE REAL AND RATIONAL COHOMOLOGY OF DIFFERENTIABLE 

FIBRE BUNDLES 
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III. 1. tor. Tor AND THE TWO-SIDED KOSZUL CONSTRUCTION: 

The major theorem in this chapter expresses, under 

certain reasonable hypotheses, the real or rational cohomology 

of a differentiable fibre bundle as a certain torsion product. 

Whereas in II we were only able to obtain module isomorphisms, 

in this chapter we will obtain actual algebra isomorphisms; 

so let us first describe the algebra structure involved. 

First of all, suppose that A is a differential graded 

algebra over K, M is a right differential A-module, and 

N is a left differential A-module. As usual there is a 

natural map 

e: (M ® B(A)® N) ® (M ®B(A)® N)->M®M®B(A®A)®N@N 

which, on passing to homology, gives a natural map 

e*iTorA(M,N)®TorA(M,N)->TorAS)A(M<S>M,N<g> N). 

e* is called the EXTERNAL PRODUCT. 

Now suppose that A, M, and N are graded commutative 

differential graded algebras over K with multiplication 

maps A, A X,A 2 * respectively. If M is regarded as a right 

differential A-module via a differential multiplicative 

map a»A-*M and N is regarded as a left differential A-module 

via a differential multiplicative map 0»A-*N then 

A i A <S> A ->• A, 

A1iM® M~>M, 
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and 

A2:N® N->N 

are differential multiplicative maps. Define 

Tor , ( Ar A2)iTorASlA(M®»i,N®N)-'TorA(M,N) 

as the composition 

Tor (1,1) 0 Tor1( Arl) 0 Tor^l, Aj). 

Finally, define an algebra structure on TorA(M,N) by 

the composition 

Tor ( A A 2) •» e*iTorA(M,N)®TorA(M,N)->TorA(M,N). 

Then, under the additional assumption of graded commutativity, 

it is not difficult to show that the isomorphisms 

Tor (l,l)«TorA (M1,N1)-^TorA (M1,K1), 
S 2 1 

Tor^lff) iTorA^(M2,N2) -'%>TorA^(M2,N1), 

Tor-, (h, 1) *TorA (M2,N2)-^TorA (MlfN2) 
2 ^ 

of Corollary 11,1,3, and the isomorphisms 

°'TorC*(B,K)(C*(X,K),C*(Y'K)) "H*U bY'K)' 

«'TorC*(BGlK)(C*(X,K)'C*(BH'K))^H#(E,K)' 

o<Torc,(BGlK)(K.C*(BH'K))^H*(G/H,K), 

of Theorem 11,3.2 and Corollaries 11,3.3 and II.3.*. respectively, 

_are j-nc^eed algebra isomorphisms. 



The torsion products tor^(M,N) and Tor^(M,N) will be 

redefined in this section, in the special case where 

A = P[xlf•••txn3 

is a polynomial algebra, in terms of some form of the two-

sided Koszul construction. It is worth noting that in each 

case the two-sided Koszul construction could also be described 

by defining the so-called Koszul constrution, tensoring 

on the two sides, and noting that the additional structure, 

namely the differential, is induced naturally from the various 

components, 

For the remainder of this chapter fix K to be a field. 

The following material is valid in a somewhat more general 

context but this will not be needed. Suppose P[x^,...,xn] 

is a polynomial algebra over K. Consider the exterior 

algebra 

E[u^, • • • • 

over K, where ui has INTERNAL degree DegU^, EXTERNAL 

degree -1, bidegree (Deg(*i),-X), and hence degree Deg(*i)-1 

in the associated graded algebra over K, 

(a), tor: 

Suppose that M is a right P[x1(....x^]- module and N 

is a left P[x1 xn]-module. We form the complex 

M®E[ux un]®N with the natural differential dg given 
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d£(m®l®n) = 0, 

cU(m®u.® n) = mx. ® 1® n + m 01® x.n, 
& 1 1 J-

d£ a derivation. 

dE is called the EXTERNAL differential, since it acts on 

external degree. We will call the complex 

(M®E[ult...,un]®N,dE) 

the FIRST TWO-SIDED KOSZUL CONSTRUCTION. Observe that the 

composition dg ° dg = 0, The first two-sided Koszul construction 

thus has the structure of a differential graded module 

over K. 

THEOREM li tor^r.. „ n(M,N) is the homology of 
•r » • • • » n J 

the first two-sided Koszul construction: 

t°rp[x x ~j(Mf N) « H(M©E[ulf ..., un] ®N,dfi). 

REMARK: To prove Theorem 1 one simply checks that the 

first two-sided Koszul construction is a projective resolution. 

See, for example, Baum and Smith [3]* 

(b). Tor: 

Now suppose that M is a right differential P^x^,••.»xnl 

module and N is a left differential p£x^,... module. 

We again form the complex M®E[_Up, •.. »un3® N, this time 

with the natural differential dg = d£ + dj, where 

dj(m@ 1® n) = dm® 1® n + (-l)Deg(m)m® 1® dn, 
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dj(m ®u^® n) = - dm®u^®n - (-l)Deg^m^m ®u^® dn, 

d^ a derivation. 

d-j. is called the INTERNAL differential, since it acts on 

internal degree. We will call the complex 

(M®E[u1,...,un]®N,dD) 

the SECOND TWO-SIDED KOSZUL CONSTRUCTION. Observe that 

the signs have been chosen so that d^ ° d^ = 0. The second 

two-sided Koszul construction thus has the structure of 

a differaitial graded module over K. 

THEOREM 2: Tor^r.. ~ i(M,N) is the homology of 
• •- 1*'"' n 

the second two-sided Koszul construction: 

TorP[x1 ...xn](M,N) " H<M®E[U1 u^ON.dj). 

REMARK: To prove Theorem 2 one simply checks that the 

second two-sided Koszul construction is a differential 

projective resolution. See, for example, Saum and Smith £3j» 

REMARK: We now prove the analog of the comparison 

Theorem II.1.4 (and Theorem II.1.12). We observe that 

historically the order should be reversed* Theorem 3 below 

is used in Baum QlJ and Baum and Smith C3l» Theorems 11,1.4 

and 11,1,12 were based philosophically on Theorem 3. 

THEOREM 3: Suppose P[xlf...,xn] is a polynomial algebra 

over K, M and N are differential graded algebras over K, 

and f ,g:P[xlf ... ,xn] -*N and h:p£xlf ... ,xn]-*M are differential 
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multiplicative naps. If f and g are chain homotopic, then 

TorPr -i(M,N) is unambiguously definedi that is, 
Lx2. * • • •»xn J 

Torpr -i(M, N) is the same whether N is regarded 

as a left differential P[xlf,..,xn]-module via f or via g: 

(TorP[Xl xn](M'N))f * (TorP[x1 xn](M'N))g-

An analogous result is true for ̂ orp[x^#.••,x 

(TorP[Xl xn](N'M))f * (TorP[x1 xn](N-M))g-

PROOF: We form M®E£ulf...,i^]®N with the differential 

df obtained via f and with the differential dg obtained 

via g. Now construct the map 

T: (M<S)E[ult ... -*(M®E[ulf .. . »un3® N,dg^ 

as follows: Since f and g are chain homotopic, there exists, 

for each i = l,,..,n, an element h^£ N such that 

f(xi) = gU^ - d(h^). 

Therefore set 

T(m®l®n) = m <2>1®n, 

T(l®n.® 1) = l®u^®l - l©l®h^. 

We claim that T is a map of differential graded algebras) 

the proof is a direct calculation: 

(i). Tdf(m®l®n) = dm?>l©n + (-l)Deg(m^m ®l®dn = 

= d T(m ® 1® n) j 
o 
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(ii). Tdf(l®ui®l) = h(xi)®l®l + l®l®f{xL) = 

= h(xi)®l®l + l®l®g(xi) - l®l®d(hi) = 

= dgfl®^® 1 - 101®^) = dgT( 1 ®ui0 1). 

Since T has an obvious inverse it follows that T induces 

a module isomorphism 

xn]<M'N»f ̂ (TorP[Xl xn]<M'N»g' 

The second assertion of Theorem 3 is proved analogously, 

REMARK t Under the additional assumption that M and N 

are graded commutative it is easy to see that the isomorphisms 

T',(TorP[.1 JSl]<».I,»fJ4<I«,p[x1 xn](«.N)) g, 

T-,(TorP[Xl xn](N'M»fA(TorP[x1 xn](N'M>)g 

are indeed algebra isomorphisms. 
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III. 2. THE REAL AND RATIONAL COHOMOLOGY OF DIFFERENTIABLE 

FIBRE BUNDLES: 

It will be convenient to present our results in real 

coefficients first. A trivial remark at the end of this 

section will extend each theorem to rational coefficients 

as well. 

It will be instructive to begin by giving the proof 

of the homogeneous space theorem with real coefficients. 

The techniques used in this proof served as a philosophical 

base for the results in IIj they will also serve as an 

introduction to the types of arguments used in this chapter. 

The proof of this theorem is due to Baum £l]« 

THEOREM 1; Let G be a compact, connected Lie group 

and H a compact, connected subgroup of F. Form the homogeneous 

space G/H. Then,regarding R as a right H*(BGjR)-module 

via augmentation and H*(BH|R) as a left H*(BG;R)-module 

via the natural map f*»H*(BG,R)-^H*(BH>R), we have an algebra 

isomorphism 

H*(G/H;R) « torH»(BG|R)(R,H*(BHiR))* 

PROOFi We fix "the following notation! If M is a Riemannian 

manifold modeled on a separable Hilbert space, then we 

denote by P^(M,d) the differential graded algebra of deRham 

cochains with exterior derivative. Recall that we have 

a natural algebra isomorphism 

H«tMiR) » (M.d)l-
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We have the following classifying diagram* 

G/H 

u 

G/H 

G/H 

BH 

-» BG 

This gives rise to the following diagram in deRham cochainsi 

R#(G/H) = f/(G/H) 

R#(G/H) -e R#(BH) 

f* 

R <- — R^(BG) 

It also gives rise to the following diagram in cohomology! 

H*(G/HIR) 

H 

H*(G/HtR) 

H*(G/HIR) 

- H*(BHiR) 

f. 

- H*(BG)R) 

We may assume that BH and BG are differential manifolds 

modeled on separable Hilbert spaces and that all the maps 

in the classifying diagram above are differentiable. 

We know that H*(BG;R) and H*(BH,R) are polynomial algebras 

on generators of even degree. In fact, let 

H*(BG|R) = *K]. 
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H*(BH»R) = P[y1 yn] 

Now choose arbitrary representative cocycles 

in R^(BG) for xlf...,x . We define the map 6 as follows* 
& 

For each i = l,...,mf define = u^. Since R (BG) 

is graded commutative the map extends to a unique differential 

multiplicative map 

61H* (BG i R) -» R (BG). 

From its definition it is clear that 6 induces the identity 

map in homology. (Compare II. 2 !) 

Similarly we construct a differential multiplicative 

map 

0!H*(BH(R) — R#(BH) 

which also induces the identity map in homology. 

Next consider the following diagram (which we do not 

claim to be commutative)* 

R#(BH)-^ R#(BG) "R 

(*) A 8 11 

| 
H*(BHjR) H*(BG;R) >R 

Observe that R^(BH) can be regarded as a left differential 

H*(BG?R)-module in two distinct ways; via the differential 

multiplicative map f^e or via the differential multiplicative 

map j2ff*. This gives rise to two distinct torsion products, 

which we shall denote, respectively, by 

r 1TorH*(BG;R) 
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and by 

t_T°rH*(BGjR)(R»R^(BH)) 

Now the preceeding diagram certainly commutes in homology, 

since (f^0)# = f* = Therefore f^e and 0f* are 

chain homotopic, Hence Theorem 111,1.3 applies. 

Utilizing Corollary II.3.Corollary II.1.3» and 

Theorem III.1.3, we now have a string of algebra isomorphisms... 

H*(G/H tR) 

~ o 

TorR#(BG)(R,R#(BH)) 

« Tor0(l,l) 

1̂TORH*(BG|R) 'R,R ^BH^ 

t_ TorH,(BG,R)(R,R^(BH)) 

»jror^d,#) 

torH*(BGjR)^R,H*^BH,R)}' 

This completes the proof of Theorem 1. 

REMARK: We now try to extend the type of reasoning 

involved in Theorem 1 to differentiable fibre bundles. 

So let 

a = (E,ir,X,G/H,G) 

be a differentiable fibre bundle, where G is a compact, 

connected Lie group and H a compact, connected subgroup 

of G, E and X are diff erentiable manifolds, and tt:E—>X 
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is a differentiable map. 

We then have a universal bundle 

0(G,H) = (BH,f,BG,G/H,G) 

and the following classifying diagram* 

G/H G/H 
I 

J 
BH 

u 

g 

f 

BG 

This gives rise to the following diagram in deRham cochainst 

R#(G/ft) = R#(G/H) 

R^(E) 

J 
R#(X) *• 

R#(BH) 

R^(BG) 

,# 

It also gives rise to the following diagram in cohomologys 

H*(G/HiR) H*(G/1l(R) 

H*(EjR) —H*(BH;R) 
* 

1T* f* 

H*(X|R) g* 
H*(BG; R) 

Now of course the theorem we desire says* Under 'reasonable 

hypotheses on the differentiable manifold X, by regarding 
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H*(XjR) as a right H* (BG * R) -module via the map g* and H*(BH|R) 

as a left H*(BG;R)-module via the map f*f we have an algebra 

isomorphism 

H*(EjR) * torH*(BG.R)(H*(X;R),H*(BH>R)). 

Our goal is to see how far we can relax the conditions 

on X and still obtain this isomorphism. The following two 

corollaries of Theorem 1 and its proof are obvious* 

COROLLARY 2: If 

a = (E, 1T, X, G/Hf G) 

is a differentiable fibre bundle with X a Riemannian symmetric 

space, then there is an algebra isomorphism 

H*(E.jR) » torH*(BG;R)(H*(X>R),H*(BH|R)). 

COROLLARY 3t If 

a = (E,ir,X,G/H,G) 

is a differentiable fibre bundle with H*(X;R) a polynomial 

algebra, then there is an algebra isomorphism 

H*(E;R) « torH*(BG;R)(H*(X*R),H*(BH;R)). 

REMARK * Corollary 2 is a consequence of the following 

very special property of a Riemannian symmetric space Xs 

The product bBA b2 of two harmonic forms b-^b^ R (X) is 

again a harmonic form. Therefore the map 

c u H * ( X i R ) — ( X )  
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defined by sending each element x tH*(X|R) into the unique 

harmonic form oc(x) whose class is x is a differential 

multiplicative map which clearly induces the identity in 

homology. Corollary 2 is due to Baum and Smith C3D• 

REMARK: The condition of Corollary 3 is satisfied, for 

example, if X is itself the classifying space of a compact 

connected Lie group, 

THEOREM 4: If 

0 = (E,IT,X,G/K,G) 

is a differentiable fibre bundle with X a homogeneous space 

formed as the quotient G'/H' of a compact, connected Lie 

group G' by a compact, connected subgroup H* of maximal 

rank in G', then there is an algebra isomorphism 

H*(E;R) « torH*(BG;R)(H*(X|R),H*(BHjR)). 

PROOF: We have the following classifying diagram: 

G'/H* = G'/H1 

n 

G'/H'—- >BH' 
I 
h 

>' • 

* > BG1 

This gives rise to the following diagram in deRham cochains: 

. fV" / ̂  # /V f ) 
» / * * t 



r^(G«/H') R#(Q'/H') 

R#(G'/H' )< ^ R#(BH' ) 
.# 

R «- R#(BG') 

It also gives rise to the following diagram in cohomologyi 

H*(G'/H'|R) H*(G'/H*|R) 

t 
H* (G' /H' i R) H* (BH' IR) 

h* 

H*(BG1;R) 

We recall now the relevant facts about maximal rank 

spaces: The fact that 

H*(BG' |R) = P[*3_ xm3. 

H*(BH'|R) = PLyi>••••»«] 

are polynomial algebras on ̂nerators of even degree is 

equivalent to the fact that 

H*(G'(R) = E[u1,...,um]I 

H*(H' |R) = •„] 

are exterior algebras on generators of odd degree. RANK 

is the number of generators! Rank(G') = mi Rank(H') - n. 

H. has MAXIMAL RANK in G- if m = n. It then follows that 



(i). The sequence 

R—>H*(BG' |R)-^H*(BH' |R) (Rj-^R 

is co-exactj 

(ii). As an H*(BG! |R)-module, H*(BH'JR) is isomorphic 

to H*(BGMR)®H*(G»/H,IR). 

For further details see Baum [l][2]. 

Now construct differential multiplicative maps 

yiH*(BH'|R)->R#(BH«), 

6iH*(BG1|R)-»R^(BG») 

which induce the identity in homology, by analogy with the 

corresponding maps constructed in the proof of Theorem 1. 

Next consider the following diagram (which we do not 

claim to he commutative): 

R#(BH.) R#(BG<) > R 

(•) Y 6 

H*(BH *irR)H*(BG• *R) *R 

Using the above we are finally able to consider the 

following diagram (which, again, we do not claim to be 

commutative): 
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R^(BH)< R^(BG) ^ »R# 

(**) a 

(X) 

e„ 

H»(BH|R)< f> H*(BGjR) ^H*(X;R) 

Various complexes and maps have not yet been defined, and 

we proceed as follows: 

(i). We construct differential multiplicative maps 

a:H*(BG|R)-*R#(BG), 

|3xH*(BHiR)->R#(BH) 

which induce the identity in homology, by analogy with 

the corresponding maps y, 6 above. 

(ii). We define K± to be the one-sided Koszul construction 

for computing <~~ITorH#(BGI (R)(R,R#(BH,))> in other words, 

# ,  = E[u1(...,um]®Rff(BH'), 

where 

#x d(ui®l) = 1® hff6(xi) 

d( 1® w) = 1® d(w), 

(iii). We define K9 to be the one-sided Koszul construction 



for computing t_ Tor^^g^, (R, R^(BH*)) > in other words 

K2 = Etui um]®R*(BH«), 

where 

d(u i0 1) = 1© yh*(x i), 

d ( l ® w )  =  l ® d ( w ) #  

( i v ) .  W e  d e f i n e  t o  " b e  t h e  o n e - s i d e d  K o s z u l  c o n s t r u c t i o n  

for computing torH#^BG ,(R,H*(BH f |R))» in other words 

K3  = E[u1 , . . . ,um]0H*(BH'»R), 

where 

d f u - ^ l )  «  l ® h * ( x i ) f  

d(10w) = 0. 

( v ) .  0 1  i s  d e f i n e d  a s  f o l l o w s *  T o  d e f i n e  © ^ ( u ^ ®  1 ) ,  

we note that A#»( x^) is a coboundary in R^(X). Therefore 
u 

choose, for each i  = l, . . . ,m, an arbitrary element r i  £ R*(X) 

such that d(r^) = lr^h^6(x i). Now set 

ei^ui® = ri '  

61(l®w) = k^(w). 

The proof that 61  is a differential multiplicative map 

is a direct calculation* 

( a ) .  d 6  ( u . ®  1 )  =  d ( r i )  =  k # h # 6 ( x i )  =  6 1 ( l ® h # t ( x 1 ) )  =  



= ©1d(ui®l). 

(b). d61(l®w) = d(K*(w)) = k*(d(w)) = e1(l®d(w)) = 0^(1® 

Observe that 6^ induces the identity in homology, 

(vi), 02 is the differential multiplicative map which 

induces the identity in homology, given by Theorem III.1.3* 

in other words 

e2^ui® ̂  = ui® 1 ~ si» 

e2(l®w) = l®wf 

where s^R^BH*) is such that yh*(x^) = h^0(x^) - d(si), 

(vii). 6^ is defined as followsi 

6^(u^® 1) = u^® 1, 

0^(1® w) = 1® y(w), 

The proof that ©3 is a differential multiplicative map 

is a direct calculationi 

(a). d03(ui®l) = d(u.® 1) = l®yh*(xi) = 03(10h«(xi)) = 

= ©3d(u^®l). 

(b). d03(l®w) = d(l®Y(w)) = l®d(y(w)) = l®Y(d(w)) = 

= C = 0(0) = 03d(l®w). 

Observe that ©3 induces the identity in homology. 
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(viii), is defined as follows: 

6^(11^ <3 1) = 0, 

6^(1® w) = k*(w). 

The proof that 0^ is a differential multiplicative map 

is a direct calculation: 

(a), de^uj® 1) = d( 0) = 0 = k*h*(xi) = e^(l® h*(xi)) = 

e^d(ui® 1). 

(b). d0^(l® w) => d(k*(w)) = 0=6^(0) = 6^d(l®w). 

(ix). We construct a differential multiplicative map 

HHMBG|R)^K3 

which induces g* in homology, essentially by analogy with 

the maps a, £, Y, 6 above: Let 

H*(BG|R) = P[z! zp] 

be a polynomial algebra on generators of even degree. 

Consider g*(z1) g*Up) 'H*(X|R). Since H(K3,d) « 

» H*(X s R), we may choose arbitrary cocycles ..., tp <• Ks 

for g*(zx) S*(zp)- Por each 1 = 1 P' define 

XUp = Since Kj is graded commutative the map extends 

to a unique map X satisfying the conditions above. 

Given this diagram we consider the extreme right-hand 

side and claim that eie2eJ and 0^ induce the same map in 

homology. In other words, we have commutativity in the 
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following diagram: 

H*(X|R)* » * H*(X|R) 

To see this we examine the effect of applying the maps 

eie203 and to a cycle in K3« A cycle in K3 has the 

form l®w, where dw = 0. Now 

(I). E1E2E3(I®w) = E1E2(I®Y(w)) = 01(I®Y(W)) = 

= k^y(w)j 

on the other hand 

(ii). 0^(l®w) = k*(w). 

Thus (0JL0203)#([l®w]) = (k#Y)*([w]) = k*([w]) = e^([l®w]) 

So the diagram commutes. 

By the definition of X we know that the following diagram 

is also commutative: 

Thus the following diagram commutes also: 
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H*(BGfR)-^H*(XfR) 

From this we extrapolate commutativity in the following 

diagram: 

H*(BG;R) 

H*(X|R) 
A 

(®ie2e3)* 

Since a. is the identity and (/). = g*, we have commutativity 

also in the following diagram: 

H*(BG|R) H*(X|R) 

H*(BG)R)'^ g* 

Piecing together the two preceeding diagrams it follows 

that the next diagram commutes as welli 

(/)« -^H*(X»R) H*(BG;R) 

a* 

H*(BG*R) H*(XrR) 

By all of the above we have now shown that the original 

diagram (**) commutes upon passing to homology. 

Thus 

(i). to. is chain homotopic to pf*i 

\-V 
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(ii). g^a is chain homotopic to 

(iii). is chain homotopic and thus equal to g*. 

Hence Theorem III.1.3 applies. 

Utilizing Corollary II,3#3. Corollary 11,1,3. and 

Theorem III.1.3, we now have a string of algehra isomorphisms... 

H*(E;R) 

a 

TorR#(BG)(R!(X)'R#(BH)) t 
I 

^ TorH*(B0UR) ,R 

» T, 

^orH*{BG)R)(R#(X),R#(BH))r 
« Tor-^1, 0) 

TorH*(BG«R)(R#(X)'H*(BH,R))r 

« Tora(l,l) 

«|U# 

T°rHMBG,R)(R#5X)'H*(BH,R)U 

» Tor1(61,l) 

*<"V(BG,R)<kI-h*(bh'r))^ 
A 

« Tor1(02,1) 

TorH*(BG,R)(K2'H<(BH,R))^ 
«  T o r 1 ( 1 )  

^H.(BG,R)<K3'H*(BH>»)>-

«jTor1(e^,i) 

Tor^ (BGjR) ̂ A 

torH*(BG|R)(H*UiR).HMBH,R)) 

This completes the proof of Theorem 
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THEOREM 5: If 

a = (E, TT,X, G/H, G) 

is a differentiable fibre bundle with X a homogeneous space 

formed as the quotient G'/H* of a compact, connected Lie 

group G' by a compact, connected subgroup H* of deficiency 

0 in G *, then there is an algebra isomorphism 

H*(E;R) « torH#(BG.R)(H*(X;R),H*(BHjR)). 

PROOF: We recall first the relevant facts about deficiency 

0 spaces; Consider 

H*(BG' ;R) = xm]p 

H*(BH*(R) = P[y1,...,yn], 

polynomial algebras on generators of even degree. Consider 

also the natural map 

h* :H*(BG' ;R)^H*(BH';R) 

arising from the inclusion of H* into G*. In ̂ (BH'jR) 

let I be the ideal generated by h*(x^),...,h*(xm). It 

may be assumed that the indexing has been chosen so that 

h*(x1),...,k*(x ) form a non-redundant set of ideal generators 

for the ideal I. Then the DEFICIENCY of H' in G' is 

Def(H*,G';R) = p - n. 

This integer is independent of the choices made in defining 

it and satisfies 

-
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0 ̂  Def(H\G\R) ̂  Rank(G') - Rank(H'). 

If H* has deficiency 0 in G' it follows that the sequence 

H*(BG' (R) H*(BH' |R) —-*H*(G• /h') 

is co-exact. For further details see Baum [l][2]. 

The proof of Theorem 5 goes through in essentially 

the same way as the proof of Theorem 4, except that... 

The map 0^ must be redefined. Write as 

K3 = E[ult . .. ,US]®E® H*(BH» ;R), 

where the elements are not cycles, but E consists 

of cycles. Define 

e^(Ui® 1® 1) = 0, 

6^(l®l®w) = k*(w), 

e^(i®w®i) = [e1e2e3(i®w®i)], 

the class in H*(X;R) which contains wg> 1) in 

R#(X)» 

The first diagram in our chase is still commutative, 

this time by our choise of 

The rest of the argument proceeds as before. 

REMARK: From the inequality above it is clear that 

Theorem 5 is a generalization of Theorem k. Judging from 

E. Cartan* s list, it appears that Theorem 5 is a generalization 

of Corollary 2 as well. 



REMARKi One might conjecture the existence of an algebra 

isomorphism 

H*(E|R) * torH#(BG.R)(H*(X|R),H*(BH|R)) 

along the lines of the theorems above in total generality. 

However, Baum and Smith [3] have given a counterexample, 

REMARK: Finally, we remark that all the theorems in 

this section work with rational coefficients Q as well? 

we simply use Sullivan's graded commutative rational cochains. 
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