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0. INTRODUCTION:

Consider a differentiable fibre bundle
¢ = (E,n,X,G/H,G),

where G is a compact, connected Lie group and H a compact,
connected subgroup of G, E and X are differentiable manifolds,
and mE—X is a differentiable map., One would like to
compute the cohomology of the total space E in terms of

the cohomology of the base space X, and certain algebraic
invariants of the imbedding of H into G. Specifically,

there exists a universal bundle
g(G,H) = (BH,f,BG,G/H,G)

and a classifying diagram

G/H = G/H

E -+ BH
Jf

X , BG

g

Oone would like to obtain some sort of isomorphism

where H*(X3;K) is regarded as a right H*(BG;K)-module via
the multiplicative map g* and H*(BH;K) is regarded as a

left H*(BG;K)-module via the multiplicative map f*,

One does have, by results of Eilenberg and Moore [113[12],




an algebra isomorphism
H*(E3K) = Torc*(BG'K)(C*(X;K).C*(BHaK)).

where C*(X;K) is regarded as a right differential C*(BG;K)-
module via the multiplicative map g# and C*(BH;K) is regarded

as a left differential C*(BG;K)-module via the multiplicative
map f#.

In a portion of his Princeton University thesis, Baum [l]
gave an elegant partial answer to the question above.
Considering the special case where the coefficient field
K is the reals R and the base space X is a point *, Baum

showed, ..

THEOREM A: Let G be a compact, connected Lie group

and H a compact, connected subgroup of G, Form the homogeneous
space G/H. Then, regarding R as a right H*(BGsR) -module

via augmentation and H*(BH;R) as a left H*(BG;R)-module

via the natural map f*:H*(BG;R) —~H*(BH;R), we have an algebra

isomorphism

H*(G/H3;R) = torﬁ,(mm)(n,}{*(msx)).

Under the hypotheses of Theorem A it follows that
H*(BGjR) is a polynomial algebra and C*(BG;R) is graded
commutative, Using these facts, Baum constructs a multiplicative

homology isomorphism
0:H*(BG;R) - C*(BG;R)

and similarly a multiplicative homology isomorphism




#1H*(BH3R) > C*(BH3R).

Then he makes use of various naturality properties of Tor
to pass from H*(G/HjR) = T°rc*(BG;R)(R'C*(BH'R)) to
torH*(BG'R)(R.H*(BHIR)).

In this thesis we generalize Theorem A in two distinct
directions. First, holding the base space to be a peint,
we generalize the coefficient field, Second, holding the
coefficient field to be R (or the rationals Q, in light
of recent work by Sullivan), we generalize the base space.

In Chapter I we describe the various introductory
material which will be needed later. I. 1 contains algebraic
preliminaries, I. 2 contains geometric preliminaries.

In @hapter II we prove the following theorem on the

cohomology of homogeneous spacesS...

THEOREM B: Let G be a compact, connected Lie group
and H a compact, connected subgroup of G. Form the homogeneous
space G/H, Suppose that either
(i). K has characteristic 0,
or
(ii). K has characteristic p, and Hy,(G3K), Hyg(H;K)
have no p-torsion,
Then, regarding K as a right H*(BG;K)-module via augmentation,
and .H*(BH;K) as a left H¥*(BG;K)-module via the natural map
£% ;H* (BG3K) —H*(BH;K), we have a module isomorphism

H*(G/H3K) = torH*(BG’K)(K,H*(BHsK)).

he Drog . in the spirit of Baum's proof of Theorem As




Under the hypotheses of Theorem B it follows that H*(BG;K)
is a polynomial algebra; but C*(BG;K) is not, in general,
graded commutative, C¥(BG;K) is, however, homotopy commutative
(via le-products) in a very strong way. Using these facts,
we construct a strongly homotopy multiplicative (shm) homology

isomorphism
101,92,03....}sH*(BG;K)-*C*(BG;K).

Using the concept of shm (due to Clark [8], Stasheff [21][22],
and Stasheff and Halperin [23]) we extend the notion of
torsion products to strongly homotopy modules, Then we

use a result of Baum [1][2] to reduce to the case of G and

a maximal torus T of H, a result of May [16] and Gugenheim
and May [13] which shows the existence of a multiplicative

homology isomorphism
asC* (BT 3K) >H*(BT3K)

which annihilates k)l-products, and various naturality
properties of this new TOR to pass from H*(G/H3K) =
~ Torc,(BG'K)(K,C*(BH;K)) to torH,(BG'K)(K,H*(BH;K)).

II. 1 contains the algebraic material on tor, Tor,
and TOR, described in terms of the two-sided bar construction,
II, 2 gives a description of the shm map from H*(BG;3;K) to
C*(BG3K) in terms of \Jl-products. II. 3 contains the proof
of Theorem B.

Theorem B has been of considerable interest to a number

of mathematicians., Among those who have made significant
contributions are: Baum [1][2], A. Borel [4], H. Cartan (5],

e
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Gugenheim and May [13], Husemoller, Moore and Stasheff [14],
May [16], Munkholm [17][18], Stasheff [21](22], and Stasheff

and Halperin [23]. Several of the above have announced

proofs of a more or less general theorem along the lines

of Theorem B,
In Chapter III we prove the following theorem on the
real and rational cohomology of differentiable fibre bundles...

THEOREM C: Let
¢ = (E,mX,G/H,G)

be a differentiable fibre bundle with X a homogeneous space
formed as the quotient G'/H' of a compact, connected Lie

group G*' by a compact, connected subgroup H' of deficiency

0 in G'. Suppose that either K is the reals R or the rationals
Q. Then, regarding H*(X;K) as a right H*(BG;K)-module

via the natural map g*:H*(BG;K)—>H*(X;K) and H*(BH;K) as

a left H*(BG;K)-module via the natural map f¥*:H*(BG;K)—>H*(BH;K),

we have an algebra isomerphism
H*(E3;K) = torH,(BG'K)(H*(X;K),H*(BH;K)).

The proof is again in the spirit of Baum's proof of
Theorem A, Under the hypotheses of Theorem C it follows
that C*(X;K) is graded commutative; but H¥(X;K) is not,
in general, a polynomial algebra, However, utilizing various
Koszul constructions involving the cohomology and cochains
of G' and of H', we construct a collection of mitiplicatwve homdo

isomorphisms relating H*(X;K) and C*(X;K). Then we make




use of various naturality properties of Tor to pass from

H*(EsK) = TorC*(BG'K)(C*(X;K),C’(BH;K)) to

III. 1 contains the algebraic material on tor and Tor,
now described in terms of the two-sided Koszul construction,

III. 2 contains the proof of Theorems A and C.







I. 1. AILGEBRA:

Fix K to be a commutative ring with unit,

A GRADED MODULE A over K will be a sequence
A1 1= 0,1,2,...% of K-modules, An element acA Iis
also considered to be an element of DEGREE m in A, So
if k<K and a,b<A have degree m, then ka and a + b are

also elements of degree m in A,

A BIGRADED MODULE A over K will be a doubly-indexed
sequence {Ai,j |1 =0,1,2,...3 § =0,1,2,...5 of K-modules,
An element ac« An.n is also considered to be an element
of BIDEGREE (m,n) in A, If A is a bigraded module over
K, we can form the ASSOCIATED graded module over K, also

denoted by A, by setting Ak = »ﬁ&Ai.J'

If A and B are graded modules over K, then a K-MODULE
HOMOMORPHISM f:A—B of DEGREE p is a sequence if; |1 =0,1,2,...8
of K=module homomorphisms fi"i—’Bid-p' If a <A has degree
m, then f(a) denotes an element in B of degree m + p.

The KERNEL of f is a graded module over K defined by (Ker(f))m =
= Ker(fm). The IMAGE of f is a graded module over K defined

by (Im(£)), = In(£, ).

If A is a graded module over K, then a SUBMODULE B
of A is a graded module over K such that B; is a submodule
of A; for each i=0,1,2,..,, For example, if fiA—B is
a K-module homomorphism, then Ker(f) is a submodule of A
and Im(f) is a submodule of B, If a graded module B over




K is a submodule of a graded module A over K, then the
QUOTIENT graded module A/B over K is defined by (A/B), =
= A,/B,.

If A and B are graded modules over K, then A@B is
the graded module over K defined by (A@B)k = ,9?.,*18’ Bj.
If a< A has degree m and b+ B has degree n, then a®b denotes
an element of A@B of degree m + n. By considering K to
be the trivially graded module over K which is K in degree
0 and 0 in all other degrees, A®K and K®@A are canonically
isomorphiec to A, If Al,Az.Bl,Bz are graded modules over K,

and flel—»ll and fz'*z""Bz are K-module homomorphisms,
then flefzule Az—oBl® B, is the K-module homomorphism
defined by flgfz(algaz) = fl(al)efz(az) for all a, ¢ A,,
a,* Ap.

A GRADED ALGEBRA A over K is a graded module over K

together with a pair of degree 0 homomorphisms .:K—A and
AA@A—A of K-modules such that the diagrams below commute:

K@A
1 AL
~

o a ARA

AQAQA—28L a4

ml |2

AQA —p A




—

u is called the UNIT of A and A is called the MULTIPLICATION

map of A, If a tA has degree m and b ‘A has degree n then
ab denotes the element A(a® b) of degree m + n, A graded
algebra A over K is said to be AUGMENTED if there exists
a degree 0 homomorphism €:A—K of K-modules, A is said to
| be GRADED COMMUTATIVE if ab = (-1)(Pe8(2))(Deg(D)) 4y o
all a,b¢A,. A is said to be COMMUTATIVE if ab = ba for
all a,btA,

If A and B are graded algebras over K then A® B is
also a graded algebra over K with unit given by the composition
K-5K®K S A®B and multiplication given by (a,®D,)(2,®Db,) =
= (_1)(Deg(bl))(Deg(a2)) (a1a2)® (blbz) for all al,aztA

and b b2 «B,

ll
If A and B are graded algebras over K then a K-ALGEBRA

HOMOMORPHISM or MULTIPLICATIVE map fiA—B is a K-module
homomorphism of degree 0 such that the diagrams below commute:

K
/\
A r %B

If Ay,A;,B,,B, are graded algebras over K and f,:A;—B,; |

and fZ:Az——»Bz are K-algebra homomorphisms, then

——




£, @fzul® A,—B,® B, is a K-algebra hemomorphism as well,

If A is a graded algebra over K then a LEFT A-MODULE

M is a graded module over K together with a K-module homomorphism

giA@M—M of degree 0 such that the diagrams below commute:

KM
A®M S M
. :
AQARN 2%  aeNM
1@&1 Jg
ADM 8 > M

The notion of RIGHT A-MODULE is defined analogously.

A GRADED COALGEBRA A over K is a graded module over
K together with a pair of degree 0 homomorphisms 7 tA—K
and ViA—A®A of K-modules such that the diagrams below

commute:
K® A
”I 1®1
A L d e i i
“I e
A®K

AQARA 2,04

1® V’[ ]V

AR A« A
v
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7 is called the COUNIT of A and v is called the COMULTIPLICATION

map of A,

If A and B are graded coalgebras over K then a K-COALGEBRA
HOMOMORPHISM or COMULTIPLICATIVE map f:A—B is a K-module
homomorphism of degree 0 such that the diagrams below commute:

K
//J}///” ‘\\\Q:\\
A = & > B

AoA—1=E8L  ,pas
AR K

A DIFFERENTIAL graded module A over K is a graded
module over K together with a K-module homomorphism diA—A
of degree +1 such that d°d = 0, If A is a differential
graded module over K, d is called the DIFFERENTIAL, Z(A,d)
denotes the graded medule Ker(d) over K, B(A,d) denotes
the graded module Im(d) over K, Since d°d = 0, it follows
that B(A,d) is a submodule of Z(A,d). We form the quotient
graded module H(A) = H(A,d) = Z(A,d)/B(A,d) over K, Z(A,d),
B(A,d), and H(A,d) are called, respectively, the CYCLES,
BOUNDARIES, and HOMOLOGY of A,

If A and B are differential graded modules over K,
then the set Hom(A,B) of K-module homomorphisms from A to
B is a differential graded medule over K as well; the grading

- - s




is by homomorphism degree, and the differential is given by

d(f) = d e« f + (_l)Deg(f) fo d, for each f £ Hom(A,B).

B
One checks easily that d<d = 0,

If A and B are differential graded modules over K,
then f < Hom(A,B) is said to be a DIFFERENTIAL K-module

homomorphism if f- dA =dy* - £

A FILTERED graded module A over K is a graded module
over K together with a collection EF"‘A |1 = 0,£1,%2,,..¢
of submodules such that i\‘{'FiA = A and FiAQFjA whenever
i<j. If A is a differential graded module over K then A is
a DIFFERENTIAL FILTERED graded module over K if the filtration
also satisfies d(FiA)c FIA for all i = 0,%1,#2,... If A
is a graded algebra over K then A is a FILTERED graded ALGEBRA
over K if the filtration in this case satisfies FiA-FjAQFi'*jA
for all i = 0,+1,%+2,...3 J = 0,21,+2,;,,

For furthe details on algebraic preliminaries see,
for example, Cartan and Eilenberg [ 7] or MacLane [15].




I, 2, GEOMETRY:

A continuous map of topelogical spaces miY—B is said

to be a FIBRE MAP if B is path-connected, = is surjective,

and any commutative diagram

Px10¢

where P is a triangulable space, can be filled in as shown.
Fixing a base point b, B we define F = u'l(bo). F is

then unique in the sense that the fibres over any two points
have the same singular homology. F is called the FIBRE,

Y the FIBRE SPACE, and B the BASE SPACE. The entire collection
F5Y™B is called a SERRE FIBRATION.

Given a Serre fibration F-5Y-T»B and a continuous
map of topological spaces f:X—B, we form the INDUCED SPACE,
denoted X * pY, by setting X x Y = (x,y) e X*Y | £(x) = w(y)t .
In this case there exist natural projections m*:X x BY—*X
given by m*(x,y) = x and f*iX * gY Y by £*(x,y) = y for
each x #/X and y¢Y, In fact, we have the following commutative

diagram

F * P

.\l n
x e s
X BY > Y
|

o o

v

-
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If X = ibd} is a basepoint of B and f is the inclusion
map, then X x gY = T(x,y) eX*YI£(x) =n(y)y =

=3 yeYlby = n(y)! = F, so in this special case the commutative

diagram above becomes

F

=
—

Sl i

<

0 4

For further details on geometric preliminaries. see,
for example, Cartan and Eilenberg [7 ] or MacLane [15].




1I. THE COHOMOLOGY OF HOMOGENEOUS SPACES
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II. 1, tor, Tor, TOR AND THE TWO-SIDED BAR CONSTRUCTION:

F The major theorem in this chapter expresses, under

certain reasonable hypotheses, the cohomology of a homogeneous
space as a certain torsion product. The proof makes considerable
use of various more complicated torsion products, so it is

| best to describe them first in detail, Each new torsion

product will be seen to generalize the previous one. Thus,

of course, they also become more and more unwieldy; essentially
only the simplest of these products is actually computable,
Roughly speaking, our proof will express the cohomology

of a homogeneous space first in terms of the middle torsion
product, pass to the most complicated, and then in one fell

swoop to the simplest, as we desire,

Each torsion product will be defined in terms of some
form of the two-sided bar construction, It is worth noting
| that in each case the two-sided bar construction could
also be desecribed by defining the so-called bar construction,
tensoring on the two-sides, and noting that the additional

structure, namely the differential, is induced naturally

from the various components,

The bar construction is due originally to Eilenberg

and MacLane [10].

For the remainder of this chapter fix K to be a field.
The following material is valid in a somewhat more general
context but this will not be needed. A will denote a graded

N —
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algebra over K with augmentation ¢, Define A = Ker(e),

Now set ﬁo(A) = K, and, for each positive integer n, write
B (A) =A®...(n)...0%,
Finally set

B(a) = 85 (A).

An element [a,| eeola ] = [a1]®... 8[5‘] € B(A) will have
INTERNAL degree ‘f:; Deg(ai), EXTERNAL degree -n, bidgree
(&Deg(ai), --n), and hence degree ‘}‘;‘ Deg(ai) - n in the associated
graded module over K., B(A) is equipped with a natural

coproduct

ViB(A)—B(A)®B(A)
defined by

(Eall... i a.n]) = i:o[all... lai:l@[ai_‘_ll ...lan],

where [ ] will signify 1<K, There is also a natural counit
7 given by (k) = k for k cKQE(A)O, and 7 = 0 elsewhere,
With this structure B(A) becomes a graded coalgebra over

K.

(a). tor:s

——

Suppose that M is a right A-module and N is a left
A-module, We form the complex M@B(A)® N with the natural

differential dp given by




19|

Deg(m)

dp(n@[ay ... la J®n) = (-1) ma,®[ay...la,]®n +

e D + 1 - i

\ N Deg(m) + > Deg(a;) - p
dE js called the EXTERNAL differential, since it acts on
external degree, We will call the complex

(M@B(A)®@N, dg)

the FIRST TWO-SIDED BAR CONSTRUCTION, Observe that the
signs have been chosen so that dE °dE = 0, The first two-
sided bar construction thus has the structure of a differential

graded module over K,

DEFINITION: We define torA(M,N) to be the homology

of the first two-sided Dbar construction:

tor, (M,N) = H(M®B(A)®N, dg).

| REMARK: It is worth noting that torA(M,N) could be i
defined in considerably greater generality. Specifically, |
one could make use of projective resolutions. See Baum [1],
for example, Then one would check that the first two-sided

|
! bar construction is, in fact, a specific projective resolution.
1

REMARK s There exist relatively easy ways to compute
torA(M,N) in the case where A is a polynomial algebra,
See, for example, Baum and Smith [3] for an exposition of
the two-sided Koszul construction, We will have more to

say about the two-sided Koszu construction in III, In




| ———

the major theorem in this chapter A will turn out to be

a polynomial algebra.

REMARK : Suppose A,M, and N are graded algebras over
K and f:1A—M and g:A—N are multiplicative maps., Then
we can regard M as a right A-module by defining a map
MRA—M by m@a—mf(a), and similarly we can regard N as
a left A-module by defining a map A N—N by a®@n—g(a)n,

(b). Tor:

Now suppose that A is a differential graded algebra
over K, M is a right differential A-module, and N is a
left diffferential A-module, We again form the complex
M®B(A)®N, this time with the natural differential dj =

= dE + dI' where

d(m@[ayl...1a,J@n) = dn®[a;l...|a,J@n +
+ él (_1)DeS(ll) + ﬁ D‘g(aj) - (i-l)m®[all -°-|d31| ooolap:'@n >

+ (_l)Deg(.) + §1D35(ai) = pll ®[a1| ""ap] ®Rdn,

d; is called the INTERNAL differential, since it acts on

internal degree, We will call the complex
(M®B(A)®N, dD)

the SECOND TWO-SIDED BAR CONSTRUCTION. Observe, again, that

the signs have been chosen so that dI < dI = O,diedsﬁzvie,a, and hence
that dD°d'D = 0, The second two-sided bar construction

thus has the structure of a differential graded module




-

over K.

DEFINITION: We define TogA(M.N) to be the homology

of the second two-sided bar construction:
TorA(M.N) = H{M®B(A)®N, dD).

| REMARK s We note, again, that To:A(M.N) could be defined

in considerably greater generality. Specifically, one could

| make use of differential projective resolutions, See Baum [1][2]
or Smith [20], for example, Then one would check that the

| second two-sided bar construction is, in fact, a specific
differential projective resolution. This is essentially

done in Smith [20].

REMARK : There exists, again, a description of TorA(M,N),
in the case where A is a polynomial algebra, in terms of

the two-sided Koszul construction, See Baum and Smith (3]

or III.

REMARK s Observe that by assuming the differentials

on A, M, and N are zero, dI disappears; and Tor is therefore

a generalization of tor.

REMARK 3 Suppose A, M, and N are differential graded

‘
!
|
i
!

algebras over K and fiA—M and giA—N are differential
multiplicative maps. Then we can regard M as a right differential
A-module and N as a left differential A-module in precisely

the same way as in (a).

| REMARK 3 The idea of homological algebra with differential

e - —
— e e




—

operators is due to Borel, H. Cartan, Eilenberg, MacLane,

and Moore. The relationship between homological algebra
with differential operators and homological algebra without
differential operators is the following theorem due to
Eilenberg and Moore [117][12]:

THEOREM 1: Let A be a differential graded algebra over
K, M be a right differential A-module, and N a left differential
A-module., Then there exists a spectral sequence (Er, dr),

called the EILENBERG - MOORE SPECTRAL SEQUENCE, such that

(1). E, = Tor, (M,N),
(ii), E; = H(M)® B(H(A)) ® H(N) with external differential,

i.e., Eq is the first two-sided bar construction on H(M),
H(A), and H(N),
£141). E, = torH(A)(H(M).H(N)).

REMARK : The Eilenberg - Moore spectral sequence is
obtained by filtering B(A) on external degree, that is,

setting
Fqﬁ(A) = {m@[all R Iap:l@nl P‘qg .

For details on spectral sequences arising from filtrations
see Cartan and Eilenberg [7] or MacLane [15]. For a proof

of Theorem 1 in a somewhat more general setting see Eilenberg

and Moore [11][12], Baum [1], or Smith (20]

THEQREM_ 23 Consider the following commutative diagram:




,_':-

Suppose Al' Ay, Mg, My, Ny, and N, are differential graded
algebras over K while f, g, h, a, B, Y, and & are differential
multiplicative maps; thus T°"A1(M1'N1)' T”Az(ml'nl)'
T°rA2(M2'N2)' TorAz(Ml,Nz). and T°rA2(M2’Nl) make sense
by a remark above,

(i), The map BTorg(l,l): ﬁ@B(Az) ®N1—9MI®B(AI)®N1
defined by

§‘rorg(l,l)(m®[al| H—_— iap]® n) = maLal(a;)l... Is(ap)]®n

is a map of differential graded modules and therefore induces

a map

Torg(l,l)s TorAz(Ml.Nl)—»TorAl(Ml.Nl).

Furthermore 'ﬁTorg(l,l) induces a map Torg(l,l)r of the

corresponding spectral sequences such that
1 Torg(l,l)l(n®[al| ...lap]®n) = n®[ge(ay)l... Ig.(ap)]®n.

' (ii). The map BTor,(1,f): M,®@B(A,) ®N,—MN @B(A,)®N
1 2 2! @Ny—M, 2/®@ Ny

defined by
Bror,(1,f)(m@[ay|...|a,]@n) = mala;|... la ] ®f(n)

is a map of differential graded modules and therefore induces

a map |




Torl(l,f)z TorAZ(Mz,Nz)—éTorAz(lz,Nl).

Furthermore §Torl(1,f) induces a map Tor,(1,f), of the

corresponding spectral sequences such that
Torl(l.f)l(m®[all & Iap]®n) = n®[aji... lap]®f,(n) .

(iii), The map ﬁ'rorl(h,l)s m2®'§u2)®n2-+m1® E(A2)®N2

defined by
ETorl(h.l)(nr&[all... iap]@m) = h(a)®[a1i...iap]®n

is a map of differential graded modules and therefore induces

a map

Torl(h,l)s TorAz(Mz,Nz)—*TorAz(Ml,Nz).

Furthermore fTorl(h.l) induces a map Torl(h,l)r of the

corresponding spectral sequences such that
Torl(h,l)l(n@)[all pes mp] ®@n) = hy(m)®[a /... Iap]®n-

REMARK s One way to generalize Theorem 2 would be to

consider Ml and M, to be right differential AI-and Az-nodules,

Nl and N, to be left differential A,- and Az-nodulos, respectively,
and £ and h to be merely differential K-module homomorphisms
which are g-semilinear (This means simply that they preserve

the appropriate module structure). In this thesis Theorem

2 will be sufficient,

)Deg(n) + & Deg(aj) - i.for i

NOTATION: Let o(i) = (-1 kg

each i =0,...,P.
u




PROOF OF THEOREM 2: The proofs that FTorg(l,l), 'ﬁrorl(l,f)

and §Torl(h,l) are maps of differential graded modules are

direct calculations:
(1), dBrory(1,1)(m®[ayl...1a,]®n) =
d(n®[e(ay) ... g(ay)]@n) = o(0)(mpe(a))® Lel(ay) ... g(ay) J®n) +
£ o(1)(m®[8(ay) ... 18(a;)8(a54) ... I6(a)]EN) +
o(p) (m@[e(ay)l ... l&(2,_y)]eugla )n) + dndlglay)i... lg(ag)]en +
é o(i-1)(m®[&(ay) ... idg(ag) .. Ig(ap)]em) +
o(p) (n@[ela) ... lg(ay)]®an) =
o(0)(mBg(a,) ® [&(ay) ... lg(ay)]@n) +
go(i)(m®[g(a1)l eoolglagagig)ien. |g(ap)]®n) -

é o(i-1)(m®[g(a;)l el glda;) (... lg(ap)]®n) +
o(p)(m@[e(a;)i... Ig(ay)]@dn) = §T<n:'g(l.l)d(meal'_mll .enlagj@n),
(313, dﬁTorl(l.f)(m@)[al;...iap] @n) = d(m@[a; /... iap]®f(a)
°(0)(m6(a1)®[azi...|ap] ®f(n) +
¢
|Z o(i)(mlag|.e.lagagiylee la,]®f(n)) +
o (p)(m@[a,| ...iap_1]®fv(ap)f(n)) + dm®[a,| ...iap]®f(n) »

f: o(i-1)(m@[a;l.c.lda;le. iapJ®f(n)) >

L o f oo . ml B
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a(p)(m@[ayl... Iap]®df(n)) = 0(0)(mé(ay)®Lay ... uap] ®f(n) +
.?} o(i)(m®[all eeolazag olae, iap] ®f(n)) +

o(p)(m®[a,] ...lap_l]®f(v(ap)n)) + dn®[a1!...|ap] ®f(n) +

£ o(1-1)(m@[al ... dasl ... la J@F(n)) +

ia(p)(t\u&l’,all lap]®f(dn)) = BTor,(1,f)d(m®[a,/ ... lap]®n).

(1ii). 'The proéof of (iii) is-completely analogous to the
proof of (ii),

The remainder of Theorem 2 now follows immediately.

COROLLARY 33 Under the conditions of Theorem 2,,.
(1), 12 g,:H(AZ)—+H(Al) is an isomorphism, then so is

~
T°rg(1*1)'T°?A2("1'"1)*’°?A1("1'Nl)'
(ii), 1t f,:H(Nz)—+H(N1) is an isomorphism, then so is
~
Torl(l,f):TopAz(Mz,Nz)»Tor‘z(Mz,Nl).
(iii), If hysH(M,)—H(N;) is an isomorphism, then so is
®
Torl(h,l)zTopAz(Mz,Nz)»To:Az(Ml,Nz).

PROQF 3 In the Eilenberg - Moore spectral sequence the

induced maps Torg(l,l)l, Torl(l,f)l and Torl(h,l)l are

isomorphisms, !
|

DEFINITION: Suppose A and B are differential graded
algebras over K and f,g:A—B are differential multiplicative
maps. We say that f and g are STRONGLY CHAIN HOMOTOPIC

— T e mm—




AS MULTIPLICATIVE MAPS if there exists a sequenceiDo,Dl,Dz,...\

of K-module homomorphisms, with p%:k —B and, for each positive
integer n,

n

D H ‘@oo'(n)ooo®A—.’Bo
such that

(i), D™ has degree -n for each n,
(ii). DY is the identity,
n 5 n

= £ o)D" 2,0 ... B8;8;,,9 ... Ony) +
+ o(m)D"(a;@ ...0 &, _1)(a,) - o(L)e(a)s" (8, @... @2y).

WARNING s The summation on the left hand side of (iii)

is not # Dnd; the discrepency is due to exterior degree.

THEOREM 43 Suppose A, M, and N are differential graded
algebras over K, and f,g:A—N and h:A—M are differential
multiplicative maps, If f and g are strongly chain homotopic
as multiplicative maps, then Torx(M.N) is unambiguously
defined; that. is, TorA(M.N) is the same whether N is regarded

as a left differential A-module via f or via g
(Tor, (M,N))p » (TorA(M.N))g.
An analogous result is true for TopA(N.M): |
(Tor'A(N,M))f & (TorA(N,M))g.

PROOF We form M®B(A)® N with the differential d,
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obtained via f and with the differential dg formed via g.

Now construct the map
BD*: (M®@B(A)® N, dg)—>(MRB(A)®N, d,)
by setting
P
= _ p-i .
BD*(m@[all aie ® lap]@n) = ?'m®[al| tee |ai] @D (ai+l® R ®ap)n'

We claim that BD* is a map of differential graded modules;
the proof is a direct calculation: déﬁD*(m@[al e ap:l@n) =

ié o (0)(mh(a;)®[ayl...| "i]®Dp-i(ai+1® ee®@ap)n) +

f

ELo(j)(m®Lay)...lagas,l... lai]®Dp'i(ai+l® oo @ap)n) +
v

lz'oa(i"'l)(m@[all LU 'ai]® g(a1+l)Dp-i-l(ai+2® L n®ap)n) +

, .
§° dm®[all oo Iai]® pri(‘“l@ eee® ap)n +
i .
tLo(j-1)(me[ayl...ldayl ...lai]®Dp 1(“14-1@ cee®apin) +

éﬂ(i)(m@[all tai]® de'i(ai+l® ...®ap)n) -

£ g(1)(-1)iRe8(a) (01 (no[a|...1a,]00P  ay,,0... 02 )an) =

l".l

) -1
[f‘o“(o)(mh(al)@) Lagfeee lai:l@Dp (85,19 ... ®ap)n) -
é %}ta(:))(m@[ali e lajaj_’_ll Iai]®Dp°i(ai+2® ...®ap)n) -

? -
L amola, ... a;]00P (a5, 9. @8,)n +

o

;- o(j-1)(m®[a,l ...ldajl...nai]®Dp'1(ai+1®...®ap)n) -

% M

e i

éj(p)(m@[all . .|ai]®Dp'j‘(ai+l® oo .59ap)dn)] +

-
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éo o(i)(m®[a,| ...|a1]®de"i(ai+1® cee®ap)n) +

2 o(i+1) (m®[ayl... |ai]®8(ai+l)np‘i'1(ai+2® oo @a,)n) ]
éo a(O)(mh(a1)®[a2\ _— a.i:lg)Dp"j'(ai+l Rewo @ap)n) +

:o g:j o(j)(“‘@ [all s lajaj'.‘l e ’ai]®D‘p-i(ai*l® 0o-®ap)n)

M

0

[

-1
dn®[a,l...la;]@0P (23,18 ...0a )n +

' o(j=1)(m@[a;l... 1025l ... a;J® Dp"i(aru@ cee@ag)n)

*1

AL
™M~

-

é_, °(p)(n®[a1 s sa t‘i?@np-i(‘i,‘,l@ ﬁqt@p)dn)}"

Fro(1)(-1)2Dee(ay)~(3-1-1) (ngia |...|a; J0P (2, 0. . 008 0. . .80 )0

#o =il

2% o(j)(mplayl...la;]00P Hay, @ ®a5a5,,8 ... @a)n) +

=0 rin

. o(p)(m@[a;l... ia1]® Dp'i'l(ah_l@ e e® ap_l)f(ap)n)] =

a(0) (mh(al)® [azl cee lai]® Dp-i(ai+l® e ®ap)n) »

{z0
é ‘21 0(3)(11!@[&1' '] |ajaj+ll eer Iai]@Dp-i(ai.'_l@ "'® ap)n) 5

v §*L

i ad(.’i)(m@)[all eeslagl® pPi e, 00 cee®2485,10 «0Bap)n) +

2 o(p)(m@[ay ... 12 JODP Hagy @ .0 @0y ) apIm) ] +

bl

z dm®[all o Iaj_]@Dp'j'(ah_l@ i ®ap)n -

1z®

o(§-1)(m®[ay ... ldag ... 1a;]8DP H(ag ) ® .. Bap)m) +

M-
ZM-

o

o(3-1) (m@[ay ... 18;1@DP M ay, ) ®... 0da;®...0a ) +

M
M
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-

L

-

iiw 0’(P)(m®[all...|aiJ®Dp-i(ai+l® v ap)dn) =




= ED*df(m®[all oy iap]® n). Therefore BD* induces a map
D¥; (TO?A(M,N))f—*(TOpA(M,N))g.

Furthermore BD* induces a map D*r of the corresponding

spectral sequences such that

p*,(m@[a;|...12,]@n) n®la,! ...lap]®D°(1)n =

m@Layl ... Iap]®n.

Thus D*, is the identity on E; = H(M) @B(H(A)) @H(N).

The second assertion of Theorem 4 is proved analogously.
REMARK & Observe that D1 must satisfy, up to signs,
le-Dldzf-go

Thus Dl is a chain homotopy between f and g. It is interesting
to note that a stronger condition than just a chain homotopy

is necessary to guarantee an isomorphism of Tor here.

In the special case where A is a polynomial algebra, however,

a simple chain homotopy is gufficient., The proof of this

fact depends on an explicit calculation involving the two-
sided Koszul construction, and will be needed in III,

See Baum and Smith [3] or III for details.

(e). TOR:

R

In Theorems 2 and 4, the comparison theorems for Tor,
it is obvious that the fact which makes the proofs go through
is the existence of a map of differential graded modules

— — e e o e
e —— T




between the appropriate two-sided bar constructions, The
following question therefore naturally arises: What are

the most general conditions under which there exists such
a map?

The answer is precisely the shm theory due to Clark (8],
Stasheff [21][22], and Stasheff and Halperin [23]. These
papers, particularly Stasheff [21], will serve as basic
references for (¢). Unfortunately only Clark [8] and Stasheff
and Halperin [22] have appeared in print,

NOTATION: For convenience let S(n,k) denote the eollection
of all k-tuples of positive integers whose sum is n:

K
S(nrk) 2 i(ilootﬁvik)| iz'l 13 »” n‘(0
We begin with a result due to Halperin:

THEQREM 5: Suppose A and B are differential graded

algebras over K, and {fl'fz’fB”"l is a sequence of K-module

homomorphisms with

fn‘ A@ .l.(n)OOOQA——)B

for each positive integer n, such that fn has degree l-n
for each n, Then the map
Bf,s B(A)—B(B) |
|

defined by

Bry([ayl ..o 1,]) = E202; (819 000@2y Moo 125 (g 41° e8a)]

o S




[ 7
is a comultiplicative map.

| REMARK 3 In fact, the above correspondence is one-to-one,

PROOF OF THEOREM 53 We simply observe that

(Bf,®Bz,) V([a;l...la,]) =

| = (B1,®88,)(Z (a)l ... 1818 a5, | 00 lay]) =

L -~ ]z:o (§‘$§.Ki[fil(al® e e® ail)loo- ifik(aj-ik"‘]-@..' @aj)] @
OLE [ (5)® . 0e@agy; Nleeelfy (Ay 5 1® ee®a)] =

x05(n-3,K0 2

= VBf.([ajl... la 1.

NOTATION: Now regard B(A) as a differential graded
coalgebra over K by identifying B(A) with the canonically
isomorphic K®B(A)® K and imposing the differential d
of the second two-sided bar construction.

THEOREM 63 Suppose A and B are differential graded
algebras over K, and ?fl,fz.fy...} is a sequence of K-module

homomorphisms with

fn‘ A@uco(“)oo.@“'—’n

for each positive integer n, such that
(1), £, has degree 1 - n for each n
(ii). dfn(.vl® l!'@&r‘) ad ;ﬁﬂ a(i-l)fn(a].@ooO@d‘i@ 0008 .") =

ni
! - §1 a(i)[fn_l(a1® see ®aiai+l®. n* ® ah)

[L- fi(a].@ T ®-ai)fn__-i(ai+l® cee ®’~n)]'




r

Then the map
Bf,: B(A)—B(B)
is a differential comultiplicative map.

DEFINITION: A sequence: ifl.fz,fB....i satisfying the
conditions of Theorem 6 is called a STRONGLY HOMOTOFY
MULTIPLICATIVE map (or simply an SHM map) from A to B.

! Sometimes, by abuse of notation, the first map flsA~+B

is called shm,

REMARK s In fact the mapping A from the set of shm

maps from A to B into the set of differential comultiplicative

maps from B(A) to B(B) defined by

A(1f),55,85,..00) = B,

is a one-to-one correspondence.

WARNING s The summation on the left hand side of (ii)
in the definition of an shm map is not fnd; again the

discrepancy is due to exterior degree.
REMARK 3 Observe that f2 must satisfy, up to signs,
(di’2 - fzd)(a1®a2) = fl(alaz) - fl(al)f_l(az).

Thus f, is a chain homotopy measuring how far f, deviates

I from being a multiplicative map. f3 is a chain homotopy

of chain homotopies, and so on.

L_fEMARK: Suppose A and B are differential graded algebras




over K and f:A —B is a differential multiplicative map.
Then the sequence if,0,0,0,,..5 is clearly an shm map,
Unfortunately, even if the first term fl of an shm map
ifl.fz.fB. eee! from A to B is a differential multiplicative
map, it does not follow that £, = f3 = fh™ see™ Gy

ELEROOF OF THEOREM 6: Pick an arbitrary element (il....'.ik) ¢t S(n,k

d an arbitrary element j¢ il,...,k! . Let 6(p) denote
E

P
__ i Now note that

m.
(i). in the expression dD'ﬁf,([all... Ian])

(a), the term [fil(a]_@... ®a9(1))| -

|lfm(ae(j_l)+l ®o . '®ae(j—l)+m)fij-m(a9(j-l)+m""l® L] @ae(j))'ccti

lfik(ae(k-l)-t-l@;;;@ an)] appears once for each mE{l,...,iii ;
ith sign o(6(j=1)+m), arising from
(il,ao..ij_l,m.ij-m,ij+l,....ik) SS(n,k'.‘l)’

q (b). the term [fil(al®...®a°(l))|...|

ppears once, with sign o(0(j-1)), arising from (11""'ik) £ S(n,k);

(ii), in the expression ﬁf*dD([all aa ian])

(a.). the term [fil(a1® cco@ae(l))lo-ol

'fij-l(ae( j-1)+1® e ®a°( j-l)+mae(j-l)+m+l® LU ®ae(j)) 'o . .I

5 (2g(x-1)+1® ...®a_ )] appears once for each m:il,...,igl{,

=
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rith sign g(e(j=-1)+m), arising from
Fil.""ij-l’ij-l'ij+l’...’ik) £S(“"lak)'

(b). the term [fil(a].@'”@aﬂ(l))i""
iwij(ae(j-l)"'l@.'.@ daa(j_l)+m®...®a°(j))|...l
ifik(ae(k-l)i-l@ ...®an)] appears once for each mfil.....ijf "
rith sign o(6(j=-1)+m=-1), arising from

Kilo -o-oij_lomoij'moij+1' -ocoik) t S(n.k+l).

odding out by the sign o(j-1), we notice that (i) and (ii)
ancel, Finally, dBf,([a;l.../a,]) is the sum of the

erms (i)(a) and (i)(b) over all choices of (il,...,ik)s S(n,k)
d j¢il,...,kf, while Bf,([a;i...1a,]) is the sum of

he terms (ii)(a) and (ii)(b) over all such choices,

his completes the proof,

EMARK : Even normally simple operations tend to be
omewhat subtle when dealing with shm maps, For example,..
(i). Suppose A,B, and C are differential graded
lgebras over K, {fl,fz,f3,...} is an shm map from
to B, and Egl,gz,g3,...§ is an shm map from B to C,

e must define the composition shm map
3g19g2’g3’ . l.zo ifl'fz.fB' . '1
rom A to C by the rule

A MM 80 85, 0o o] )M Tp0 g0 en )

- m——




There are two important special cases: If {fl,fz,fj....i
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is an shm map from A to B and g is a differential multiplicative

map from B to C, then we have
({g,0,0,0,,,,} oz(fl'fZOfB,..O% )n .. 8°fn.

If £ is a differential multiplicative map from A to B
and ?gl.gz,gB....§ is an shm map from B to C, then we
have

(§g1|g2!g3""s°Efpooonogct-})n = gn"(f®o--(n)... ®f)o

(ii), Suppose A,B,C, and D are differential graded
algebras over K, }fl.fz,fy...f is an shm map from A to
B, and igl,gz.gB....'; is an shm map from C to D, We would
like to define the tensor product shm map

jfl'fZ'fB' cuo] ® §g1'82083! LA .}

from AQC to B®D, We can do this, but there is an unnatural
choice to be made, We can define the shm map

{fl!fZ'fB'--ts ®§l,0,0,0,...‘(
from AQC to B®C by setting
(ifl'f2lf3!lco} ® zlioloiootoj)n(hl® cl)@!oo@(%@Cn)) =
= fn(a1®"'®ah)®°1“'°n'
Similarly we can define the shm map

11,0,0,0,...] ®1g,,85,85, ]
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from B®C to BOD by setting
(11,0,0,0,...1 ®ig),8,,85, 0041 ) ((B;@¢1)B...® (b, ®c)) =
= bl...bn®gn(cl®...®cn).
Finally, we can define the shm map
?fl'fZ'fB"'O}®iglngzng39-o-}
from A®C to B®@®D as the composition
(ilefZDfBOOOO}Q({]’OOOO!O'OCO})o(ilooooyo'oco}®§gl|g2'g3|u|o¥ )-

The unnaturality arises because we could just as well define

the above tensor product shm map as the compositon
(3190’0,0'-ut}®?g1'g21g3,ooo} )o(Qfl'fz'fB'oo.}@ilpopogognoo} )c

We do not believe that the two definitions above necessarily
coincide, In any case we shall have no occasion to use

this general form of the tensor product shm map,

THEOREM 73 If A and B are differential graded algebras
over K and ?fl.fz.fB,...S is an shm map from A to B, then

the map Bf, induces a map
. B TorA(K,K)—*TorB(K,K).

Furthermore Bf, induces a map f*r of the corresponding

spectral sequences such that

f*l([al""'anj) = [fl*(al)""ifl*(an)]'

CORULLARY 83 Under the conditions of Theorem 7, if




fl,:H(A)—*H(B) is an isomorphism, then so is

£y TopA(K,K)liTorB(K,K).

REMARK 3 Theorem 7 and Corollary 8 may be regarded as

a preview of the analogs of Theorems 2 and 4 which are to

come, First, however, we must look at more general structures:

DEFINITION: If A is a differential graded algebra
over K then a LEFT STRONGLY HOMOTOPY A-MODULE M(or simply
a left SH A-module) is a differential graded module over
K together with a sequence Egl.gz.gB....S of K-module

homomorphisms with

&yt A® ;..(n)...2ARM—M

for each positive integer n, such that
£1). g, has degree 1 - n for each n

(i), dg,(a;®...®a,® m)

g O‘(i-l)gn(al® ...@d&iQ L ®% ®‘ m)

1

1]

3.‘.!1 o(i)[g,_1(2,© ... ®2;8;,1®...02, ®n)

gi(a].@ vee® ai ®%_i(ai+l® R Q%Q m))]-

The notion of RIGHT STRONGLY HOMOTOPY A-MODULE is defined

analagously.

REMARK s Said differently, a sequence Egl,gz.gB,...?
exhibits M as a left sh A-module provided the sequence

En: A®,..(n)...® A—>Hom(M,M)




of adjoints is shm,

REMARK ¢ Observe that g, must satisfy, up to signs,

(dg, - g,d)(a;®a,®m) = g(a,a,®n) - g (a,8g;(a,®n)).

Thus g, is a chain homotopy measuring how far g, deviates
from providing the structure of a left differential module.
g4 is a chain homotopy of chain homotopies, and so on,

1 REMARK s Suppose A,M, and N are differential graded

algebras over K, ifl.fz,fB....} is an shm map from A
to M, and igl,gz,gB,...} is an shm map from A to N,
Then we can regard M as a right sh A-module and N as a

left sh A-module by defining the sequence
L MOA®,.e(P)ees @AM
by the rule
_f;_p(m®a1® ...®ap) = mfp(al®...®ap).
and defining the sequence

gp’ A® -..(P).n® A@ N—‘)N

by the rule
= ..0® L I
g,(2;9...@ a,® n) = g (a, ® a,)n
CONSTRUCTION: Now suppose that A is a differential

graded algebra over K, M is a right sh A-module via the |

sequence ﬂfl,fz,f3....} , and N is a left sh-A-module

h via the sequence{g].gg,g ,eeet o« We again form the complex




M®B(A)® N, this time with the natural differential d, =
= dI + dS' where

dg(m@[ayl ... lap]®n) =

éIO(-o )(fi(m®a1® ven Ga1)® [ai"'ll..' |ap]®n) o

-1
+ :‘Z'lo(i)(ms’[all... azag qlees ap] ®n) +

+

|
L o(ipi)(me [a)!...la;]®8, ;(8;4,0 ... @2,® n)).

dS is ecalled the STRONGLY HOMOTOPY MODULAR (or simply the
SHM) differential, We will call the complex

(M®B(A)®N, dyp)

the THIRD TWO-SIDED BAR CONSTRUCTION, Observe, again,

that the signs have been chosen so that ds°dS + dg° dI +
+ dI°dS = 0 and hence that dT°dT = 0, The third two-sided

bar construction thus has the structure of a differential

graded module over K.

DEFINITION: We define TORA(M,N) to be the homology
of the third two-sided bar construction:

TORA(M,N) = H(M®B(A)®N, dq).

REMARK : Although we believe it is possible, we do

not yet know how to define TORA(M,N) in greater generality.
In particular, it would be extremely useful to be able

to describe TORA(M,N) in the case where A is a polynomial

algebra in terms of some form of two-sided Koszul construction,

as results in III will suggest,
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REMARK Observe that if M is a right differential
A-module via a map f:1M®A—M and N is a left differential

I A-module via a map gitA® N—N, then the sequence if,0,0,0,...!
exhibits M as a right sh A-module, the sequence ig,0,0,0,...]
exhibits N as a left sh A-modiile, and we have dS = dgs

thus TOR is a generalization of Tor.

REMARK : Again filtering B(A) on external degree, the

proof of the following analog of Theorem 1 goes over essentially

word for word;

THEOREM 93 Let A be a differential graded algebra
over K, M be a right sh A-module, and N be a left sh-A-module,
Then there exists a spectral sequence (Er, dr)’ which

we will also call the EILENBERG - MOORE SPECTRAL SEQUENCE,

such that

(1), E, = TOR, (M,N),
(ii), E, = HM)® B(H(A))® H(N) with external differential,

I ; T El is the first two-sided bar construction on H(M),

H(A), and H(N).

tiik)s E, = torH(A)(H(M),H(N)).
THEOREM 103 Consider the following commutative diagrams:
3 _ . A
va— Al ’MZ
nt gnI hy

,®. ..(n)...®N2&MA2®...(n)...@Azwuze...(n)...@mz

e
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Suppose Al' Az. Ml' Mz, Nl, and N2 are differential graded
algebras over K while {fl,fz.fB,...} ' §g1.82.83.---f ’
and 3hl,h2.h3,...§ are shm maps, and a, B, Y, and & are
differential multiplicative maps; thus Tor, (Ml'Nl)'
1

TORAz(Ml'Nl)’ TO:AZ(MZ'NZ)' TORAZ(Ml'NZ) and TORAZ(MZ'NI)
make sense by remarks above,

(i), The map 'B'TOR&(I,I): M, ® B(A,)® N;—M;® B(A;)® Ny
defined by

'BTTORg*(l,l)(m@[all P Iap]®n) = m®Bg,([a;!... Iap])en

is a map of differential graded modules and therefore

induces a map
TOR&(l,l): TORAZ(MI'NI)_’T°rA1(M1’N1)'

Furthermore 'ﬁTORg*(l,l) induces a map TORg,(l'l)r of the

corresponding spectral sequences such that
TORg*(l,l)l(mta[all . o iap]a n) = m@[gl,(al)l — igl,(ap)]Q n.

(ii), The map BTOR,(1,f,)s Mza'fugmuz—»mzobﬁ(rl)@nl
defined by
'B—TORl(l,f')(m@[all...|ap]8n) =
9
L mela)l... lag1@ £ 5.9 (v(a;5,7)® .. ®y(ay)@n)
is a map of differential graded modules and therefore

induces a map

TORl(l,f*)t TorAz(Mz,Nz)—*TORAZ(MZ,Nl).
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Furthermore §TORl(1,f,) induces a map TOR,(1,f,) of the

orresponding spectral sequences such that
TOR,(1,£,);(m@[a;l... 12 ]®n) = m@[a;l...12,]0F),(n).

(1ii). The map BTOR,(hy,1): M, ® B(A,) ®N,—My ®@B(A,)@N,
defined by

§TOR1(h.,.l)(m®[all...Iap]®n) =
%chi.._l(m ®°(al)® e ®6(ai))®[ai+1| - |ap]@n

is a map of differential graded modules and therefore

induces a map
TORl(h,.l): TogAz(Mz,Nz)—+T0RA2(M1,N2).

Furthermore 'B'TORl(h,,l) induces a map TOR,(hy,1) of the

orresponding spectral sequences such that
TORl(h,,l)l(me[all... lap]®n) = Dyu(m)® [all cee Iap]QDn.

PROOF ¢ The proofs that 'B'TORg*(l,l), BTOR,(1,f,), and
TORl(h,.l) are maps of differential graded modules are

iirect calculations:
(1). dD'B-TORg*(l.l)(EQI:all...lap]®n) =
i, (m®Bg, ([ay(...12,])®@n) =
§1“°)(m3(51(a1® ...®a1))®§g*([ai+1| e |ap])®n) *

gidp)(m®§g*([all veela; )@ dg, ;(85,7@ ..o ®ay))n) +




Ll

dm@ﬁg,([all ...Iap])®n - a(p)(m@ﬁg,([alh.. Iap])®dn) +

a(o)(mcx:dn‘ﬁg,([all...nap])®n) =

Mo

g(0)(mB(g;(a;® ...®a;))@Bgy([a,q ... lap])® n) +

-1

-

.

o(p)(m@Bey([a;!...la; ) @alg, ;(2;,,1@...@a,))n) +

v

MY

dn@Bg,([a;/...1a,])@n ++ o(p)(m@Bg,([a;/...1a,))® dn) +
|0(0)(ln®§g.dn([all...iap])@)n) = 'B'TOR&(I.l)dT(mQ)[all...iap]®n)-

(ii)., dyBTOR,(1,f,)(n®[a,!... lap]®n) =

éodT(m® [all e lai] ®fp_i+l( “ai"_l)@ sosn ® \(ap)® n)) —
T dn® [all pak lai]®fp_i+l(y(ai+l)® e e ®Y(ap)®n) -
5 £1 o(j-1)(m® [a;1... dasi... 231 ®F,_3,1(v(23,,)@ e@y(ap)@n)) +

}E o(i)(m@[all i lai]®dfp_i+l(v(ai+l)® e ®Y(ap)®n)) -

:;.“. 0(0)(m6(a1)®[a2| Iai]®fp_i+l(y(ai+l)® ...®y(ap)®n)) -

-

§ o(§)(m@[agi..vlazazylee. 2 1@, _541(v(234,)@ ey (ay)®n)) +
L o(3)(m@Layl..slag]@F; s (Waz))® ... Dxag)fp sun(Hay,)@

=1

-

.0 ®¥a )@ n)) = £ dn®[a;l... 2] OFf ) _j41(N2g4y) @ oo Or(a)@n) +
%aiﬂc(:]-l)(m(?[all... lda sl ... 1a; 1 @F ) _54y(¥(a5,,) @ .ee@y(ay) @n)) +

‘3:? 0(§=1)(m®@[ayl...1a;]@F 5.1(¥(85,7)® ..o ®y(da;)® ...® "

!

'.:M\:

Y(ap)@ n)) + §?(p)(m®[al| ved Iai] ®fp-i+l(Y(°‘i+f ®.. .@v(ap) ®dn)) +

e e —— s o




b5

fca(O)(mb(a1)® [azl aon lai]®fp_1+1(y(ai+1)® ®Y(ap)® n)) +

éo J)'.J‘ o(J)(m@[ayl.eelazagy oo lai]®fp_i+l(v(gi+l)® . ®y(ap)®n))

léd :zhlo(j)(m®[a1| LA 'ai:‘@fp_i(Y(ai.._l)@ 000®Y(ajaj+l)® eee @Y(apﬂn)

i 1£‘°(p)(m®[al| e 'aiJ ®fp-i(7(ai+l)® e ®Y(ap_l)® Y(ap)n)) L

ETonl(l.f,)dD(mMall I |ap]®n) ‘

| (iii)., The proof of (iii) is completely analogous to

the proof of (ii).
The remainder of Theorem 10 now follows immediately.

COROLLARY 11: Under the conditions of Theorem 1054
(i) I gl*;H(Az)—eH(Al) is an isomorphism, then so is

~
TORg*( 1,1) 'TORAZ(MI'NI)-’T°rAl(M1'N1) .
L b P - 4 fl,:H(Nz)—aﬁ(Nl) is an isomorphism, then so is
I ~
TORI( 1,1’*) zTorAz(Mz,Nz)—»TORAZ(Mz,Nl) &

(331). Ix hl*'H(Mz)‘*H(Ml) is an isomorphism, then so is

TOR, (hy,1) cTorAz(Mz,Nz)—iTORAz(Ml,Nz) b

PROOF's In the Eilenberg - Moore spectral sequence the

induced maps TORg*(l,l)l, TORl(l,f,)l, and TORl(h,,l)1

are isomorphisms,

DEFINITION: Suppose A and B are differential graded

algebras over K and §f1,f2.f3....} and 3g1.82.83.--3

are shm maps from A to B, We say that ?fl,fz,fB....}
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and fgl,gz,gB,...k are STRONGLY CHAIN HOMOTOPIC AS SHM
MAPS if there exists a sequence iDO,Dl,Dz,...J of K-module

homomorphisms with DO:K-aB and, for each positive integer n,
n
D : A@onc(n)O'.®A‘—’B'

such that
(i). D™ has degree -n for each n,
(ii). D0 is the identity.
n
(111), d0™(8,® ...®a,) - & a(i-1)D%(a;®...®da; ®...Pap) =

,El (i n"l
Zo(i)p"" (2,9 ...9258;,7,®... Qa ) +

n-1
+ §10(A'\~)Di(al® vee®ag)f 1(8;,,0...9 a)

o n-i

REMARK s Observe, of course, that the notion of strongly
chain homotopic shm maps generalizes the notion of strongly
chain homotopic multiplicative maps in the usual way.

THEOREM 12: Suppose A, M, and N are differential graded
algebras over K, and %fl.fz.fa....? and igl.gz.gB.-..3
are shm maps from A to N, while Ehl,hz,hB....} is an shm
map from A to M, If if;,f,,f5,...0 and 181 18p1850 00 o
are strongly chain homotopic as shm maps, then TORA(M,N)
is unambiguously defined; that is, TORA(M,N) is the same

whether N is regarded as a left sh A-module via f or via g:
(TORA(M,N))f* ~ (TORA(M,N))g*.

An analogous result is true for TORA(N,M):

s e  — - e




(TOR, (N, M) g = (TORy(N,M))

PROOF 3 We form M®B(A)® N with the differential dp
L 3

obtained via if £, | and with the differential

3,0.!

dg' obtained via igl,gz.gy...} . Now construct the map

BD*: (M®B(A)®N, d, )—(M®B(A)ON, d_ )
Ty Ex
by setting
BD*(m® [ a_]®n) = £ m®[a,| ia ]@Dp'i(a Q ®a_)n
m® al' L N ) ‘ap ®n i.a l LN J i i+1 L ) p L

We claim that BD* is a map of differential graded moduless
the proof is a direct calculation: dg.TB'D*(m ®[aylees lap] ®n) =

. 0(0) (mhy(2,© .+« ®a5) ®Lagy e Iai]®Dp"i(ai+l® o0 @a,)n) +
;:' c(j)(m®[31| e lajaj+1| R 'ai]®Dp-i(ai+l® ...@ap)n) +
S5 a(j)(m®[al| L '313983_1(314_]_@ e ®aj)Dp-j(aJ+l® "o ®ap)n) 02
dm®[al ...lai]®D i(ai+l®o--®a )n+
. a(j'l)(ﬂ@[all o |daj lewe Iai]®Dp-i(ai+l® s ®ap)n) +
i c’(i)(m&)[a\ll T lai]®de'i(ai+l® ®ap)n) +

f o(p)(m@[aji... |a1]®Dp'i(ai+1® vrs @2 )dn) =

oz 0(0)(mhj(a1® ...®aj)®[aj+1| ...lai]®Dp'i(ai+l® ...®ap)n) +

{3 o(j)(m@Lay i 8385000000 Iai]®Dp'i(ai+l®... ®ap)n) +

z am® [all e |ai]®Dp-i(ai+l® ooo@ap)n +

{9




)§: .l a(j-l)(m®[all cee lda,‘] leee lai]®Dp-i(ai+l® aee ®ap)n) »
>

Q(p)(m@[all ok |ai]®D j'(aj_,,,l@ e da )dn)] -

Tzo a(i)(m®[a1' o0 lai:l@dnp-i(ai_',l@ e @ap)n) +

L %,NJ)(m@[all oo la;]@gs_g(a547@ 0 @aj)Dp‘j(aj+l® se®@a)n) ] =

°(0)(mhj(a1®.. ®aj)®[a3+1|...la1]®D (ai+l®...®ap)n) -

p-i
. lajaj+1l...|ai]®D (ai+1®...®ap)n) +

p-i ;
ll ...lai:l@D (ai.’_l@oo.@ap)n +

ﬁ Jzi’ o(j‘l)(lﬂ@ [all oao'dajlocolai]®n i(ai-fl@"‘@ap)n) -

ro

; LZ’ o(p)(ﬂ@[all ere 'ai]®Dp-i(ai+l® "’®ap)dn)] +

e ¥
{ [z, z O(j_l)(m® [all TR 'ai:,@Dp i(ai+1® cee ®daj® e @ap)n) +

9 )

Lz °(j)(m®[al ...lai]®Dp -1- l(al,.,l@...@aj j+1®...®a )n)

139

+

?

2 5: ,9(0)(mh4(2,® .92 )®[aj+l|...|ai]®Dp'i(ai+l®...@ap)ri) +
' G(5) (m@Lagl vee 88,1 <n18g] @F Ay, @0 @agIn) +

. 6(5)(m®[ayl...12;]®DP S l(ai+1®'"®a333+1® .oBa )n) +

2 L

?

°(p)(M®[all ""ai]®D i(a.i__'_l@ i ®aj)fp j(ai,._l@...@ap)n) +

7 p-i
L dn@[ayl...12;1®D° 7 (a;,1® ... Qap)n +

? p-i
,r:,}l:.,°(j-l)(m®[all...ldajl...lai]&Z’D (ai,._l@...@ap)n)*'




o )

 /
p-i
2L o(i-)(m@la;i...1a;]®D"(a;,,®...0da;® ... D2 )n) +
? p-i &
£ o(p)(m@[a;l...ia; ]®D"(a;,,©...@a )dn)
BD*d, (m@[ayi... Iap]®n). Therefore BD* induces a map
*

D* (TORA(M,N))f:»(TORA(M,N))&.

Furthermore BD* induces a map D*r of the corresponding

spectral sequences such that

D*; (m®[a; ... lap]®n) = m®[a, ... Iap]®D°(l)n .

= m®[al' see ‘ap]gno

Thus D*; is the identity on E; = H(M) ® B(H(A)) ®H(N).

| he second assertion of Theorem 12 is proved analogously.
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II. 2., THE SHM MAP FROM H*(BG3;K) INTO C*(BG;K)s

For the purposes of the main theorem of this chapter
we shall require our shm map {91,92,93....‘; from H*(BG;K)
into C*(BG3;K) to have certain very desirable properties.
However, to begin with we shall simply sketch an existence
proof for an shm map {ﬂl.ﬂz,ﬂa....} without any particular

special properties,

DEFINITION: Let A be a differential graded algebra over
K and A denote its multiplication. A is said to be STRONGLY
HOMOTOPY COMMUTATIVE (or simply SHC) if A= Ay is the first

term of a sequence ;4 ,, By By ... of K-module homomorphisms

with

An' A@oou(zn).co®A"‘A

for each positive integer n, such that
(i). A [ has degree 1-n for each n,
(ii), If we denote by c; the element a; @by ¢ A®A, for

each i = 1,,.,,n, then (dA + A d)(e,® cee®c,) =

n-l

i
= z -l "o Cc --o®c )
Z(-1)7(A 5 (010 .::@040443® n

- Ai(cllm v-o® ci) An-i(ci'.'l@ c..@cn))o

WARNING: We are nearly saying that A = A 1 is the first
term of an shm map 1A, 8,, Agyeee | from A®A into A,

but not quite; the discrepency is, as usual, in the signs,

REMARK 3 Cconsider the cochains C*(X;K) of a topological




space, Recall that C*(X;K) is a differential graded algebra

over K with multiplication given by o -product
Ut C*(X3K)® C*(X3K) »C*(X3K).
Recall also that there exists a o 1—product

Uqt C*(X3K)® C*(X;3K)—=C*(X;3K)

which makes our o -product homotopy commutative, i.e.,

(1). u, has degree -1,
(11). d(ayb) = ab - (-1)Pes(@)Dee(®py _ aay v

- (-1)Peel@), |, ab,

(iii). (abu,e)

(1ii) is xnown as the HIRSCH FORMULA. It is interesting
to note that no such anaolog of (iii) exists for (aulbc).

The following theorem is based on work of Dold [9]:

THEOREM 1: If X is a topological space then C¥*(X;K)
is she.
SKETCH OF PROOF: We agree that A, =u 1C*(X3K) @ C*(X3K) —

C*(X;K) shall be the first map of the sequence. Construct

A pt C*(X3K)® oool(lt)... ®C*(X3K)—C*(X;K)

by setting

;gi-lc)

D

This is justified because (da , + A ,d)(c; @ c,) =

(-1)Pee(@)a(p vqe) + (PR DI o Gl

- - e




_qyDeg(a,) 2Deg(a,)
(=1) - dal(blulaz)bz + (=1) 1 alblazbz i

b.b, - (-l)zneg(al)al(dblulaz)bz

(_l)2Deg(al)+Deg(bl)Deg(az)alaz b,

(-l)""Deg(&l)*’neg("1)al(‘:>1 uqda,)b, +

_l)zneg(al)+Deg(a2)+Deg(bl)-lal(blu 185)db, +

-l)Deg(al)+1dal(blu]_az)bz + (-1)2Deg(al)al(dblula2)b2 s

-l)ZDeg(al)"'Deg(bl)al(bluldaz)bz &
_1)2Deg(a, )+Deg(a,)+Deg(b,) 5

(-1)De8(a2)+Deg(b1)y o bib, = aj(ey) A;(e,) - Aj(ege,).

Now the main theorem in Dold [9] may be stated:

Hom(C*(X3K)® +vo(n).ss @ C*(X3K), C*(Xxouo(n).. xXiK))

|
is acyclic, Using this fact and the strict symmetry of

he topological diagonal, we construct the higher maps

AB'AL}.A5.0I|‘
To construct the map 4 3 consider the map

VLt C*(X;K)@ ...(6)...@0*(X‘K)""C'(X'K)

3

defined by
v3(cl®cz® c3) =Al(c1)A2(c2®c3) - Az(clc2®c3)
-Az(cl® cz)Al(CB) - Az(cl ®°2°3)'

onsidering the figure




Az(c1®c2)Al(c3)

apleqep) 2 (eq) aq(eq)a;(ep)a,(eq)

\

\

Al(chZCB) \\ Al(cl)Al(CZCB)

Az(cle 0203)

We thus observe that v3 is a cycle; hence ‘\73 is a boundary:

that is, there exists

AB:C*(X;K)Q veo(6)e..®C*¥(X3K) >C*(X3K)

such that

(1). A 5 has degree -2

(ii). (dA3 +A3d)(c1®c2®c3) = v3(°l®°2®°3)' as
desired.

To construct the map 4y, consider the map

V 3C*(X3K)® veo(8)...®C*(X3K) —>C*(X3K)




defined by
V(e ®@c,®@ 39 ey) = Al(cl)A 3(¢2® 3@ cy) - A3(clc2® 4@ cy)
- Az(°1® 32)_'5. 2(33® cu) > “53(01@ cz°3® cu)
+ .'_\3(01® c,® c3) Al(cb) - A3(cl® c,® °3°l+) .

Considering the figure

Apleg@e,)hy (eqey)
Az(c1®c2)A2(c3®c )
\ 5 A2(01®c2)A1(c 3, (ey)

\

y ——

& (eq)ay(ez)ny(eqey)
29 (eq)a5(e9e4)0, (
Ty(eq)oplePeqey)

| 29 (eq)24(c 0 acu)
. 29 (eq)ny(epe 3?41(%

- @ s me -

[_\l( CICZ).’_Xl( CBCu)

‘------— b---,,

7 >
apleg)ay(eaeqey)
Ag(e9e050)

[_\3(c1®c2®c3c4)




We thus observe that ‘74 is a cycle; hence *7u is a boundary:

That is, there exists
830 (X3K)® L. .(8) ... O C*(X3K) —~C*(X3K)

such that

(1). 4, has degree -3

(11). (dA y*+ A ud)(c]_@ez@ c3® cu) = Vu(c]_@ c2® 03® cu),
as desired,

Continuing in this manner, we construct all the higher

THEOREM 2: Suppose H*(X3K) = P[x,,... ,xn] is a polynomial

algebra, Then there exists an shm map
1), 8 8500 0.}

from H¥(X;K) into C*(X;K) such that ﬁi induces the identity

in homology.

PROQF; Write H*(X;K) = P[xl. ,xn] w P[x]_]@ . 548 P[_xn].
Now for each generator Xy i=1,...,n, of H¥(X;K), choose
an arbitrary representative cocycle u; ¢ C*(X;K). Define

a multiplicative map

by setting xi(xi) = uy and extending multiplicatively. (This
makes good sense because PExi] is commutative.) Then, forming

the tensor product we have a multiplicative map

M@ . DA H¥(X3K)—C*(X3K) B ... (n). e ®C*(X3K)




Next, let i;sg,;sg,;ﬁg....}denote the (up to sign) shm map
from C*(X3K)®@...(n),..®@ C*(X3K)—>C*(X;3K) defined inductively
by

1 .1 g
1al, Az A5 = 1,0,0,0,..1 4

(2)., iAi,AS,AZ,,,,} ”* 2‘31"32' -’33:-0-} i

and, having defined {Ag_"l,A '2"1, A g'l, vee| , define

(n). iag.ag.ag“.J =

= }Al'AZ' A3p¢--s° (ZAIll-loAg-l' Ag-lgunn}®ilgo’0'opcoo} )o

At this point there are still sign problems., However the

composition

}ﬁlvﬁzvﬁBv--a} - 5 ll®-oo® Xn.o,o,o....f°}A§,Ag, Ag,-o.}

is indeed an shm map from H*(XjK) = P[Xy,...,X,] into C*(XiK):
The sign discrepancy arising from A d disappears, since
H*(X;K) has O differential, The sign discrepency arising
from apparant difference between (-1)i and ¢g(i) is non-existant
as well, since all elements in a polynomial algebra P[xl,....xn]
have even degree unless the characteristic of K is 2 — in
which case all signs are irrelevant.

Furthermore ﬂi(xi) = u, for each i = 1,...,n; Hence

ﬁi induces the indentity in homology.

REMARK : We observe that another example of an shc algebra
is C,(0X3K), the chains on the loops of an H-space X. For

details see Clark [8].




e ——

REMARK : We now come to a very important theorem. We
shall describe an inductive algorithm for computing the terms
of an shm map 501,92,93,...} from H*(BG3K) into C*(BG;K)

with nice properties, The proof will be, of course, an
inductive argument as well, and we shall present the first
several steps of this induction in addition to the general
inductive step.. We apologize in advance for being so wordy;
our excuse is that the arguments involved will become clearer

and more natural,

THEOREM 31 Suppose H*(X;K) = P[xl,....xn] is a polynomial

algebra, Then there exists an shm map

ielv 02- 930 .e -1

from H*(X3K) into C*(X;K), written in terms of U~ and u,-

products, such that 91 induces the identity in homology.

PROOF: We note first that in writing our inductive algorithm
for 191.92.93....1 it will always be the case that the

right hand side of any «Jl-product which appears will be
a single representative cocycle of P[xl....,xn]. In particular
it will have even degree unless the characteristic of K is
2 — in which case all signs are again irrelevant., Thus
the formulas for ul-products are somewhat simplified,
We have
(ii)+. d(a ulb) = ab - ba - da ulb.
(1111 (abg;lc) = (-l)Deg(a)a(bujlc) + (alec)b.

INDUCTIVE ALGORITHM: To define °1'P|—-x1"°"’%] HCH(XK)
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we proceed in the usual way: For each generator X5 - S TEBpRR, 8
of H*(X;K), choose an arbitrary representative cocyecle u; ®
C*(X3K). Now for each monomial xg*...x;“ define

Un

l(xl ..oxn )=ul... %

Finally, extend linearly to all of H¥(X;K). (One observes
that 91 induces the identity in homology, since el(xi) = Uy,
s L —

Next, assume we have written Biveren®p g in terms of

w = and .dl-products. To define
0t H*(XiK)® ...(m)... DH¥(X;K) —=C*(X:K)
we define first
0,(A,® ...04, ,®X)

where A .y are monomials in H*(X;K) and x = Xy is

l..'.,An
a generator of H*(X3;K); For each j =1,...,n-1, write

Aj = Bjcj'

where Bj = xg‘...xgi consists of all elements of Aj with
indices <1i, and c = xgii...xn consists of all elements
of Aj with indices>'i. Now set
0, (413 .00 ®An_l®x) =0, _1(4,3... ®An_2®Bn_l)[el‘(Cn_l)u lu]
n-2

p-3(A1 @ ees AL 4 @By 4By 5By 1)005(Cy 3 DC, 2®Cy_ 1) vqul




l(Bl' . 'Bm-l)[om_l(cl® e e® Cm-l) Ulu] =

w-l m-i-1
£ (-1) 0;(A,®...%4; ,®B;...B j)[eo _,;(c;®...@C _,)u ul

®Am). where A.m = xgiooox;.lh

Now to define 0 (A;®...®4

is a monomial in H*(X;K), we use the above rule and set

. Bl B
em(Al® .e c® Al—l® Am) _ om(A].@ «r c@ Am_l® xl)ul‘ o o%n +

B2 Bxn
0, (A1 ... @A LOA _,x;®x;)ul Loup” 4

2 B> B
em(Al® ¢0¢®Am-2®Am-lxl®xl)ul |ov%n + » 98 o

B o =
6,(A,® ...0A A, ,xbi. . xflox ) =

:

j=-1 B;-1 B
em(Al® ven @Am_z ®Am-lxg\ e lxi ®Xi)ui . 'ul’l .

ei
z
19

Finally, extend linearly to all of H*(X;K)® ...(m)...® H*(X;K).

NOTATION: To justify our definition of © (A;®...@4A, ,9Xx)

we must show, inductively, that dem(Al@? s @A, ®x) agrees

with the appropriate version of the right-hand side of the

definition of shm,
To help our exposition we shall write dé (A,® ...®4A  ,3x)

as the sum of eight components

I +/II + III + IV +V + VI + VII + VIII,

where

(1). I consists of all elements of the form

Oj(A1® ) o® Aj)ei-j(Aj"‘l@ e .® Ai-1® Bio . .Bm-l).
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(2)., II consists of all elements of the form
[0;_1(A,®@... ®A3Aj+l® coe @Ay _1®Bs. By q)e

-[Om_i(Ci® .e -® Cll"l) ulu]‘

h(3). III consits of all elements of the form

0120818 100 B Ay g @hy  Byerafing)’
'[em-i(ci® eee ® Cm—l) ) lu]o
(), IV consists of all elements of the form
ei'(Al® 'R @Ai_l®Bio . .Bm_l)em_i(ci® o o® Cm_l)uv
(5). V consists of all elements of the form
0;(A;®...0 Ay _1®B;...B_;)ue, ;(C;®...0C, ,).
(6), VI consists of all elements of the form
0;(A® ... ®A; 1®Bj...B 4)0;5(C;®...0 Cipj-1)"

.[em-i-j(ci'.',j@ vee® Cm_l)u lu]o

(7). VII consists of all elements of the form

0,(A® ... @Ay 1 @B,...By 1]0,(C;®...@Cq,5 )0V 14l

i
'9__(C ®000®C-)c
(8). VIII consist of all elementg %fjth§+ orm e

oi(A1® LY -® Ai-l® Bil B QBm-l) €

'[em_i_l(Cj-@ e .®Cjcj+l® s o® Cm-l) v lu]o




We shall write the other side, in turn, as the sum

of four components

1+ 41+ 1ii + iv,

where

(1). i consists of all elements of the form

em_l(Al® .. ®AkAk+l® " ®Am-l® X) .

(2). ii consists of all elements of the form

ek(Al® "o ®Ak) em-k(Ak"'IQ DR ®Am-l®X) .

(3). iii consists of all elements of the form
em-l(Al® .o ®Am-2®Am-lx) .

(&), iv consists of all elements of the form
em-l(Al® e ®Am_l)uo

With this in mind, the general plan of attack is to

prove “ e

II + VIII
III + ¥

v




In addition, we remark that we shall find it useful
to prove, for each m, the general fact (called "Fact #m")that

n
em(Al% L ] @ Am) = 12’-1 ei(Allg LI ®Ai-l® Bic . le) em_i+1(ci® I

So with all the above in mind, we proceed as follows:

CASE OF 92 GIVEN els Observe first that Fact #1 is

trivial:
Now we justify the definition of 6,(A,® E)ane

We have

111

IV = +el(31)el(cl)u.
V.= -8,(Bj)ue,(Cy).
VI

VII = 0,

VIII = 0,

We also have




ii = 0,

iii = -Ol(Alx) "

iv = +91(A1)u.

Now we check

I = ii: Nothing to prove.

IT + VIII = i: Nothing to prove.
ITII + VI = 0; Nothing to prove,

IV = iv; This is fact #1: el(Bl)el(Cl)u = Ol(Al)u.

V + VII = iii: This is fact #1 applied to A;x = (le)Cla

el(Bl)uel(Cl) = el(le)el(cl) = el(Alx).
Next we justify the definiton of 6,(A;®4,)...
First decompose A, into any product

A, = AZAZ*,
such that the indices of all elements of AE are < the
indices of all elements of Ai*.
Now notice that 62(A1® A,) must satisfy

d0,(A;®A,) = 0,(A;) 0 (Ay) = 05(Aq45).

On the other hand 92(A1®A§)91(A§*) - 92(A1A5®A5*)
must satisfy




d[ez(AlG)AE)Ol(Az*) + 6,(AjA50A%*)] = [0,(4,)0,(A}) 0, (A%*)

- el(A. )el(AE*)] + [0,(A,A%)0, (A%*) - el(AlAy\y)]

Notice that the right hand sides of the above equations
are equal, There is a certain amount of subtlety involved
in what follows: By virtue of the above equality we are
justified in defining

0,(A4 DA,y) = 8 (Al®xl...¢{\) = 0,(4, ®xl)ul ...uﬁ +
Byl B
- 92(A1x1® % ...xn),
except that we have not yet defined the last term, However,

| by exact repititien of the above argument we are justified

| in defining

4

Bt B o 62 b
6,(A Xy ® X110 ) = 65(Ayx @ X JupT. e ety +

2 By X
+ 92(A1x1® xl‘ Y .xn) "

except that we have not yet defined the last term. Continuing

in this manner, we are ultimately left with the problem

of defining © (}.].x1 - xﬁ“gp%). But this is, of course,
no problem at all, This justifies the definition:.

4 J=l Bu,
ez(A Az) z }.‘. ez(Alxl oo Xy @xi)ui ...% &

We also observe that now by definition we have

0,(A ®@Ay) = 05(A) DAE)0)(A%*) + 0,(AAE DAR®) ,




since both sides are equal to the double summation above.

In particular, this implies that
0,(ADA,) = 0,(A,@3B,)6,(C,) + 0,(4;B,@C5),
which is a first step towards proving Fact #2.

CASE OF 6., GIVEN 6.,6,: In order to complete the proof
3 14+—2

of Fact #2, we first note that
92(A1® Cz) = 91(31) 02(01® Cz)

is obvious, Second, applying this to A;B, (= (Ble)Cl )
and Cy, we obtain

Adding this to the last result of the previous case (Case 02)

we obtain

0,(A;®A,) = 6,(A) @B,)0;(Cp) + 0,(B)B;)8,(C;OCp),

which is Fact #2.

Now we justify the definition of 93(A1®A2®x)...
We have

1=+ el(Al)el(Bz)[el(Cz)kzlu].

i A

III = - Gl(Ale)[el(Cz)ulu].

IV = - 0,(A;®B,)e;(Cy)u = 01(ByB,)6,(C1@Cp)u.




V =+ 0,(A;@ By)ue,(C,) + 0,(B1B,)ub,(C,@C,).

VI = + 91(31132)91(01)[91(02)ulu].

VII = + 0,(ByB,)[0;(C1)u quley(Cy).

VIII = - °1(3132)[°1(°1°2)V1“]'

We also have

i=- 62(A1A2® - 4

ii = + el(Al)ez(A2® )

iii = + 0,(A; @A x).

iv = - 62(A1®A2)u.

Now we check

I = ii: This is by definition: Ol(Al)Ol(Bl)[Gl(Cz)ulu] =
€,(A1)0,(A,® x).

ITI + VIII = i: This is by definition:
6,(B,B,)[6,(C,Cx) ujul = 6(A1A,8 x).

III + VI = Os This is fact #1 applied to A,B, (= (Ble)Cl)s

01(B1B,) 01(c1)[8;(C)u qul - 01(A;B,)[03(Cp) v qul =

[e,(B;B,)6,(Cy) - Ol(Ale)][Ol(Cz)ulu] = 0,

IV = ivs This is fact #2: 02(A1® Bz)el(cz)u :

e —————————————————




* Ol(BlB2)92(01®Cz)u = 92(A1® Az)u.

V + VII = iii: This is fact #2 applied to A; and A,x (= (Bzx)c2
6,(A,® B,)ud (C,) + 0;(ByB,)us,(Cy®C,) + 65(ByB,)[ 0 (CHupley)
= 6,(A,@B,)ub,(C,) + 0,(ByBC,@x)6,(Cp) +
6,(B1(Byx))0,(C;®C,) = 0,(A,® B,)ub (Cy) + 0,(A1B,@x)6,(Cp) +
8,(By(B,x))0,(C,®C,) = 6,(A;@B,x)6,(Cy) +
01(B,(B,yx))0,(C; @Cy) = 0,(A; DA X).

Next we justify the definition of 03(A1® A2®A3)

First decompose A3 into any product

A, = A%A%* ’

3

such that the indices of all elements of As are < the

indices of all elements of A§*.
Now notice that 63(Al® A2® A3) must satisfy

A65(A) DA, @4,) = 0,(A,)0,(A,045) - 6,(A1A, @As5)
- 92(A1®A2)01(A3) s 92(A1® AZAB)-

On the other hand 93(A1®A2®A5)elu§*) - 93(A1® ApA% ®A§*)

must satisfy

a[6,(A)@ A, ® A%) 0 (A%) + 05(4,® A AR Ag*)] =

[Gl(Al) 0,(4, @13) Ol(AS*)-Oz(A1A2® Ag) 91(A5*) .
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- 0,(A;® Az)el(Ag)el(Agf) + 6,(A,® AzAs)ol(AS*)] -
[el(Al) 92(A2A§®A§*) - 62(A1A2A§®A5*) - 62(A1®A2A§)61(A§*) -

0,(A1® A,A5A%%)] = [0 (A1) 0,(A,® A5) 01 (AY*) + 81(A)) 05 (AAYD A%* )]

+

0,(4,@ A ARAR%) = 0)(h)0,(A,0 ABARY) - 0,(A1A, @ AXARY)

92(Al® A2)°1“-§"§*) + 02(A1®AZA3) = Ol(Al)Oz(A2®A3)

0,(A1A, DA5) = 0,(A1D A45)0(A5) + 8,(A;1 @ AA4).

[o,(A14,® A%) 6, (A%*) + 0,(AAAE BA%*) ] = 0,(A, @ Az)c_L(Ag)cl(Ag*)

Notice, again, that the right hand sides of the above i
equations are equal, So we play the same game as in the 1
previous case (Case ez)a By virtue of the above equality }

we are justified in defining |

|

b B - Al By |

0,(A® Ap@Ay) = 03(k1® M@ xhuL.xd) = 03(A;® Ap® xy)uy L. Uy |
B.1

+ 93(A1® Ale® x].1 e .xtet) ’

except that we have not yet defined the last term, However,
by exact repitition of the above argument we are justified

in defining

-1 - B2 B
03(A1® A2x1® xe-l e oxl%) — 03(A1® Ale® XI)ul . o%n

2 o B2 B
- 03(A1® Aoxy ®x11 S }
except that we have not yet defined the last term, Continuing

in this manner, we are ultimately left with the problem

of defining 6.(A.,®@ A xB... B“°1® ). But this is, of course,
gAAl Rkl v xaliy Oy




no problem at all, This justifies the definition

.
- 3 p j=1 B B

{31

We also observe that now by definition we have
93(A1® A2®A3) = 03(A1® A2® Ag)ol(ui*) - 03(A1® AZA§®A§*),

since both sides are equal to the double summation above,

In particular, this implies that
93(A1®A2®A3) = 93(A1® A2®33)91(CB) + 93(Al® A233® 93),
which is a first step towards proving Fact #3.

CASE OF 6, GIVEN 91*22*93' In order to complete the

proof of Fact #3, we first note that

05(4,@ A,® C3) = 85(41@ B,)0,(C,0C5) + 8(ByBy) 05(C, @ o @C;).

To see this, we first consider a special case...
93(A1®A2® y) o 62(A1® 32)62(C2®y) s el(BlB2)63(01® C2®y)o

where, in our notation, y = xj is a generator of H*(X3K)
of index greater than the index of X (e.g., y'aCB). Now
write

Cy =015y,

C, = DoE,,
where, for each k = 1,2, Dk consists of all elements of

Cx with indices < j, and E, consists of all elements of




with indices > j. We have

Cx

93(A1®A2® y) = 03(B1D1E1® B,DoE,® y) = 92(A1®B2D2)E91(E2)ulv:|

- el(BlDleDz)[Oz(El® EZ) v lv] = 62(A1® BZ) Ol(Dz)[Ol(Ez) 9 1v] +

62(A1H2® Dz)[el(Ez)ulv]- el(BlBZ)el(Dlnz)[ez(Elcg; E,) ulv] =

0,(A,® B,)0,(C,® ¥) + 0;(B;B,)6,(C;®Dp) [e1(Ex)u 1v]

- 91(ByB,) 0, (D;D,)[0,(E;®Ep) U v] = 0,(A;®B,)8,(C,@Y) +

0,(B1B,)0,(C1®C,@ ),

as desired. By repeated application of this we now have

" B =
03(A1® .A.2® c3) 63(A1® A2® x1+i' » "5’)

1, ufes

n S B; g-1 B
LI 03(A)@ AL, e X ®x,)up?

peinl o‘t\ p

by (}p Z d R
LZ [0,(h, ®By)0,(Coxfl. ¢ xp lox Jubet. ubee

y

B q-l B; 1 -

o Py B, g-1 B-1
0,(A, ®B,)[E, 20, (Coxyy .o xp @ XpIupf ' <

T3 Bs. q-1 Bs1 =

02(A1® 32)92(02® C3) + 91(8132)93(01® C2® C3),

as desired. Applying this fact to A1.1A2B33(= (BzB3)Cz)

and 03, we obtain

93(A1® A233® CB) = 92(A1® 3233)02(02®C3) + 01(313233)93(01@;02203)

Addine this to-the last result of the previous case (Case 6,)

=




we obtain
05(A1@ 2,@ Ay) = 05(A1@ A,®B5)6,(C;) +
+ 0,(A) @B,B;)6,(C,@C4) + 01(313233)93(cl®c2®c3).
which is Fact #3.
Now we justify the definition of 6,(A,®A,® A3®x)...
We have
I =+ 0;(4)0,(A,@ 33)[el(c3)u1u] - 6,(A,® A2)01(33)[ol(c3)ulu]
= 6,(A,)0,(B,B;)[6,(Cr® C5) vqule

II = - 92(A1A2®33)[91(C3)u1u].

ITT = # 0,(A,® A;B5)[8;(Cq) uqul + 0,(A,B,B3)[0,(C,® C5) L;ul.

T¥ =+0,(A1® A, ©B,)0;(C1)u + 6,(4)@ B,B3)0,(C,@ Cylu +
61(B1B,B) 05(C,® C,®@ Cq)u.

V= - 05(A)® 4,8 B5)ué,(Cy) - 0,(A,® B,B;)ud,(C® Cg) -
- 6,(B,B,B,)ub,(C;® C,® C5).

VI = - 6,(A;®B,B,)0,(C,)E0;(C5) L u]
- 0,(ByB,B5)0;(C;)[8,(C,®C3) L ju]
- 6,(B1B,B,) 0,(C,®@ C5)[ 0y (C5) v ul.

VII = - 0,(A;®B,B;)[0;(C;) U ulé;(Cs)




- 01(B1B,B4)[;(Cy) L 1uley(C,@C5)
+ 0,(B,B,B3)[0,(C1@Cp) U u]e;(Cy).
VIIT = + 0,(A;® B,B;)[8;(C,Cq) yul + 8,(B1B,B,)[8,(C1C,@C3) 0 4]
- 8,(B,B,B5)[0,(C;® C,C5)u yul.
We also have
1= 03(AA,04,0%) + 05(A)0AA,0 x).
11 =+0(A1)05(A,®A,® x) - 0,(A;0 A5)0,(A5® x).
iii = - 63(A1® A3 A3x).
iv = + 63(A1® A2®A3)u.
Now we check
iis This is by definition: ©;(A;)0,(A,@ 33)[ol(c3)® lu]
62(A1®A2)61(BB)[91(03)Ulu] ~ 8,(A,)0,(B,B,)[0,(C,® Cq) v qu]
= [0,(A;)0,(A,®B,)[81(C5)u jul- 0; (A7) 01 (BB 0,(C2® C3)v yul]
6,(A1@ A5) 0,(A;@x) = 0;(A;)05(A,D A5 x) - 0,(A;®A,)05(A,0 %
II + VIII = i: This is by definition:

- 0,(A44,@ 33)[01(03)u lu] + 0,(A,@ 32133)[91(c203)u 14]

+ 0,(ByB,B3)[0,(C1C,®C3)v 18] = 0,(B,B,B5)[6,(C,® C,Cq) U yul

- [0,(A1A,@B5)[0,(C3)uyu] - &;(ByB;B3)[85(C,02@ Cyluqull +
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[o,(4,® 3233) [el(cch)V lu] & 01(313233)[62(01@) cch)UIu]]
= = 0,(A1A, @440 x) + 93(A1®A2L3®x).

IIT + VI = 01 This is Fact #1 applied to A13233 (= (313233)(:1) |
and Fact #2 applied to A, and A233 (=(BzB3)°2)'

+ 0,(A,@ AZBB)[OI(CB)ulu] - Ol(AleBB)[02(02®CB)u1u]

- 0,(A, @ B,B,)0;(C,)[6(C5 U, ul

- 61(3113233)el(cl)[ez(c2®c3)ulu]

- 0, (B,B,B,) 0,(C, ®C,)[0;(C5)u jul =

[0,(A;@4,B,) - 0,(A;®B,B5)6,(Cp) - 6,(B,B,B,)8,(C,@Cp) ]

. [el(cj)ul"] -

[0,(A1B,B5) = 0,(B)B,Bs)0;(C;) JL0,(C0 C)uqul = 0+ 0 = 0.
IV = iv: This is Fact #31 05(A;@ 4, ®B5)0,(Cy)u+

0,(A) ®B,B,) 0,(C,@C3)u + 0, (B1B,B4)05(C,©C® Cy)u =

05(A,@ A, A5)u.

V + VII = iii: This is Fact #3 applied to A,, Ay, and

Agx (= (Bjx)CB):
93(A1®A2®B3)u01(03) + 0,(A,@ 3233)u92(02® c3) +
91(13113233)u93(cl® C,® 03) + 0,(A,® 3233)[el(c2)u1u]ol(c3) -

6;(B,B,B5)[8;(Cy)u u]0r(C,® Cq) +

F
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-61(13113233)[02(cl® Cz)ul\l}el(CB) = 63(A1®A2® BB)uol(CB) +
[6,(A,®B,B5)[6(Cy) uyul + 0;(ByB,B3)[0,(C1@Cp) wyulley(Cy) +
6)(A) ®B,B,)ud,(C,®Cq) + 0,(ByB,B3)[0,(Cy) 0 ul0,(C,0C5) +
0,(B1B,B4)ud,(C,®C,0 C5) = [0;(4;© 4,3 By)u +
6,(A1® A,B,®x)]0;(C5) + [0,(4)® ByBy)u + 6,(A,B,3,0 x)Je,(CH2C )
+ 0,(B1B,(B4x))05(C1@ C,@C5) = €3(4,® 4,0 Byx)0,(C5) +
0,(A,® B,(B4x)) 0,(C,@C5) + 0,(B1B,(B5x))04(C1® C,®C3) =
05(A1® A, @ A5X).
Next we justify the definition of 6,(A,®A,@ A3@Al+)'
First decompose A, into any product
Ay = ABAE*,

such that the indices of all elements of AE are < the
indices of all elements of AE*.

Now notice that e,,(.41® A2®A3® Au) must satisfy

dﬁh(A]_@ A2®A3®A4) = 61(A1)03(A2® A3® Ah) - 03(A1A2®A3®Au)
- 02(A1® A2)92(A3®Au) s 03(Al® A2A3® All») + 93(A1® A2®A3)91(A4)

On the other hand 6,(A;® A,@A;@AR)6;(AF*) +
+ 6,(A, 04,0 A3AH®AE*) must satisfy




[, (A1 @ A, @ A,@ AE) 0 (AF¥) + ©0,(A;0 A0 AAE@AE*] =
[Ol(Al)OB(AZ(X) 13® Ag)elug*) - 33(A1A2® A3®Ag)elugf)

= 0,(A,®A,)0,(A,8 AE) 0, (AE¥) + 65(A;@ Aph,® AE) 6, (Af*) +
65(A) ®A,® A4) 0) (AR) 0 (AF*) = €5(Ay® K@ AsAE) 6 (AF*) ] +
[07(A;)05(A,@ AARDAR®) - 05(A1A,@ AAE D AL®)

- 0,(A) DAy) 0, (AAF DAE*) + 05(A) @A A AL DAR*) +

05(A1® A,® A5AE) 01 (AF*) - 65(A;@ hy® AARAE*] =

[0,(A1) 05(A,® A5@ AR) 01 (AF®) + 05 (A1) 05(A,® AAFOAL*) ]

- [05(A1A,®A;@AR) 0y (AF*) + 85(AjA, ©AAEDAEY) ]

- [e,(A,04,)0,(A;@ A) & (AR*) + 6,(A;® Rp) 6(AAL®AE¥) ] +
[o4(A;® A A,® A%) 0, (AF*) + 04(4,® AZASA.E@AR*)] +

05(A) ® AP A5) 0, (AF) &, (AF*) - 05(A,0 4,8 AARAR*) =
61(A1)0,(A,® A;® AFAR*) - 05(A1A,® Ay ® AFAE*)

- 0,(A1 @ K,) 0,(A;@ABAE*) + 03(A1® Aph D ARARY) +

03(A) @A, 0 A4)0,(Ay) = 05(A;® A, ®AsAy) =

01(A,)0;(A,@4,04) - 03(A1A, 0 A3 @ 4y) 0,(A1®A,)0,(A,04,) +
05(A @A A0 Ay) + O3(A)@ Ay A5) 0 (Ay) - 05(A)® A, @ Ash,).

Notice, once again, that the right hand sides of the above

equations are equal. So we play the same game as in the




previous cases; By viriue of the above equality we are

justified in defining
0y(A; @A, 0R,@K,) = 0 (A DA, Ay @xF .. G) =
, - 1

except that we have not yet defined the last term. However,
by exact repitition of the above argument we are justified

in defining

0, (A,® A,® Asx® x§7', L. xn) =

~2 2 n
0, (A0 A, A5x;0 x, )l % w0, (M@ 4,0 Ax1® o2 afe),

except that we have not yet defined the last term, Continuing
in this manner, we are ultimately left with the problem:

of defining 0, (A® A,® A,x%. ..xfix)). But this is, of
course, no problem at all, This justifies the definition

-1 -] .
5 ;; 04(A1® A® A3x§_‘ .o .xg ®xi)ua*". . .t@; .

1:1 A

94("* @ Ay® A3® Au) =

We also observe that now by definition we have

0, (A1 4,2 K50 4y) = €,(4,® A2®A3®A¢)GI(AE*) +
+ 0, (A0 A, QAAFDAR*),

since both sides are equal to the double summation above.

In particular, this implies that
°l+(A 8A2®A3®Au) = °b,(A ® *2‘9*333#)91“’4) +

+ 6, (A®A,@ A58, ®E,),




which is a first step towards proving Fact #4.

CASE OF &  GIVEN © 0 We observe that we know

_._..—n__.—————l.l-l-l—'-l- n-l :
by induction (from the last result of Case 9‘_1) that

0, 1(A1® ... @A, 1) = 0 (A,®...®A, 8B ;)0,(Cp ;)
* 0 (M@ @Ay By 1 8Cy )i

this is a first step towards proving Fact #(m-1).
In order to complete the proof of Fact #(m-1), we first
note that

m-2
em_l(Al® -, Am_2® Cm-l) = El ei(A1® ceve ®Ai_1® Bio . -Bm_z) ¢

. Om_i(Cj_@ e ®Cm-1) .
To see this, we consider again a special case first...
o-T
0, 1(A1®...QA, ,@y) =2Z 0;(A1® ...0A; ;@ BieeoBy o)
e em_i(ci® eee® cm_2®y) ’

where,in our notation, y = Xy is a generator of H¥*(X;K)
of index greater than the index of x (e.g., y’sCm_l).

Now write

Cx = DyPy
for each k = 1,,..,m-2, where D, consists of all elements

of Cy with indices < j, and E consists of all elements

of Cye with indices > j. We have

01 (A1® «. @Ay p®F) = Oy 3 (B)DIEI® «0 o ® By oDy 28y o ®Y) =




2 m-i
) (—1) ei(A1® . o® Ai_1® BiDio . 'Bm-ZDm-z)[em-i-l(Ei.@ s ®Em_gu IVJ

n-2

m-i
( 1) Lek(Al®...®Ak 1®BknuoBi lB ooo M= 2)'

A=

"0 kr1(Cx® e e®@Cy_1@D;500.Dp S0, 5 1(Bs® +0 @By p)uyv] =

b J m-i
£ 2 (-1)"""0,(A,®...8 A _1@B,...B,_,)"

.[:ei-k"'l(cl(@ L o® Ci"l® Di' . tDm_z)[em_i_l(Ei® e 0® Em_z) O lv]J ==

2

as desired, By repeated application of this we now have

’ B'n Bn -
On-1(A1® .. @Ay L ®C 1) = € 1(A)® .0 .® Ay > ®X3YYeeeXp")

B'ul q-l B_q Bn -
_1(A1® '.'®Am-3® Am_2x1+1on'xp ®xp)up' oocun -

ok(A]_@ L) ® Ak_l® Bko . oBm_z) em-k(ck® L l® Cm_3®

® Cm_zxg_',‘_‘l...x ®@x )ua'q...nﬁ” =

mln
z k(A1® 000®A 1® Bkanv —Z)Om-k(ck® "'®Cm-3®

.l;nlf\u

B Cp X g;:‘l...x Qx, )u 3..!@“ =

n2

F_L ek(Al® . .@ Ak-lQ Bkl . .Bm-z) em-k(Ck® L .® Cm-l) ’

as desired. Applying this fact to Al""'*m-B' *m-ZBm-l

('—‘(Bm_zBm_l)Cm_z) and C__,, we obtain

-1)

m ].(A ®.|.®A mlscm 1) =Z ei(A]-@ ..'®Ai 1®Bi...

. Om_i(Ci® s .® Cm"l) .

Adding this to the assumed result mentioned above,



e obtain

m-1
em_l(Al ® LR ®Am_2® Cm_l) v 38‘4 ei(A].@ tee ®Ai_1® Bio . oBm_l) ¢

. em_i(ci® s ®cm_l) ’

which is Fact #(m-1).

oW we justify the definition of 6, (A,® ,..@4A @ X)ose

e have

= ¥ ¥ _qym=it+] ’
- §’ ]"( "'l) 93(A1® e ®Aj) ei-j (Aj"'l@ e o® Ai"l@ Bin . .Bm-l)
"[em_i(Ci® c-c@ Cn_l)ulu].
o m-i+j+l
I= ,‘z:’ y[( -l) ei_l(A]-@ . n® Aj‘j"’l@ sre ®Ai-l® Bio . 'Bm-l) .

'[om_i(ci® L n® Cm_l) () 1“]0

n-) m .,
IT = 2 (-1)70; ;(A1® «.o @Ay ,@Ay 1By.0.By )

Lo, ;(C;®...0C, 1)V ul

m-] m
v =z (=1) 0,(A, ... Ai-1®Bi"'Bm-l)°m-i(Ci® e e®Cp_5)ue

= 3 (-1)™10, (4,0 ... ®Ay 1@ Byue.By 1)Uy 1(C;0 +0e®Cppy)e

|

VI = yil’ﬁl(‘-l)mklei(A].@ ..'® Ai_l®Bi...Bm-l)ej(ci® ...@ ci+j-l).

=l !

'[0g5.5(Cs45® eee®@Cpy)v jule

™

nal S
VI = 2 2(-1)"V6;(A;0...@ Ay 18B;...B, 1)[0;(C;®@ 400 @Cyy 5 )0

1 ]

. Om_i_j(Ci+1® cee ®Cm-l) .



i(Al® .0 1®Ai_l® Bio . .Bm-l) -
'[em_i-l(ci® e .® C.‘]Cj"']-@ ocn@ cm_l)\.} lu]'
e also have
_ mi 1
=E(=1)70) 1(A1® v0 @ Aghs 1@ B A D X).
s o ¥ i+l
i1 = B-1M* o, (0,0 ...04,)0, (4;,,0...04__1®x).
1] m=1
il = (-1)7770,_1(A1@ «..Q A, ,®A _,X).
_ m
v = (-l) em-l(Al® . o@ Am-l)uo
oW we check:
_ m-l 31 m_j_+j
= iis This is by definition: Z Z(-1) ‘j(*1® ...®Aj)'

ei"j(Aj"’l@ e e®@ Ai"l® Bio . 'Bm-l)[em-i(ci® . o® Cm-l)u 1u1 =

B H(-0) "0, (410 .. ©A)8; (A @10 @Ay 1@ By.uuBy )

[em_i(ci® “e o® Cm_l)ulu] = |

s §+1
(-1)7770:(419 .. @ A5) 6 _5(As 10 0 @Ay 1@ x),
is This is by definition:
i_l(Al® . c® AjAj+1® . n® Ai-1® Bio . oBm_l) =
'”f_l)m-i+j+l

ei(Al® L) ® Ai-l® Bio . le-l) .

[em-i_lcci® --¢® Cjcj+1® ,..® cm-l)ulu] =




L ¢ 1y _qym=i+1;
A ( l) [%?Sl 1) ei-l(A].@ co.® AJAJ+1® .|0® Ai-l®Bico!Bm_l).

. 3 m-i+1l )
[em_i(ci® L -® cm-l)u luJ + iz‘l(-l) ei(Al® L 0® Ai“].@ Bi- . 'Bm-l) .

‘[6y31(C;®...®C4 0510 ...00, 1)U u]] =

E (-1)34,(010 .0 434,,1® .0 4, 1@ %).

III + VI = 03 This is Fact #k applied to Al'AZ""'Ak-l'

and AkBk"l..'Bm"l (= (Bk'..Bm"l)Ck) for each k = l,...,In-Zc

2 m
;‘( -1) oi_l(Al® . n® Ai_2® Ai_lBic . .Bm-l) [em_i(ci® L) o® Cm-l) v 1\1] '.'

23
).

s o mkl
)z"( -1) ei(A].@ L] ®Ai-l® Bil . -Bn_l)ej(ci® . -@ Ci+j-l) ¢

+[Opi-3(Ci43@ 00®Cp 1) qul=

’> m
~1)70, (A1®@ ... 04, 1@ AB,,...B JlO L L(C.®...@C 1)U ]

mimd

m
iy (-l) ep(Al® e -® "p-].@ Bpn . .Bm-l) ek-p+l(cp® e @k) .

P Xy

i1 (Coe1@ 4 @Cpy) Ogul =

n- m
A-1)"[0(A1® ...@ Ay _1®ABL 0B ;)

El ep(A1® ese® A-p_l® Bp- . 'Bm-l) ek-p‘*l(cp® 0o o® Ck) e

11- ¥
[am_k_l(ck+l® ten ®cm-l) () lu = A 0 = 0.

V = iv: This is Fact #(mel1):

1
?‘(-l)mei(AJ-@ L) o® Ai-l ®Bi- . .Bm_l) on_i(ci® cen ® Cm-l)u e

m
-l) em_l(A1® “e '®Am-l)u'

+ VII = iii:

This is Fact #(m-1) applied to Ay,...,A ,,
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and Am-lx (= (Bm_lx)cm_l):

.l m+1
T (-1)770,(A® ...® Ay 1®B;...B jJuby (C;®...BCp ) +

$°1

™7 Wi
L

1§

(-1)""391(1\1@ e @Ay @ Bi...Bm_l)[aj(cig ...®Ci+j_l)ulu] ‘

| On-1-3(Ciag®@ e ®Cpy) =

m1
L (-1)™e (A,® ...®A_;®B.. B, )ul 4 (C,®...8C, ) +

i

nlnd m-k+i
I.‘:l ?x'g -l) ei(Al® 001®A1_1® Bioole-l)'

'[ek_i(ci® e ®Ck_l)u 1u]em-k(ck® e .G Cm-l) -

i m-1

L, (=170 (A, ® ... DA 1D By...By 4)uly ,(C,®... Pc, )+
! el m"l k"i‘l .
£z (-1)"""(-1) 0, (A;®...0A; 1®B;...By 1By...By 1)
[6p_;(C;®@...0Cp_y)uquley 1 (Cr@...®8C, ;) =

]

m-1
(-1)7"76, (A,® ces @Ay _1®By...B _4)ul , (C,® eee®Cp _4) +

T

" m_l
JZ (-1)77"0, (A;® ... ® Ay _;By...B) 1® x)0, ,(Cr® ...®Cp q)

«*!

=i m-1 =
%1 ( 'l) ak(A].@ oo @ Ak"l® Bko . cBm_z(Bm_1X) ) em“k(ck® e '3 cl-l) =

- m-1
1= (=1)"7"e (MA@ ...0A4, @A, _,X).

Next we justify the definition of 6 (A;®...®@A))
First decompose Am into any product
A = AxAz,

such that the indices of all elements of A; are £ the

indices of all elements of AX*,
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Now notice that em(A]_@ » 3D Am) must satisfy

de_(A,® L) = & (=2
F m l R @ m) - El (_1 [Om-l(A].@ e ®A1A1+1® e ®Am)
- ei(Al® ...®A1)‘m-i(Ai+l®...®Am)]‘

| On the other hand 6 (A;®@...@A, ;©® A%) 0, (AX*) +

6 (A1®...9A AR @A%*) must satisfy

[0 (A, ® 0.0 Ay_y OAR) 0 (AZF) + 0,(A1® 0@ Ay hy DARE) | =

n-2 i

= 0,(A1@...®A1)0, 4(A3,7® ...O Ay _jAr@AR)] +

m-

()™ Ko (4@ ... @A, JAR)O (ARF) + Oy (A1 oo Ohy pATATY

-6 _1(49...9 A _,) Ol(A;) Ol(A;*)-Om_l(Al® ceo® Am_l}.:l) el(A;*)]
m-2 ﬂ_ ®
LI M@ DRGA D e AL)
- oi(All‘9 e .® Ai) em-i(Ai'*'l@ o a@ Am) }+

m=-1

(-1)" e (A ®..c®hy p@Ay 3hy) = O (4@ eee DAy_;)0;(A )]

(-t o
- £) (—l) pm-l(LIQ e -® AiAi+1® vee Am)

o ei(Al® oto® Ai)em-i(Ai'l-l@ -c.@ Am)] ¢

Notice, one last time, that the right hand sides of the

above equations are equal. So we play the same game as
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in all the previous cases: By virtue of the above equality
we are justified in defining
0, (A® ...0 A @A) = 6, (A0 ...®A ,OH cecxbh) =
-1 '] Bn
em(Al® LR l@ Am-1® xl)“g‘ L .uralh+ om(Al® .o '@ Am-lxl®x% L ] .xrl )’

except that we have not yet defined the last term, However,
by exact repitition of the above argument we are justified

in defining
-1 -
0. (A,®...0A4, x,®x8i...xf")
-2 2 2
0. (A1®...0A, 1%,® x, Jubi ceoubir 0 (4,0 ...@Am_lxlobx% .o eXBn),

except that we have not yetl defined the last term, Continuing
in this manner, we are ultimately left with the problem of
defining em(Al® MR Am_lxgi ...x&'@ 15,)). But this is, of
course, no problem at all, The justifies the definition

) _xn B B j-1 B
0, (A0 .. OAY) =L Z0 (A1 (e @Ay X cooX) ox;)uf .oug ).
We also observe that now by definition we have
em(AlQ 0ee® Am) = Om(A]_@ ...®Am_l® A;) Ol(hg*) +
+ em(A1® . o® Am_lA; ®A;*) ’

since both sides are equal to the double summation above,

In particular, this implies that
0, (4@ ...04A,) = 6,(A4® ces®A,_,®B)0;(Cp)

+ 0 (A)® ... @A, BD Cp)s



which is a first step towards proving Fact #n,
This completes the proof of Theorem 3.

REMARK We observe that each term in the quantity

0. (A3 .. .®A_) contains precisely m-1 U ,-products. In
particular, unless m = 1, each term in Gm(A]_@ ...®Am)
contains at least one ul-product. This will be important
in what follows,

EXAMPLE s Suppose P[xl,...,xn] is a polynomial algebra
over K, where n 25, We compute 94(x5®x1x2x3xu® x2® xl).

a randomly selected example:

04(15®xlx213xu® x,®x,) = 03(x5®x1x2x3xu® 1) (xy) v 1ul]

92(x5®x1)[92(xzx3xu® x,) U 1“1}" 91(x1)[°3(x5®‘2"3"4® x,) U 1“1]
= 0 = [ug U gu T [0 (x)00p(xg) 0D g #

uy [0 0, (x @ x,)[ 0y (x4%,) v up]- 0 (x,)[ 0,(x5®%q%,) U yup]]V 4] =
- Lug 014 JpLuguy U 19,1] Uquyl * ulﬂIu5ulu2][u3u4 Ulug:ljvlulj

- uy[[By(xg@x5)uy + 0p(x5x5@x) ] ¥l 0yl =

uy[LCug U qup ugw, 0 up11ugu] - Lug Uy JLLupluqwy v 122110 4]
- wyl[luguyuyuy U 44, oy¥y ] - wllludus opulluguzd ogil:

Notice that each term contains preciesely 3 UV l-products,

as in the remark above, We can reduce still further, if

we desire , by using the Hirsch formula,




REMARK & It is known that H¥(BG;K) is a polynomial algebra
in the cases

(i). K has characteristic 0;

(ii). K has characteristic p and H,(G;K) has no p-torsion,
Thus in these cases Theorems 2 and 3 apply to give shm

maps
T 0 A

and particularly

107,05, 05,0

from H*(BG;K) into C*(BGj;K) with all the desired properties.
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II. 3. THE COHOMOLOGY OF HOMOGENEQUS SPACES:

We have finally developed nearly all the machinary
needed to state and prove the major theorem in this chapter,

which is the following result on the cohomology of homogeneous

spaces:

THEOREM 1: Let G be a compact, connected Lie group
and H a compact, connected subgroup of G. Form the homogeneous
space G/H. Suppose that either
(i), K has characteristic 0,
or
(ii). K has characteristic p, and H,(G3K), Hy (H3K)

have no p-torsion,
Then, regarding K as a right H*(BG;K)-module via augmentation,

and H*(BH;K) as a left H*(BGjK)-module via the natural map
f*3H*(BG;K) —H*(BH;K), we have a module isomorphism

H*(G/H3K) = torH*(BG'K)(K.H*(BHgK)).

REMARK ¢ The proof of Theorem 1 is based on several

important results, and we delay the proof until these have

been introduced,
The first such result is due to Eilenberg and Moore [11][12].

Suppose we are given a Serre fibration FSY "B and a
continuous map of topological spaces f1X-—-B, We have the

following diagram




This gives rise to the following diagram in cochains

9'(F;K) = C*(F3K)
C*(FABY:K)vf L C*(Y3K)
o |

C*(X3K) < pr C*(B3K)

Therefore we can regard C*(X;K) as a right differential .

c#*(BsK)-module and €%(Y;K) as a left differential C*(BjK)-

module in the usual way, Thus Torc.(B,K)(C'(X:K).C*(YnK))

is defined.

THEOREM 23 Given a Serre fibration F-Y-"B and a continuous

map of topological spaces fiX—B, there is a module isomorphism

)(c*(x.x),c*(r;x))—ﬁ>H*(x~Bx;K).

os Toros(m;k

REMARK s For a proof of Theorem 2 see Eilenberg and

Moore [11][12], Baum [1], or Smith [20]. We shall apply
Theorem 2 to differentiable fibre bundles, and in particular

So let

to homogeneous spaces,

g = (Eo *'va/Hoc)




be a differentiable fibre bundle, where G is a compact,

connected Lie group and H a compact, connected subgroup

of G, E and X are differentiable manifolds, and mE X

is a differentiable map, We then have a universal bundle

o(G,H) = (BH,f,BG,G/H,G)

and the following classifying diagram

G/H

G/H

£

&

X BG
2 ,

In the special case X = * is a point we are reduced to

the following classifying diagram

G/H G/H

i
G/H > BH

| s

* > BG

So now we have two corollaries of Theorem 2:

COROLLARY 3: Given a differentiable fibre bundle
o = (E,w,X,G/H,G) there is a module isomorphism

o Torc*(BG'K)(C*(X;K),C*(BH;K))—E*H*(E;K).

COROLIARY 43 Given a homogeneous space G/H there is




a module isomorphism

T Torc,(BG'K)(x,c*(Bmx))—",H*(G/H;x).

REMARK s We shall make use of Theorem 2 in the following
manner: By Theorem II.l.1 there exists an Eilenberg -

Moore spectral sequence (Er.dr) such that
torH*(B’K)(}{*(X;K),H*(Y':K)) = E, ==

E (C*(X3K),C*(Y3K)) » H*(X gYiK).

@~ TOTG#(B;K)

In particular (Corollary %), there exists an Eilenberg -

Moore spectral sequence (Er’dr) such that

torH*(BG'K)(K,H*(BH’K)) = E2 a?

E = TorC*(BG;K)(K.C*(BH;K)) & H*(G/HiK).

Thus for the purposes of Theorem 1 we would like to prove
that E, = Ea>in the Eilenberg - Moore spectral sequence
for G/H. The following theorem is due to Baum [1]C=2],
and may be interpreted as saying that it is sufficient

to preve that E2 = Ea> in the Eilenberg - Moore spectral

sequence for G/T, T a maximal torus of H.

THEOREM 5: If G/H is a homogeneous space and T is a

maximal torus of H, Then E, = Ea)in the Eilenberg - Moore
spectral sequence for G/H if and only if E, = E_ in the

Eilenberg - Moore spectral sequence for G/T.

REMARK : To exploit this reduction to the case of a

torus T, we use a result announced by May 16]. The theorem
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is based on work of H. Cartan [6], and is proved in explicit
detail in the appendix of Gugenheim and May £13].

THEOREM 6: There exists a differential multiplicative

map

l a:C* (BT ;K)— H*(BT3K)

| which induces the identity in homology and annihilates

\Jl-products.

REMARK 1 We give a rough sketch of this proof; for further
details see Gugenheim and May [13].

Recall that BT = B(S1s...(n)...rs!) is the Eilenberg -
MacLane space K(Z® ...(n)... ®2,2), (See, for example,
H. Cartan [6] or Eilenberg and Maciane [10].) wWrite m =
=72 ®...(n)... ®Z, Then,letting Fun denote the group
ring of m over K, write §(0)(I) = Fq, and, inductively,
5" (m) = ﬁ(f(n'l)(ﬂ)). Recall the W construction (due
originally to Eilenberg and MacLane (10]), which we may
iterate analogously. By results of May we can replace the
cochains and chains of BT by the cochains and chains of
W(z)(ﬂ). Using this fact, we construct a differential

comultiplicative map
3‘5(2) () = C,(BT3K)

which respects the homotopy cocommutativity and induces

the identity in homology.
Now ﬁ(l)(ﬂ) and 3(2)(w) are homotopy cocommutative

e—————————————— et
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via maps
015 (m) -5 (me 31 (m),
2,5(2) (n)-5(2) (m @ 32 (m),

respectively, Also BH,(K(w,1);K) is homotopy cocommutative

via a map

A 1B (K(m, 1) 1K) - BH, (K(m,1) 1K) @ BH, (K(m,1) 1K) .

These homotopies are defined inductively and satisfy certain

naturality properties,
Next, utilizing the little constructions K of H. Cartan (6],

we construct by induction differential comultiplicative

maps
yliH, (K(w,1)K) = KPn—BFn = 51 (m),
y21H, (BT4K) = H,(K(m,2)3K) = Ki,(K(w,1)sK)—BH,(K(m, 1)3K)

which induce the identity in homology.
By a fairly straightforward inductive argument, May

shows that
r\17 = 0,
Next, he defines

41, (BT 3K) — BH, (K(w,1) sK) ~B(B ) (m) = B2 ()

as the composition

6.= B(yt)ev?.
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Then by naturality it follows that
nZs =25(yhy? = (ByheB(vh)) 0,9 = o,
Finally, we let a be the dual of the composition
BodsH, (BT;K) =C,L(BT3K).
Clearly o satisfies the conditions of Theorem 6,

PROOF OF THEOREM 1t By Theorem 5 we are reduced to
proving Theorem 1 in the special case where the subgroup
of G is a torus T, We have the following classifying diagram:

G/T = G/T
n
|
G/T > BT
| b
* — BG

This gives rise to the following diagram in cochains:

c*(G/T5K) = C*(G/TIF)
" l
C*(G/T3K) C*(BT3K)
| K3
K C*(BG;K)

It also gives rise to the following diagram in cohomology:




H*(G/TsK) = H*(G/T4K)
I
H*(G/T3K) < H*(BT4K)
f'l'
K « H*(BG3K)

Next consider the following diagram:

C*(BT;K)*——f;#—“C"‘(BG;K) senmmenn v
A

(#) a« 01| "

H*(BT;K) g H*(BG3;K)

> K

where

(i), @« is the map given by Theorem 6;

{11). & is the first term of the shm map }01,62,03,..A
from H*(BG3;K) to C*(BG3;K) given by Theorem I1I,.2,3.

Now the preceeding diagram certainly commutes in homology,
since (afe,), = £*, But H*(BT4K) and H*(BGiK) have 0
differentials, In other words, (*) actually commutes.

So

atfe, = £*,
Also, unless m = 1, the composition
a.f#em:H*(BGsK)® eee(m),..® H*(BG3K) > H*(BT;K)

is identically 0, because each term of em contains at least
one \Jl-product. f# commutes with (Jl-products, and a
annihilates «Jl-products.

These remarks imply that the shm map
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(1atf,0,0,0,... % )o(10,,05,05,...7 )

is identically equal to the (actually strictly multiplicative)

shm map
if*,0,0,0,...f.

Utilizing Corellary &, Corollary II.1l,3, and Corollary IIlL1

we now have a string of module isomorphisms,..

H*(G/TK)
ol
Torc,(BG'K)(K.C*(B!tK))
sﬂTorl(l,u)
Torc,(BG'K)(K,H*(BTsK))
nITORG*(l,l)

TORH*(BG'K)&K,H‘(BTIK))

£oTys (5 k) (K H* (BTIK)).

This completes the proof of Theorem 1,

REMARK : One might conjecture (as Hirsch did) the existence

of a module isomorphism
H*(G/H3K) = torH,(BG'K)(K,H*(BHsK))

along the lines of Theorem 1 in total generality., However,

Schochet [19] has given a counterexample.




III. THE REAL AND RATIONAL COHOMOLOGY OF DIFFERENTIABLE

FIBRE BUNDLES
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III. 1. tor, Tor AND THE TWO-SIDED KOSZUL CONSTRUCTION:

The major theorem in this chapter expresses, under
certain reasonable hypotheses, the real or rational cohomology
of a differentiable fibre bundle as a certain torsion product.
Whereas in II we were only able to obtain module isomorphisms,
in this chapter we will obtain actual algebra isomorphisms;
so let us first describe the algebra structure involved.

First of all, suppose that A is a differential graded
algebra over K, M is a right differential A-module, and
N is a left differential A-module. As usual there is a

natural map
e:(M®B(A)® N)® (M®B(A)® N)> M @M ®B(A®A)® NON
which, on passing to homology, gives a natural map
e*1Tor, (M,N) ®TorA(M.N)——>TorA®A(M®M,N® N).

e* is called the EXTERNAL PRODUCT.
Now suppose that A, M, and N are graded commutative

differential graded algebras over K with multiplication

maps A, Aqsdog respectively, If M is regarded as a right

differential A-module via a differential multiplicative
map asA —M and N is regarded as a left differential A-module

via a differential multiplicative map B:A—N then
A 1AQA—>A,

AfM@MﬁM.
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and
AyN@N*N
are differential multiplicative maps., Define
J Tor A( Ay Az)zTorA®A(M®M,N®N) -'TorA(M,N)
as the composition
I TorA(1,1)° Torl(Al,l)vTorl(l,Az).

Finally, define an algebra structure on TorA(M,N) by

the composition

Tor , ( Ao Az) ° e*sTorA(M,N)QTorA(M.N) ﬁTorA(M,N).

Then, under the additional assumption of graded commutativity,

it is not difficult to show that the isomorphisms
J Torg(l.l):TorAz(Hl,Nl)-5TorAl(Ml.Nl),
Torl(l,f)sTorAz(Mz,Nz)—“>'1‘orA2(M2,Nl).

Tor,(h,1) :TorAZ(Mz,Nz)—gTorAz(Ml,Nz)

of Corollary II.1,3, and the isomorphisms
— =
G:Torc,(B'K)(C*(XsK),C*(Y;K))“*H*(X BY;K).

G1Torgy (5gk) (C* (X1K) ,C*(BH;K)) —> H*(EK),

G1T0r g (g i) K+ C* (BHIK)) > HR (G/HIK),

of Theorem II.3.2 and Corollaries II.3.3 and II.3.%, respectively,

ra isomorphisms.




The torsion products torA(M,N) and TopA(M,N) will be

redefined in this section, in the special case where

A= P[xl,...,xn]

is a polynomial algebra, in terms of some form of the two-
sided Koszul construction, It is worth noting that in each
case the two-sided Koszul construction could also be described
by defining the so-called Koszul constrution, tensoring

on the two sides, and noting that the additional structure,
namely the differential, is induced naturally from the various

components,

For the remainder of this chapter fix K to be a field.
The follewing material is valid in a somewhat more general
context but this will not be needed. Suppose P[xl,...,xn]

is a polynomial algebra over K. Consider the exterior

algebra
E[ul.....un]

over K, where u; has INTERNAL degree Deg(xi), EXTERNAL
degree -1, bidegree (Deg(xi),-l), and hence degree Deg(xi)-l

in the associated graded agebra over K.

(a). tors

Suppose that M is a right P[xl.....xn]—module and N
is a left P[xl,...,xn]-nodule. We form the complex
M E[_ul, - ,un] ®N with the natural differential g given

b
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dﬂn@l@n)=0,
dE(m@)ui@ n) = mxi® 1®n + m®1®xin,

dE a derivation,

dg is called the EXTERNAL differential, since it acts on

external degree, We will call the complex
(M®E[ul' e e '%]®N'dE)

the FIRST TWO-SIDED KOSZUL CONSTRUCTION., Observe that the
composition dE° dE £ 0, The first two-sided Koszul construction
thus has the structure of a differential graded module

over K,

THEOREM 113 t°rP[x1,...,ﬁ](M'N) is the homology of

the first two-sided Koszul construction:

torp[xl’ B33 lxr‘](M’N) ~ H(M®E[u1l 2o l%]@N’dE) .

REMARK 3 To prove Theorem 1 one simply checks that the
first two-sided Koszul construction is a projective resolution,

See, for example, Baum and Smith [3].

(b). Tor:

Now suppose that M is a right differential PLX;s0000%,]
module and N is a left differential P[xl.....xn]»module.
We again form the complex M®ELu1.....%]®N, this time
with the natural differential dp = dE + dI’ where

d;(n@19n) = dn@1On + (-1)Pe8(Mp 61 dn,
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dI(m®ui® n) = - dm@ui'&n - (-l)Deg(m)mG’ui@ dn,

dI a derivation,

dI is called the INTERNAL differential, since it acts on

internal degree, We will call the complex

(M@E[uy,..0,u JON,dp)

the SECOND TWO-SIDED KOSZUL CONSTRUCTION, Observe that
the signs have been chosen so that qoo 4D = 0, The second
two-sided Koszul construction thus has the structure of

a diffemntial graded module over K,

THEOREM 23 Tor?Exl'.."xn](M,N) is the homology of

the second two-sided Koszul construction:

Torp ](M,N) w H(M@E[ul.....un]®N,dI).

[xl,....xn
REMARK @ To prove Theorem 2 one simply checks that the
second two-sided Koszul construction is a differential

projective resolution, See, for example, Baum and Smith [3].

REMARK 3 We now prove the analog of the comparison
Theorem II.1.4 (and Theorem II,1,12)., We observe that
historically the order should be reversed; Theorem 3 below
is used in Baum [1] and Baum and Smith [3]s Theorems II.1.4

and II.1.12 were based philosophically on Theorem 3.

THEOREM 31 Suppose P[xl.....xn] is a polynomial algebra
over K, M and N are differential graded algebras over K,

and f,gsP[xl,...,xn]-*N and h:P[xl,...,xn]—*M are differential




multiplicative maps, If f and g are chain homotopic, then
TorP[xl....,xn](M'N) is unambiguously defined; that is,
T°rP[x1,...,xn](M'N) is the same whether N is regarded

as a left differential P[xl,....xn]-module via f or via g:
T M ~ M,N .
(°rP[xl,...,xn]( N))g (T°rP[xl....,rh]( Ng

An analogous result is true for T°rP[xl.....xn](N'M)'

(TorP[xl,...,xn](N'M))f ® (TorP[xl'””an(N.l))s.

PROOQF s We form u®E{ul, ...,%]@m with the differential

df obtained via f and with the differential dg obtained

via g, Now construct the map

Te(M®E[uy, ..., % JON,dg) > (MOE[uy, ..., 0, JON,d,)

as follows: Since f and g are chain homotopic, there exists,

for each i = 1,...,n, an element hit N such that
£(x;) = &(x;) - d(hy).
Therefore set
T(m®1®n) = m®1®@n,
T(1®ui® 1) = 1®ui®l - l@l@hi.

We claim that T is a map of differential graded algebras;

the proof is a direct calculation:

(1), Tdo(n®1@n) = dn@10n + (-1)Pe8(mpy 91 9dn =

= dgT(m @1Ddn)s

102
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(11). Tdp(1@u;®1) = h(x;) @101 + 1@1@f(xy) =
= h(xi)®l®1 + 1®1®g(xi) - 1®1®d(hi) =
= dg(l®u1® l1-1@10hn) = dgT(1®ui® 1).

Since T has an obvious inverse it follows that T induces

a module isomorphism

Tat (Torpre \L.,x M) ) !»(TorPExl' ez TN g

The second assertion of Theorem 3 is proved analogously.

REMARK 3 Under the additional assumption that M and N
are graded commutative it is easy to see that the isomorphisms

T,z(Torp[x xrl](m,N))r—"-‘» (Torp, "1-----‘n]m'“))5'

1,¢oo.

Tyt (To (N,M)) ¢ (Torpr, 1N,M)),

iRy » wodeel 1reeerXy

are indeed algebra isomorphisms,




III. 2. THE REAL AND RATIONAL COHOMOLOGY OF DIFFERENTIABLE

e e e e e ————————————

FIBRE BUNDLES:

It will be convenient to present our results in real
coefficients first. A trivial remark at the end of this
section will extend each theorem to rational coefficients
as well,

It will be instructive to begin by giving the proof
of the homogeneous space theorem with real coefficients.
The techniques used in this proof served as a philosophical
base for the results in II; they will also serve as an
introduction to the types of arguments used in this chapter.
The proof of this theorem is due to Baum E1l.

THEOREM 1: Let G be a compact, connected Lie group

and H a compact, connected subgroup of F. Form the homogeneous
space G/H, Then,regarding R as a right H*(BG;R) -module

via augmentation and H*(BH;R) as a left H*(BG;R)-module

via the natural map £#H*(BG;R) =H*(BHs;R), we have an algebra

isomorphism
H*(G/H;R) = torH,(BG'R)(R.H*(BH;R)).
PROOF s We fix the following notation: If M is a Riemannian

manifold modeled on a separable Hilbert space, then we
denote by R#(M,d) the differential graded algebra of deRham

cochains with exterior derivative., Recall that we have

a natural algebra isomerphism
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We have the following classifying diagram:

G/H = G/H

o o

G/H » BH

| |
¥* - BG

This gives rise to the following diagram in deRham cochains:

rferry =  RE(GM)

| |

R#(G/H) - R#(BH)
| | #
R « R#(BG)

It also gives rise to the following diagram in cohomology:

H*(G/H;R) = H*(G/H3R)

]

H*(G/HR) H*(BH;R)
! | =
R« H*(BG3R)

We may assume that BH and BG are differential manifolds
modeled on separable Hilbert spaces and that all the maps
in the classifying diagram above are differentiable.

We know that H*(BG;R) and H*(BH;R) are polynomial algebras

on generators of even degree., In fact, let

H*(BGsR) = P[xy, .., X ],



H* (BHiR) = P[¥y,.0.0¥y,]

Now choose arbitrary representative cocycles Ugpeee Uy

in R#(BG) for XyreeerX We define the map 6 as follows:

ml
For each i = 1,.,.,m, define O(xi) = uy. Since R#(BG)
is graded commutative the map extends to a unique differential -

multiplicative map
’ Olﬂ*(BGJR)—’R#(BG)-

From its definition it is clear that @ induces the identity

map in homology. (Compare II, 2 )
Similarly we construct a differential multiplicative

map
#1H* (BH;R)— R (BH)

which also induces the identity map in homology.
Next consider the following diagram (which we do not
claim to be commutative):
o a0y - 21— o (30) ——R
(‘) ﬂl a'} i
H*(BHjR) <55 H*(BGsR) —R

Observe that R#(BH) can be regarded as a left differential
H*(BG;R)-module in two distinct ways; via the differential
multiplicative map f#e or via the differential multiplicative
map gf*, This gives rise to two distinet torsion products,

which we shall denote, respectively, by

“1%0rp (po B!(R.R#(BH))
_




107

and by
1 Tory, (zg,r) (R (BD)).

Now the preceeding diagram certainly commutes in homology,

since (f#e)* = f* = (gf*),. Therefore ##9 and gr* are

chain homotopic., Hence Theorem III,1l,3 applies.
Utilizing Corollary II,3.4, Corollary II.1l.3, and

Theorem III,1.3, we now have a string of algebra isomorphisms,..

H*(G/H3R)
nIE
TorR#(BG) (n,n#(nu))
& Toro(l,l)
R Ly
LTorH,(BG'R)(R.R’(BH))
 fror, (1,9)
t0Tyx (5g,r) (Ro H* (BHIR)).

This completes the proof of Theorem 1.

REMARK 1 We now try to extend the type of reasoning
involved in Theorem 1 to differentiable fibre bundles,

So let
g = (EymX,G/H,G)

be a differentiable fibre bundle, where G is a compact,
connected Lie group and H a compact, connected subgroup

of G, E and X are differentiable manifolds, and mE—X
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is a differentiable map.
We then have a universal bundle

o(G,H) = (BH,f,BG,G/H,G)

and the following classifying diagram:

G/H = G/H
E — BH
m lf

v
X z > BG

This gives rise to the following diagram in deRham cochains:

o (o) = a*(c/;p

RY (E) « -r? (BH)

o ot
¥ (X) « # R? (8G)

It also gives rise to the following diagram in cohomology:

H* (G/HR) - H*(G/H;R)

H*(E3;R) «— H*(BH;F)

~

e £*
H*(X3R) «— ro H*(BG;R)

Now of course the theorem we desire says: Under "reasonable"

hypotheses on the differentiable manifold X, Dby regarding
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H*(X3R) as a right H¥*(BGj;R)-module via the map g* and H¥*(BH;R)
as a left H*(BG;R)-module via the map f*, we have an algebra

isomorphism
H*(E3R) = torH,(BG'l)(H*(X;R),H*(BH;R)).

OQur goal is to see how far we can relax the conditions
on X and still obtain this isomorphism, The following two

corollaries of Theorem 1 and its proof are obvious:

COROLLARY 2: If

g = (E, ‘"ver/H'G)

is a differentiable fibre bundle with ¥ a Riemannian symmetric

space, then there is an algebra isomorphism
H4(EJR) = torH,(BG'R)(H*(X:R).H’(BH;R)).

COROLLARY 3: & 4

g = (E,ﬂ,X,G/H,G)

is a differentiable fibre bundle with H*(X;R) a polynomial

algebra, then there is an algebra isomorphism
H*(EjR) = torH,(BG'R)(H*(X;R),H*(BH;R)).

REMARK ¢ Corollary 2 is a consequence of the following
very special property of a Riemannian symmetric space X:

The product blA bz of two harmonic forms bl,bze R#(x) is

again a harmonic form, Therefore the map

asH*XR—’R# R




e

defined by sending each element x < H*(X;R) into the unique
harmonic form a(x) whose class is x is a differential
multiplicative map which clearly induces the identity in
homology. Corollary 2 is due to Baum and Smith [3].

REMARK 3 The condition of Corollary 3 is satisfied, for
example, if X is itself the classifying space of a compact

connected Lie group.

THEOREM 41 if
o = (E,w,X,G/H,G)

is a differentiable fibre bundle with X a homogeneous Space
formed as the quotient G*/H' of a compact, connected Lie
group G' by a compact, connected subgroup H' of maximal

rank in G', then there is an algebra isomorphism

H*(E3R) = torH,(BG'l)(H*(XsR).H’(BH;R)).

PROOF: We have the following classifying diagram:
G'/HT = G'/H"
I
G /Hr —E B¢
j h
-4 . 4

This gives rise to the following diagram in deRham cochains:
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rfge )y = Rf(arm)

It also gives rise to the following diagram in cohomology:

H* (G /H* sR) =  H*(G'/H'IR)
i

H*(G+/H'R) k* __ y*(BH'R)
l |
R « H*(BG*;R)

We recall now the relevant facts about maximal rank

spaces: The fact that
H*(m‘ 'l) = P[xl' see 'xn]'

H*(BH4R) = PLyy,e0es ¥y ]
are polynomial algebras on gnerators of even degree is

equivalent to the fact that
H*(G'IR) = E[ul""'um]'
H"’(H'll) = E["lycltvvn]

are exterior algebras on
is the number of generatorss

H* has MAXIMAL RANK in G' if m = n.

generators of odd degree, RANK
Rank(G') = ms Rank(H') = n,
It then follows that
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(i). The sequence

R—H*(BG' jR) DS H*(BH' jR) X~ H*(G'/H*sR) >R

is co-exact;

(1i). As an H*(BG!jR)-module, H*(BH';R) is isomorphic
to H*(BG'jR) ® H*(G'/H"R).
For further details see Baum [1][2].

Now construct differential multiplicative maps

ysH*(BH' ;l)—’R#(BH'),
51H*(BG* jR)—RT (BG*)

which induce the identity in homology, by analogy with the

corresponding maps constructed in the proof of Theorem 1,

Next consider the following diagram (which we do not

claim to be commutative):

¥
R#(BH')f—h—— #(BG')‘—_—"R

e g

H*(BH'?R)TH*(BG' jR) —R

Using the above we are finally able to consider the
following diagram (which, again, we do not claim to be

commutative):




A

H* (BHJR) <5 H*(BGIR) — 5 H*(X3R)

Various complexes and maps have not yet been defined, and

we proceed as follows:
(i). We construct differential multiplicative maps

auH*(BG;l)-*R#(BG)-

B:H*(BH:R)—*R#(BH)

which induce the identity in homology, by analogy with

the corresponding maps y, & above,
(ii). We define K, to be the one-sided Koszul construction

for computing e"I'l‘orw,(m.','.)(R,R#(BH')); in other words,

K, = E[uy,...,u,JORF(BHY),

d(ui® 1) = 1® h#.(xi)c

d(1@w) = 1®d(w).

(iii), We define K2 to be the one-sided Koszul construction




for computing ‘L_TorH,(BG,’.)(R,R#(BH')); in other words

Kz = E[u1,¢0l|unJ®R#(BH')l

d(ui® 1) = 1@ Yh*(xi)o

d(1®dw) = 1@d(w),

(iv)., We define K3 to be the one-sided Koszul construction

for computing torH,(BG,’R)(R,H*(BH';R)): in other words

KB = E[ul, R "‘-n]@ H*(BH' 'l) '

d(u;®1) = 1@ h*(xy),

d(1@w) = 0,

(v). 61 is defined as follows: To define Ol(uf® 13,

we note that k#hfb(xi) is a coboundary in R#(X). Therefore
choose, for each i = 1,,..,m, an arbitrary element iy . R#(x)

such that d(ri) = k#hfb(xi). Now set

ol(uj.@ l) s riv

o,(19w) = K (w).

The proof that 61 is a differential multiplicative map

is a direct calculation:

(a). doy(u;®1) = d(ry) = ¥rfe(x;) = o,(101f8(x;)) =




(b). ae;(10w) = a(f(w)) = K¥(a(w)) = 0,(1® a(w)) = 0,d(1@w).
Observe that el induces the identity in homology.

(vi). ®, is the differential multiplicative map which
induces the identity in homology, given by Theorem III,1,3;

in other words
02(1® w) = 10w,
where s, ¢ R? (BH') is such that Yh*(x;) = h#b(xi) - d(sy).
(vii), 03 is defined as follows:
93(“1@ l) = ui® S
03(1®v) = 1® y(w).

The proof that 03 is a differential multiplicative map

is a direct calculation:

(a). doy(u;@1) = d(uy® 1) = 1@yh¥(xy) = 0,(1@h*(x,)) =
= 93d(ui®l).

(b), de;(1@w) = d(1@v(w)) = 1@d(y(w)) = 1@ vy(d(w)) =

= ¢ = 8,40) = 0,d(10w),

Observe that 03 induces the identity in homology.



| (viii), 0y is defined as follows:

04(u1® 1) = 0,
°u(1®') = k*(w),

The proof that e“ ijs a differential multiplicative map

is a direct calculation:
(a), deu(uizp 1) = d(0) =0 = k*h*(-xi) = 04(1®h*(xi)) =

(D), de, (10 w) = d(k*(w)) = 0=6,(0) = 8,d(1® w).
(ix). We construct a differential multiplicative map
M}{*(BG;R)—*K3

which induces g* in homology, essentially by analogy with

the maps a, B, Y, & above: Let
H*(BGsR) = P[2,,... .zp]

be arpolynomial algebra on generators of even degree,
Consider g*(zl),...,g'(zp)t}ﬂ(X;R). Since H(K3,d) ®
~ H*(X;R), we may choose arbitrary cocycles tl,....tp¢K5
for g*(%y), .. ss@*(8,), Por each i =1,...,P define
Mzy) = t;. Since K, is graded commutative the map extends
to a unique map A satisfying the conditions above,

Given this diagram we consider the extreme right-hand
side and claim that 016203 and € induce the same map in

homology. In other words, we have commutativity in the



following diagram:

P

H*(XsR)“
>

01,,

H*(X3R)
02*
H*(X;R)

1
e

3*
H*(X;R)

To see this we examine the effect of applying the maps
68,0, and 6, to a - cycle in K. A eycle in K, has the

form 1®w, where dw = 0, Now
(1). 010203(1®v) = 0102(l®y(w)) = el(mv(w)) =
= k#Y(W)!

on the other hand

(ii). 04(1®w) = k*(w).

Thus (0,0,0,),([10w]) = (6 y) ([w]) = k*([w]) = 0 . ([10w])

So the diagram commutes,
By the definition of A we know that the following diagram

is also commutative:

H*(BG3R) Ay > H*(XIR)

O
g* H*(X3R)

Thus the following diagram commutes also:




e e
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H*(X3R

A

g* 0,0,0,),

H¥* (BG ;R) M5 H* (XsR)
\;:\\\\:i:::ESU* |
H*(X3R)

From this we extrapolate commutativity in the following

diagram H

)
ot (0,0,0),

H*(BG3R) i —>H*(X3R)

Since a, is the identity and (g#), = g* we have commutativity

also in the following diagrams

H*(BG;R) - (3#) H*(X3R)

|

H*(BG;R)” &

Piecing together the two preceeding diagrams it follows

that the next diagram commutes as wells

H*(BG.R).____Séfli————+H*(X:R)
“’I ]‘°1°2°3)*
H*(BG;R) x —> H*(X3sR)

*

By all of the above we have now shown that the original
diagram (**) commutes upon passing to homology.

Thus
(1). ##o is chain homotopic to Bf*;

billk — e —|

L ——




119

(ii). g#a is chain homotopic to 1010203;
$1i1). xeu is chain homotopic and thus equal to g¥.
Hence Theorem III,1l,3 applies,
Utilizing Corollary II,3.3, Corollary II.1l.3, and

Theorem III,1,3, we now have a string of algebra isomorphisms,..

H*(%sl)
RO
Porg# gg) (R (X),R¥ (BK))
~ Tora(l.l)
“1Torym pagr) (B (X) B (BH))
w| T,
T Toryy (g, r) (B (X) R (BH))™
»|Tor, (1,B)
Toru,(BG'n)(R#(X),H*(Bﬂsl))r’
~|U,
TOry« (3G 4R) (R#ka)'“*‘“'” 31
~ Torl( 91,1)
,H*(BH;R)) -

TorHQ(BG'n)(K]‘:
~ Torl( 0,, 1)
rorﬁ,(nglg)(xz.u*(nn.x))/’
“A Tcrl( 93, l)

H* (BH3R) )~

Toryx (aR) (K30
® Torl( eu, 1)
TorH,(BG’l)(H*(x;x).H*(BH;R))/4

toTye (50,») (H* (XIR) ,H* (BHIR))

This completes the proof of Theorem 4.



THEOREM S:

g = (Eo "9x|G/HoG)

is a differentiable fibre bundle with X a homogeneous space
formed as the quotient G'/H' of a compact, connected Lie
group G' by a compact, connected subgroup H' of deficiency

0 in G', then there is an algebra isomorphism

PROOF s We recall first the relevant facts about deficiency

0 spaces; Consider
H*(BG' 'R) = P[xlp ves !xm]l

H*(BH'sR) = B[¥y,eees¥pls

polynomial algebras on generators of even degree. Consider

also the natural map
h* 3H*(BG!sR)—=H*(BH'iR)

arising from the inclusion of H' into G'. In H*(BH';R)

let I be the ideal generated by h*(xl)....,h*(xm)- It
may be assumed that the indexing has been chosen so that

h*(xl).....k*(xp) form a non-redundant set of ideal generators

for the ideal I. Then the DEFICIENCY of H' in G' is
Def(H',G'sR) = p - n,

This integer is independent of the choices made in defining

it and satisfies

e




0 < Def(H',G',R) < Rank(G') - Rank(H').
If H* has deficiency 0 in G* it follows that the sequence
H*(BG' ,R),ﬂi H*(BH' 3R) LH{(GO/H!)

is co-exact, For further details see Baum [1][ 2],
The proof of Theorem 5 goes through in essentially
the same way as the proof of Theorem 4, except that,..

The map °4 must be redefined, Write K3 as
Ky= E[uy, a0 yug JOE® H*(BH'JR),

where the elements Uj,eee,Ug are not cycles, but E consists

of cycles, Define
0, (u; ®101) = 0,
0,(1@1®w) = k*(w),
0,(1ow@1) =[0,6,65(lowal)],

the class in H*(X;R) which contains 010263(l®w® 1) in

R#(X)n
The first diagram in our chase is still commutative,

this time by our choise of Oy

The rest of the argument proceeds as before,

REMARK 3 From the inequality above it is clear that
Theorem 5 is a generalization of Theorem 4, Judging from
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E, Cartan's list, it appears that Theorem 5 is a generalization

of Corollary 2 as well,

— et e




REMARK 3 One might conjecture the existence of an algebra

isomorphism
H*(E3R) ® tory, pg,p)(H¥(XsR),H*(BH;R)).

along the lines of the theorems above in total generality.

However, Baum and Smith [3] have given a counterexample.

REMARK s Finally, we remark that all the theorems in
this section work with rational coefficients Q as well;

we simply use Sullivan's graded commutative rational cochains,
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