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The cohomology of homogeneous spaces in historical context

Jeffrey D. Carlson

Abstract. The real singular cohomology ring of a homogeneous space G{K,
interpreted as the Borel equivariant cohomology H˚

KpG;Rq, was historically
the first computation of equivariant cohomology of any nontrivial connected
group action. After early approaches using the Cartan model for equivariant
cohomology with R coefficients and the Serre spectral sequence, post-1962 work
computing the groups and rings H˚pG{K; kq and H˚

HpG{K; kq with more gen-
eral coefficient rings motivated the development of minimal models in rational
homotopy theory, the Eilenberg–Moore spectral sequence, and A8-algebras.
In this essay, we survey the history of these ideas and the associated results.

One of the most classical algebraic invariants of a continuous group action
GñX is the Borel equivariant cohomology H˚

GpX; kq, defined as the singular co-
homology of the homotopy orbit space XG “ pEG ˆ Xq{G and studied systemat-
ically from 1960. For k the real field R, equivariant cohomology already appears
in 1950 in Cartan’s work computing the real cohomology ring of a homogeneous
space G{K for G a compact, connected Lie group and K a closed, connected sub-
group. The determination of the cohomology of a homogeneous space is thus the
ur-example of a computation of a ring-valued invariant of a nontrivial connected
group action. It was at the same time a motivating example for minimal models in
rational homotopy theory.

Generalization of Cartan’s result to more general coefficient rings has been
similarly fruitful. Such work directly motivated differential homological algebra and
the Eilenberg–Moore spectral sequence, and led to substantial development in the
field of A8- and other up-to-higher-homotopy algebraic structures. This program,
which has lasted seventy-five years, is perhaps only now nearing its conclusion. In
this article, we will relate the history of these generalizations and the vistas in
topology, homological algebra, and homotopy theory that they opened.1
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In principle, our exposition will assume algebraic topology and homological
algebra only up to the basic properties of the Serre spectral sequence (sss), the
spectral sequence of a filtered cochain complex, the universal principal G-bundle
ς “ ςG : EG Ñ BG, and the ring TorApX,Y q “

À

pě0 Tor
´p
A pX,Y q associated

to a pair X Ð A Ñ Y of maps of commutative graded algebras2. Comfort with
coalgebras and specifically the bar construction will help with later parts of the
story but is not strictly necessary for those willing to take some details on faith.

Convention 0.1. We always write G for a compact, connected Lie group, and H
and K for closed, connected subgroups. All algebraic objects are cochain complexes
(differential d of degree 13) over a commutative base ring k with unity, usually
suppressed in the notation b “ bk for the tensor product and H˚X “ H˚pX; kq for
the singular cohomology ring. Graded modules are cochain complexes with d “ 0.
A quasi-isomorphism is a cochain map inducing an isomorphism in cohomology.
Quasi-isomorphisms induce an equivalence relation on differential graded algebras
(allowing zig-zags of maps in alternating directions), and if A1 and A lie in the same
equivalence class, we say A1 is a model of A. A model of a space X is a differential
graded algebra (dga) modeling A the cochain algebra C˚pXq “ C˚pX; kq, so that
H˚pAq – H˚pXq. A smooth manifold X is also modeled by its de Rham algebra
AdRpXq for k “ R.

The most optimistic guess for a generalization of Cartan’s result forms a tem-
plate which we will adapt as we encounter the actual results:

Theorem 0.2 (one-sided template). Whenever k is chosen such that H˚pBGq and
H˚pBKq are both polynomial rings, there is an isomorphism of graded k-algebras

H˚pG{K; kq
„

ÝÑ TorH˚pBGqpk,H˚BKq.

We call this “one-sided” because it corresponds to the right action of K on G. Given
another closed, connected subgroup H, there is also a “two-sided” action of H ˆK
on G by ph, xq ¨ g “ hgx´1, leading to a more general guess:

Theorem 0.3 (two-sided template). Whenever k is chosen such that H˚pBGq,
H˚pBHq, and H˚pBKq are all polynomial rings, there is an isomorphism of graded
k-algebras

H˚
HpG{K; kq

„
ÝÑ TorH˚pBGqpH˚BH,H˚BKq.

The actual theorems specialize k in some way, show only an additive isomorphism,
come with some restriction on the cochain algebras, or weaken the condition on
H˚pBKq, but we will see Cartan’s progenitor is exactly Theorem 0.2 for k “ R.

Most subsequent sections will sketch a proof of a variant of Theorem 0.2 or
0.3. In broad overview, these were first established for k a field of characteristic 0
by Cartan and Borel using the Serre spectral sequence commutative models. In
the 1970s they were extended, additively, to more general k, with complications
in characteristic 2 using the Eilenberg–Moore spectral sequence and A8-algebraic
techniques. Multiplicative results for k not containing Q have come only since 2019,
and require 2 to be a unit. The most general multiplicative result is the author’s
2021 theorem 22.1 joint with Matthias Franz, while the most general additive result
is still Hans J. Munkholm’s 1974 theorem 17.12.

2 equipped with a standard grading to be reviewed later
3 N.B.: This is not the case in the primary literature, even in cases motivated primarily by

singular cohomology.
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Convention 0.4. The degree of a homogeneous element x is written |x|. Maps
f : C Ñ A of graded k-modules are all k-linear, shifting grading by a fixed de-
gree |f |. We write f P Mod|f |pC,Aq. We regard the direct sum ModpC,Aq “
À

nPZ ModnpC,Aq as a cochain complex under the differentialDf :“ dAf´p´1q|f |fdC .
A cochain map inducing an isomorphism in cohomology is a quasi-isomorphism .

A dga is a differential graded k-algebra A equipped with an augmentation
ε : A ÝÑ k, with kernel the augmentation ideal A “ ker ε. For a cochain algebra
C˚pXq, an augmentation is induced by restriction to a basepoint in X. Write DGA
for the category of dgas and augmentation-preserving dga maps. The Koszul sign
convention pf b gqpab bq “ p´1q|g||a|fab gb is always in effect. Commutativity
means graded-commutativity ab “ p´1q|a||b|ba. A commutative dga is a cdga.
Commutative graded algebras (cgas) are cdgas with d “ 0. A dga (or cochain
complex) computes a graded k-algebra (or module) H if its cohomology is H.

A dga A comes with an augmentation ideal A “ ker ε. Its ideal of decom-
posable elements is AA “ t

ř

ajbj : aj , bj P Au and its module of indecom-
posables is QpAq :“ A{AA. Given an oddly graded vector space V of finite type,
there is a natural pairing between the exterior algebra ΛrV s and the exterior al-
gebra ΛrV ˚s on the dual V ˚ :“ HomkpV, kq. The primitives of ΛrV ˚s are those
elements vanishing on the decomposables ΛrV s ¨ ΛrV s of ΛrV s.

1. Cartan

Cartan’s original result from his 1950 announcement [Cart51] interprets GK as
the total space of the Borel fibration G Ñ GK Ñ BK and computes H˚pG{Kq “

H˚pGKq over k “ R.
A key tool is an acyclic cdga W pkq equipped with certain operations of the Lie

algebra k, due to Weil (unpublished) and now called the Weil algebra, which serves as
a universal model for the data associated with a connection on a principalK-bundle.
By construction, a connection on a principal K-bundle π : E Ñ B corresponds to
a unique “characteristic ” dga map W pKq ÝÑ AdRpEq preserving the operations
of k. The Weil algebra can also be understood as a model for the total space of the
universal principal K-bundle ς : EK Ñ BK. Although BK was only defined in full
generality by Milnor later (1956), it was understood from known cases thatH˚pBKq

should be isomorphic to the invariant subring Srk_sK of the symmetric algebra
Srk_s on the dual k_ under the coadjoint K-action, graded with |k| “ 2. The cga
underlying the Weil algebra is the tensor product of Srk_s and the exterior algebra
Λrk_s, graded with |k_| “ 1, and the inclusion Spk_qK ÝÑ W pKq can be seen as a
model of the universal bundle projection ς. The characteristic map associated to a
connection restricts to a map Srk_sK Ñ π˚AdRpBq

„
ÝÑ AdRpBq, and the induced

map in cohomology is the Chern–Weil homomorphism χ˚ : Spk_qK ÝÑ H˚pBq.
Given a principal K-bundle E Ñ B, Cartan views W pKq bAdRpEq as a model

for forms on EK ˆ E » E. The projection to EK “ pEK ˆ Eq{K » E{K “ B

induces a pullback identifying forms on EK with a subalgebra pC of W pKqbAdRpEq

called the Weil model. The projection W pKq “ Srk_s b Λrk_s bAdRpEq ÝÑ Srks b

AdRpEq induces an algebra isomorphism between pC and C “
`

Srk_s bAdRpEq
˘

K .
Transferring the differential along this isomorphism makes C a dga called the
Cartan model computing H˚pEKq “ H˚

KpEq.
Results of Hirsch allow one to define subcomplex C 1 of C, isomorphic to SrksKb

H˚pEq, such that the inclusion C 1 ãÑ C is a quasi-isomorphism. In the special case
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π : E Ñ B is the quotient projection G Ñ G{K, one can take the ring AdRpGqG –

Λrg_sG – H˚pGq as a set of representatives of H˚pGq, so that Cartan obtains a
dga structure on Srk_sK b Λrg_sG computing H˚pG{Kq as a ring.

Theorem 1.1. One has the commutative diagram of cgas

H˚
`

Srk_sK b Λrg_sG
˘

“ H˚pC 1q

„��
,, ,,

Srk_sK
$ � 22

χ˚
,,

Λrg_sG “ H˚pGq.

H˚pG{Kq π˚

22

Cartan explores the sequence Srg_sG Ñ Srk_sK Ñ H˚pG{Kq Ñ H˚pGq Ñ

H˚pKq and as an example computes the Poincaré polynomials of the real oriented
Grassmannians rGℓpRℓ`mq “ SOpℓ ` mq{

`

SOpℓq ˆ SOpmq
˘

. He also notes that his
result implies H˚pG{Kq – Srk_sK bSrg_sG R as rings when K is of full rank in G.4

Example 1.2. Taking G “ SOp2n ` 1q and K “ SOp2q ˆ SOp2n ´ 1q for n ą 1
and using restriction relations between Pontrjagin and Euler classes, one finds
H˚

rG2pR2n`1q – Rres{pe2nq for e the image of the universal Euler class inH2BSOp2q.

The differential of C 1 in Theorem 1.1 is the unique derivation vanishing on Srk_sK

and extending a certain linear map on a space of exterior generators TG of Λrg_sG.
Namely, d|TG

: TG Ñ Srk_sK is the composite of the restriction Srg_sG Ñ Srk_sK

and a map rτ : TG Ñ Srg_sG called a (choice of) transgression.
In a cohomological first-quadrant spectral sequence E˚,˚

˚ , a class of E0,p´1
2

is said to transgress if it survives to E0,p´1
p . Then dp is defined on the class

rzsp P E0,p´1
p , determining an image τ rzs “ dprzsp P Ep,0p called its transgression .

Thus τ is a degree-1 linear map from a submodule of E0,˚
2 to a quotient of E˚,0

2 .
It is often noncanonically lifted to a map rτ to E˚,0

2 called a choice of trans-
gression . Cartan’s rτ is that of an algebraic spectral sequence modeled on the sss
of K Ñ EK Ñ BK, converging from H˚pBKq b H˚pKq – Srk_sK b Λrk_sK to
H˚

`

W pKqK
˘

“ H˚pEKq “ R.5

Theorem 1.3 (Cartan–Chevalley). The space TK of transgressive elements is
identical to the space of primitives of Λrk_sK , which are exterior generators. The
codomain of the transgression is the space Srk_sK{Sě1rk_sKSě1rk_sK of indecom-
posable elements. Under any choice of transgression rτ and basis pzjq for TK , the
images rτzj are irredundant polynomial generators for Spk_qK .6

Thus a choice of transgression rτ induces a linear bijection between exterior
generators of Λrk_sK – H˚pKq and polynomial generators of Srk_sK – H˚pBKq.

4 This is also a result of Leray which had already been published in the case G is finitely
covered by a product of classical groups [L49, L50].

5 He actually avoids mentioning spectral sequences as follows. Because the Weil algebra
W pKq is acyclic and ι : Srk_sK ãÑ Srk_s b Λrk_s – W pKq is a dga map, each x P Srk_sK must
be dW pKqy for some y P W pKqK , which the projection to Λrk_s takes to some z P Λrk_sK . The
resulting assignment σ : Srk_sK ÝÑ Λrk_sK taking x to z is easily seen to be well-defined, and
its image is the space TK of transgressive elements. Cartan’s choice of transgression is any linear
section rτ of σ.

6 Cartan does not include a proof, and notes that this work is inspired in part from Koszul’s
thesis, which defines Lie algebra cohomology and studies the transgression in a spectral sequence
analogous to the sss of K Ñ G Ñ G{K, and answers a May 1949 conjecture of Weil.
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2. Borel

The proof of Theorem 1.3 relies heavily on the structure of real Lie algebras.
Borel’s 1952 thesis, among other things, generalizes this transgression theorem as
a result about spectral sequences, including over other base fields k.

Theorem 2.1. Let k be a field and E˚,˚
˚ a first-quadrant cohomological spectral

sequence of bigraded algebras such that E˚,˚
2 – E˚,0

2 b E0,˚
2 as a bigraded algebra

and E˚,˚
8 “ E0,0

8 “ k.
‚ If E0,˚

2 is an exterior algebra on odd-degree elements, then there exist
homogeneous transgressive zj such that E0,˚

2 “ Λrzjs.
‚ If char k “ 2, suppose there exist homogeneous transgressive z1, . . . , zn P

E0,˚
2 (of any degree) such that the monomials zj1 ¨ ¨ ¨ zjℓ (j1 ă ¨ ¨ ¨ ă jℓ,

ℓ ď n) form a basis of E0,˚
2 .

In either case, for any choice rτ of transgression, E˚,0
2 “ krrτzjs.7

In the rest of this section we consider a bundle F i
Ñ E

ϖ
Ñ B with trivial

π1pBq-action on H˚pF q. In the sss of this bundle, the transgression goes from
H˚pF q to H˚pBq.8 Applied to K Ñ EK

ς
Ñ BK, Theorem 2.1 says that if H˚pKq

is exterior over a field k of characteristic ‰ 2, then H˚pBKq is polynomial on
a basis of transgressions.9 In retrospect, this proves Theorem 0.2 for K “ 1 and
G{K “ G; in dealing with H˚pGq, Borel is also the first to characterize finitely-
generated commutative Hopf algebras over Fp. He also shows that in the sss of ς,
if k is such that H˚pKq is a free module on monomials in transgressive generators
as in Theorem 2.1, the map H˚pKq Ñ H˚pK ˆ Kq

„
ÝÑ H˚pKq bH˚pKq induced

by the group multiplication K ˆK Ñ K takes z to 1b z` zb 1 precisely for these
transgressive generators. These elements are also called primitive , and this agrees
with the previous notion if H˚pKq is exterior.

To compute H˚pG{Kq, we want a functorial R-cdga Ap´q computing coho-
mology of spaces. The de Rham algebra AdRpXq does this only for manifold X.10

Sullivan later introduced the Q-algebra APL of polynomial differential forms, and
kbQAPLp´q works for all fields k of characteristic 0. Equipped with such a model,
Borel can use the sss to generalize Cartan’s model C 1 from Theorem 0.2. From
now on, suppose additionally H˚pF q is exterior on a set of generators
transgressing in the sss. If F “ G and ϖ is a principal G-bundle, Theorem 2.1
shows this happens if char k ‰ 2 or char k “ 2 and the generators zj transgress
in the sss of the universal bundle: indeed, the classifying map χ induces a map
of ssss from that of ς to that of ϖ, so that in the latter, each zj transgresses to
τϖpzjq “ χ˚τςpzjq P H˚pBq.

7 This can be strengthened by requiring only
Àn
p`q“1 E

p,q
8 “ 0 and concluding only Eďn,0

2

is polynomial, where maxj |zj | ď n
2

´ 1.
8 Unpacking the definition, if a cocycle z P Cp´1pF q represents a transgressive class rzs P

Hp´1pF q “ E0,p´1
2 , then there exist a cochain y P Cp´1pEq with i˚y “ z and a cocycle x P

CppBq “ Ep,02 such that π˚x “ δy, and then dprzsp “ rxsp.
9 The degree-truncated version of Borel’s transgression theorem is relevant because Borel and

Cartan used only finite-dimensional truncations of BG, which would later be defined for general
topological groups G by Milnor.

10 Borel extends this to compact separable metric spaces X of finite dimension, using the
Menger–Nöbeling theorem asserting a homeomorphic embedding X R1`2 dimX , restricting the
sheaf U ÞÑ AdRpUq on RN to X and taking global sections.
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Borel endows the graded algebra L “ ApBq bH˚pF q with the unique derivation
extending that on ApBq – ApBq bR and taking each 1b zj to a cocycle in ApBq bR
representing τzj b 1 P H˚pBq bR. For each zj , one can find an ApEq-cochain yj
restricting along i to representative of zj in ApF q, and such a choice induces an
algebra map j : H˚pF q Ñ ApEq by the commutativity of ApEq. There is thus a
dga map L ÝÑ ApEq taking bb y ÞÝÑ ϖ˚pbq ¨ jpyq.

Theorem 2.2 ([Bo53, Thm. 24.11]). Under the dga structure on L “ ApBq bH˚pF q

induced by the transgression as in the previous paragraph, the map L Ñ ApEq in-
duces a k-cga isomorphism H˚

`

ApBq bH˚pF q
˘ „

ÝÑ H˚pEq.

Proof. Replacing B by a weakly equivalent CW complex if necessary, ApEq in-
herits the Serre filtration FpApEq “ ker

`

ApEq Ñ Apϖ˚Bp´1q
˘

and ApBq bH˚pF q

the filtration by ker
`

ApBq Ñ ApBp´1q
˘

bH˚pF q.11 The map L Ñ ApEq respects
these filtrations, inducing a map of spectral sequences which reduces on E2 pages
to idH˚pBq bH˚pF q and hence is a quasi-isomorphism. □

Suppose additionally from now on that there exists a sub-dga H of
ApBq such that the inclusion is a quasi-isomorphism. Then one can select
representatives of τzb 1 P H˚pBq bR lying in H bR to define a sub-dga L1 “

H bH˚pF q of L, and another filtration spectral sequence argument shows L1 ãÑ L
is a quasi-isomorphism, so the composite L1 Ñ ApEq is as well.

Theorem 2.3. n[[Bo53, Thm. 25.1]]12 Under the dga structure on L1 induced
by the transgression as in the previous paragraphs, the map L Ñ ApEq induces a
k-cga isomorphism H˚

`

H˚pBq bH˚pF q
˘ „

ÝÑ H˚pEq.

The hypotheses of Theorem 2.3 are always satisfied for E “ FK ÝÑ BK “ B
the Borel fibration associated to the action of a compact, connected Lie group K-
action on F : any choice of A-cocycles representing generators of the polynomial
ring H˚pBKq induces a unique dga map H˚pBKq ÝÑ ApBKq, and we may take
for H its image, yielding an isomorphism H˚

`

H˚pBKq bH˚pF q
˘

ÝÑ H˚pFKq.
Taking F “ G a compact Lie group containing K, with the translation action,
we get back Cartan’s isomorphism H˚

`

H˚pBKq bH˚pGq
˘

ÝÑ H˚pG{Kq from
Theorem 0.2 [Bo53, Thm. 25.2].

Borel is able to obtain results when rkK “ rkG extending Leray’s results
over a field of characteristic p or Z: if T is a maximal torus of K and the co-
homology of G, K, G{T , and K{T are assumed to be p-torsion–free for char-
acteristic p or torsion-free for k “ Z, then H˚pG{Kq – H˚pBKq bH˚pBGq k.
He provides several explicit computations, applying the equal-rank result to the
cohomology rings of Up

ř

njq{
ś

Upnjq and Spp
ř

njq{
ś

Sppnjq for k “ Z and
to SOp2nq{Upnq for char k ‰ 2. These computations use Chevalley’s restriction
isomorphisms H˚pBGq ÝÑ H˚pBT qWG for G and K, for WG the Weyl group,
which holds assuming the torsion conditions are satisfied. For char k “ 2, he shows
SOp2nq SOp2nq{Upnq induces an injection in cohomology onto the subalgebra
generated by even-degree primitives.

Other spaces treated are Up2nq{Sppnq for k “ Z and Upnq{SOpnq for char k ‰

2. In later work he deals with the same space and with Op
ř

njq{
ś

Opnjq for

11 This is a simplification; Borel’s actual filtration is essentially by degree of forms.
12 Borel restricts to principal G-bundles in his statement, using his Thm. 24.1, but using

Thm. 24.11 instead (Theorem 2.2), the restriction is unnecessary.
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char k “ 2, using instead of a torus T the diagonal elementary abelian 2-group.
Using the already-studied sss of K Ñ G Ñ G{K instead, he also analyzes the
Stiefel manifolds Upnq{Upℓq and Sppnq{Sppℓq for ℓ ă n and k “ Z, and SOpnq{SOpℓq
in characteristic 2 and additively for k “ Z.

Example 2.4. TakingG “ Upnq andK “ Up1qn diagonal, one findsH˚pG{K;Zq –

Zrt1, . . . , tns{
`
ř

tj ,
ř

iăj titj ,
ř

hăiăj thtitj , ¨ ¨ ¨ , t1 ¨ ¨ ¨ tn
˘

, where |tj | “ 2.

3. Eschenburg

There has long been a school of geometers interested in compact Riemannian
manifolds of positive curvature. There seem to be relatively few of these, and many
known examples are biquotients, orbit spaces of a Lie group G under a free “two-
sided” action pu, vq ¨g “ ugv´1 of a subgroup U of GˆG. This obviously specializes
to a homogeneous space for U “ 1 ˆ K. The special case where U “ H ˆ K for
two closed subgroups H,K ď G is written H {G{K, and this case is in fact general,
since writing ∆: G Ñ G ˆ G for the diagonal, px, yq ÞÑ xy´1 : G ˆ G Ñ G induces
a natural diffeomorphism G{U “ U {pGˆGq{∆G.

Eschenburg [Esc92] studied the cohomology of biquotients, showing many as-
pects of Borel’s and Cartan’s analyses generalize. For convenience, given a right
G-space X and left G-space Y , write X bG Y for the orbit space under pxg, yq „

px, gyq. Consider the two-sided action of GˆG on G and the restricted action of U .
Eschenburg notes the following system of quotients of EGˆ EGˆG:13

(3.1) GU » pEGˆ EGq bU G //

ϖ

��

pEGˆ EGq bGˆGG « pEGˆ EGq{∆G

δ

��
BU » pEGˆ EGq bU ˚

χ
// pEGˆ EGq bGˆG ˚ « BGˆBG.

Here the upper-left corner is of interest because it is homotopy equivalent to U
when the action is free. Since the fiber of both ϖ and δ is G, this is a bundle
map, inducing a map of ssss. Because δ can be identified with the diagonal map
BG ÝÑ BGˆBG up to homotopy, H˚pδq can be identified with the cup product on
the polynomial algebra H˚pBGq, a surjection with kernel generated by the elements
1b τzj ´ τzj b 1 P H˚pBGq bH˚pBGq – H˚pBG ˆ BGq for zj generators of the
exterior algebra H˚pGq and τ “ τς a choice of transgression for G Ñ EG

ς
Ñ BG.

Since none of the zj survive the sss of δ, it follows each transgresses to τδpzjq “

1b τzj ´ τzj b 1. Applying the map to the sss of ϖ, one finds the following:

Proposition 3.1 (Eschenburg). Each zj transgresses to τϖpzjq “ χ˚τδpzjq.

Eschenberg uses this to study the sss of ϖ and compute several examples.

4. Kapovitch

Eschenburg noted his G-bundle map ϖ Ñ δ implies exterior generators of
H˚pGq transgress in the sss of ϖ. Taking U “ H ˆ K, in his thesis work in 2014,

13 The only non-obvious equivalence may be the homeomorphism pe, e1q bx ÞÑ pex, e1q∆G

on the upper right. It is well-defined because peg, e1g1q b g´1xg1 “ pe, e1q bx is also sent to peg ¨

g´1xg1, e1g1q∆G “ pexg1, e1g1q∆G “ pex, e1q∆G. It is obviously surjective. It is injective because
if pfy, f 1q∆G “ pex, e1q∆G, there is g P G with pfyg, f 1gq “ pex, e1q, so e “ fygx´1, and
pe, e1q bx “ pfygx´1, f 1gq bx “ pfyg, f 1gq bx´1x1 “ pfy, f 1q b g1´1g “ pf, f 1q b y.
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the author noticed that Theorem 2.3, which is essentially in Borel’s thesis, yields a
model H˚pBH ˆBKq bH˚pGq for H˚pGHˆKq – H˚

HpG{Kq. It turns out this had
been known for ten years for more general reasons.

Borel’s quasi-isomorphism L1 ÝÑ ApGKq can be seen as an early example of
rational homotopy theory in action (and so, with more squinting, the results of
Cartan, Chevalley, Koszul, and Weil can be as well). A Sullivan algebra is cdga
over a field k of characteristic 0 which is free (exterior b polynomial) as a cga and
whose differential satisfies a certain nilpotence property, and one constructs and
computes with Sullivan models of spaces, Sullivan algebras computing their coho-
mology. Borel’s theorem 2.3 applies to the universal G-bundle ς : EG Ñ BG by his
transgression theorem 2.1, defining a modelH˚pBGq bH˚pGq for EG with differen-
tial the derivation defined as 0 onH˚pBGq and on exterior generators by zj ÞÝÑ τzj .
This is a Sullivan model for EG. The bundle GK Ñ BK is the pullback of ς under
the classifying map ρ “ BpK ãÑ Gq, and H˚pρq : H˚pBGq Ñ H˚pBKq is a map
of Sullivan models, modeling ρ, and the inclusion H˚pBGq ãÑ H˚pBGq bH˚pGq

models ς. A standard result on Sullivan models [FHT01, §15(c)] says in essence
that given a map X Ñ B to a simply-connected B, a Serre fibration E Ñ B, and
Sullivan models MX Ð MB ãÑ ME , finitely generated in each degree, and such
that MB ãÑ ME is a relative Sullivan algebra, meaning the map of underlying cgas
is MB ãÑ MB bA for some other cga A, the tensor product MX bMB

ME is a
Sullivan model for the pullback X ˆB E. Applying this, we get back Borel’s model
for GK :

(4.1) H˚pBKq b
H˚pBGq

`

H˚pBGq bH˚pGq
˘

– H˚pBKq bH˚pGq “ L1.

Building on Eschenburg’s work, Kapovitch notesH˚pχq : H˚pBHq bH˚pBKq Ñ

H˚pBGq bH˚pBGq is a Sullivan model of χ “ BpH ˆ K ãÑ G ˆ Gq and Eschen-
burg’s transgression result yields a Sullivan modelR “ H˚pBGq bH˚pGq bH˚pBGq

of pEGˆEGq{∆G with differential vanishing onH˚pBGq bH˚pBGq and defined by
the transgressions τδpzjq ÞÝÑ 1b τzj ´ τzj b 1 on exterior generators zj of H˚pGq.
Moreover the inclusion H˚pBGq bH˚pBGq ãÑ R is a model of δ. Then the same
result on pullbacks and Sullivan models gives the following.

Theorem 4.1 ([Kap04]). The equivariant cohomology H˚
HpG{Kq over k “ Q is

the cohomology of the Sullivan algebra
`

H˚pBHq bH˚pBKq
˘

b
H˚pBGq bH˚pBGq

R – H˚pBHq bH˚pBKq bH˚pGq

with differential the derivation vanishing on H˚pBHq bH˚pBKq and defined on
exterior generators of H˚pGq by zj ÞÝÑ 1b ρ˚

Kτzj´1b ρ˚
Hτzj for ρH “ BpH ãÑ Gq

and ρK “ BpK ãÑ Gq.

Example 4.2 ([Ca21, Prop. 1.9]). Let G “ SUpnq and K – Up1q a reflected
circle, meaning that for some g P G, for all x P K, one has gxg´1 “ x´1. Then
H˚
KpG{Kq – Λrz5, . . . , z2n´1s b Qrs, ts{ps2 ´ t2q, where |s| “ |t| “ 2 and H˚pGq –

Λrz3, z5, . . . , z2n´1s.

Example 4.3 ([He16][Ca21]). For G “ SOpℓ ` mq and K “ SOpℓq ˆ SOpmq, so
that G{K is the oriented Grassmannian, the ring H˚

KpG{K;Qq has been expressed
in work of the author using the Kapovitch model, following a computation by
different means by Chen He.



THE COHOMOLOGY OF HOMOGENEOUS SPACES IN HISTORICAL CONTEXT 9

GK //

��

EG » ˚

��
BK

ρ
// BG

(a)

pG{KqH //

��

EG{K » BK

ρK

��
BH

ρH
// EG{G » BG

(b)

Y //

ϖ

��

E

π

��
X

χ
// B

(c)

Figure 5.1

5. The Eilenberg–Moore spectral sequence

A critical feature of the approaches described so far is the use of abstractions
of differential forms to give cdga models of spaces over fields of characteristic 0.
Functorial cdga models do not exist in other characteristics,14 but one aspect of
the computation does generalize.

The model H˚pBGq bH˚pGq of EG from the previous section, regraded by
exterior degree, is a free H˚pBGq-module resolution of k – H˚pBGq{Hě1pBGq,
so Borel’s model H˚pBKq bH˚pGq for G{K computes TorH˚BGpk,H˚BKq. This
finally explains why we have stated Cartan’s theorem 1.1 as Theorem 0.2 for k “ R.
The spaces of interest fit into (5.1a).

We obtain Theorem 0.3 for k “ Q from Theorem 4.1 in similar fashion. The Sul-
livan model R of BG from the previous section, viewed as a left H˚pBGq-module,
yields an (inefficient)H˚pBGq-module resolution ofH˚pBGq itself via the cup prod-
uct R0 “ H˚pBGq bH0pGq bH˚pBGq ÝÑ H˚pBGq. Thus RbH˚pBGq H

˚pBKq

computes TorH˚pBGqpH˚BG,H˚BKq “ H˚pBKq, and so RbH˚pBGq H
˚pBKq is

an H˚pBGq-module resolution of H˚pBKq. Thus TorH˚pBGqpH˚BH,H˚BKq can
be computed as the cohomology of

H˚pBHq b
H˚pBGq

R b
H˚pBGq

H˚pBKq – H˚pBHq bHpGq bH˚pBKq,

which is the Kapovitch model of GKˆH from Theorem 4.1.15 This can also be
recovered through (5.1b), which is pullback square because of the homeomorphism
EGbH G{K ÝÑ EG{H ˆEG{G EG{K given by eb gK ÞÝÑ peH, egKq. If we take
ρ˚
H : H˚pBGq Ñ H˚pBHq as a Sullivan model of ρH and the left module structure

14 The proof from Borel’s 1951 ETH lectures on the Leray spectral sequence is as fol-
lows [Bo51, Thm. 7.1]. Suppose for a contradiction that A is a k-cdga–valued contravariant
functor on topological spaces, for k a ring of characteristic p ą 0, such that H˚

`

Ap´q
˘

– H˚p´q

and i˚ : ApY q ÝÑ ApXq is surjective whenever i : X ãÝÝÑ Y is the inclusion of a closed subset.
We show this impossible for X “ CPn with n ą p and Y » ˚ the cone on X. Note that for

any even-degree y in a k-cdga, one has dpypq “ pyp´1dy “ 0. Let the cocycle a P A2pXq represent
a generator x of H˚pXq – krxs{pxn`1q, which since X is closed in Y is i˚ra for some ra P A2pY q.
Now rap P A2ppY q is a cocycle, and since Y is contractible, also a coboundary. But then as i˚ is a
dga map, i˚prapq “ ap is also a coboundary despite representing xp ‰ 0 in H2ppXq.

15 We promised we would discuss the grading. A projective resolution P‚ ÝÑ M of an A-
module M is a sequence of degree-0 A-module maps Pp ÝÑ Pp`1 for p ď 0 together with a
degree-0 A-module map P0 ÝÑ M such that the sequence ¨ ¨ ¨ Ñ P´1 Ñ P0 Ñ M Ñ 0 is exact.
A pure tensor xb y of homogeneous elements x P Pp and y P N inherits a well-defined “internal”
degree q “ |x| ` |y| in addition to the nonpositive resolution degree p, inducing a bigrading on
P‚ bAM and hence on the cohomology TorApM,Nq of the resulting single complex. It is the total
degree n “ p ` q that is the relevant grading for Theorem 0.3 and Theorem 0.2.
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map H˚pBGq ãÑ RbH˚pBGq H
˚pBKq as a Sullivan model of ρK , then the standard

result on pullbacks again gives Theorem 4.1.
Both (5.1a) and (5.1b) are pullbacks of fibrations (5.1c). The common features

of our hypotheses are that k is a field of characteristic 0 that H˚pχq itself is a Sulli-
van model for χ, and that the Sullivan model ME for E is an H˚pXq-module reso-
lution of H˚pEq in such a way that π : H˚pXq Ñ ME is the module structure map.
The common conclusion is a ring isomorphism TorH˚pBqpH˚X,H˚Eq Ñ H˚pY q.

We would like something like this to hold more generally, but in general, one
cannot hope to find models with trivial differential, or in other characteristics,
even spaces with polyonomial cohomology. In general, one at least has a map
Tor0H˚pBqpH˚X,H˚Eq “ H˚pXq bH˚pBq H

˚pEq ÝÑ H˚pY q, which is an isomor-
phism if B is contractible and k is a field, by the Künneth theorem. We still have
cochain algebras and a map C˚pXq bC˚pBq C

˚pEq ÝÑ C˚pY q for all k, and this is
again a quasi-isomorphism when B is contractible, by the Eilenberg–Zilber theo-
rem, but usually not otherwise. To generalize the description of the cohomology of
a pullback to cases with noncommutativity, nonzero differentials, and nonzero B,
Eilenberg and Moore consider a a refined notion of resolution.

Definition 5.1. Given a dga A, a dg A-module M is a dg k-module M which
is simultaneously an A-module in such a way that the action map AbM ÝÑ M
is a cochain map (meaning dpamq “ da ¨ m ` a ¨ p´1q|a|dm). A map of dg A-
modules is an A-module map which is also a degree-0 cochain map. A sequence of
dg A-module maps Pp Ñ Pp`1 is proper exact if for each fixed degree j the three
sequences P j‚ , BjpP‚q, and HjpP‚q of k-modules are exact. A dg A-module P is
proper projective if for each proper exact sequence M f

Ñ N Ñ 0 of A-modules,
each dg A-module map g : P ÝÑ N lifts along f .16 Given a dg A-module M ,
there always exists a proper projective resolution of M , a sequence of proper
projective dg A-modules P‚ “ pPpqpď0 and a dg A-module map P0 Ñ M such
that the extended sequence P‚ Ñ M Ñ 0 is proper exact. This guarantees H˚pP‚q

be a projective H˚pAq-module resolution of H˚pMq.17

If M and N are dg A-modules and P‚ a proper projective resolution of M ,
then as in the classical case, P‚ bAN inherits an internal grading q defined on pure
tensors by q “ |xb y| “ |x| ` |y|, the resolution grading p, and the total grading
n “ p ` q. The differential Tor TorApM,Nq, defined as the cohomology of the
associated single complex, with the inherited bigrading, does not depend on the
choice of P‚.

Returning to Figure 5.1c, a proper projective resolution P‚ of the C˚pBq-
module C˚pXq comes with a surjection P‚ P0 C˚pXq inducing a composite

(5.1) P‚ b
C˚pBq

C˚pEq ÝÑ C˚pXq b
C˚pBq

C˚pEq ÝÑ C˚pY q.

16 I.e., there exists a dg A-module map rg : P ÝÑ M with frg “ g.
17 For A “ k, this recovers the notion of a Cartan–Eilenberg resolution of a complex [CE56,

Ch. XVII], used to define hypercohomology: given an additive functor F , one takes the single
complex P associated to P‚ and defines the hypercohomology of M with respect to F to be
H˚F pP q. To relate this to later terminology, in one of the model structures on the category of
half-plane bicomplexes C‚,‚ a cofibrant replacement of a single complex C0,‚ is exactly a Cartan–
Eilenberg resolution [MuR19, §4], so that hypercohomology with respect to F is the derived
functor of F .
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Theorem 5.2 (Eilenberg–Moore). Suppose that k is a principal ideal domain,
π1pBq acts trivially on the homotopy fiber F of E ÝÑ B, and either (a) each of
the k-modules HnpBq and HnpXq is finitely generated or (b) each HnpF q is. Then
(5.1) induces an isomorphism

TorC˚pBqpC˚X,C˚Eq
„

ÝÑ H˚pY q,

which is multiplicative under a certain natural ring structure on the domain.

Sketch. Replace everything with a CW-complex and X ÝÑ B with a cel-
lular map, Filter C˚pY q of (5.1) by the X-skeletal Serre filtration FpC

˚pY q “

ker
`

C˚pY q Ñ C˚pϖ˚Xp´1q
˘

and C˚pEq by the B-skeletal Serre filtration, P ‚ by
resolution degree, and the domain of (5.1) by the tensor filtration. Then (5.1) is
filtration-preserving and hence induces a map of filtration spectral sequences, whose
codomain is the sss converging to H˚pY q and whose E2 page map unwinds as the
identity map of H˚pX;H˚F q. Thus (5.1) is a quasi-isomorphism. □

If we instead filter P‚ bC˚pBq C
˚pEq or more generally P‚ bAN by the resolu-

tion degree p, we get a left–half-plane spectral sequence of Künneth type, the alge-
braic Eilenberg–Moore spectral sequence , with E2 “ TorH˚pAqpH˚M,H˚Nq,
converging to TorApM,Nq.

Corollary 5.3 (Eilenberg–Moore spectral sequence (emss) [EMo65, Sm67]).
Under the hypotheses of Theorem 5.2, there exists a spectral sequence of H˚pBq-
algebras converging to H˚pY q with E2 “ TorH˚pBqpH˚X,H˚Eq.18

There is typically no easy way to compute the differentials of the emss unless
it is known to collapse, so many authors have set themselves the task of proving
emss collapse results. A recurrent strategy runs through the algebraic emss:

Proposition 5.4 ([Mac, XI.3.2][GM, Cor. 1.8][Mun74, Theorem 5.4]). The al-
gebraic emss associated to a diagram M ÐÝ A ÝÑ N of maps of nonnegatively-
graded dgas is convergent and functorial in the sense that a commutative diagram

(5.2)

M 1

u

��

A1
ϕM1oo ϕN1 //

f

��

N 1

v

��
M A

ϕM

oo
ϕN

// N

of dga maps induces a map of spectral sequences. In particular, if f , u, v are
quasi-isomorphisms, the induced map Torf pu, vq is a graded-linear isomorphism.

18 The earliest version of differential homological algebra and hence of the Eilenberg–Moore
spectral sequence was worked out by Eilenberg and Moore as early as 1957; per a 1959 lecture
of Moore in the Séminaire Henri Cartan [Mo60, fn. 1], it was a topic of the Princeton topol-
ogy seminar in 1957–8. The cohomological version of differential homological algebra and the
emss appears in full in the unpublished 1962 version of Paul Baum’s thesis [Baum]. The first
account of the cohomological emss published in a journal seems to have been Larry Smith’s from
1967 [Sm67]. The homological version, with Cotor and coalgebras in place of Tor and algebras,
appears in the Eilenberg–Moore paper only in 1965 [EMo65], the cohomological version being
deferred to a Part II yet to appear. Reference to the related bar spectral sequence appears in work
of Clark [Cl65] to be discussed later.
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Thus if we can find vertical maps making the diagram

(5.3)

H˚pXq

��

H˚pBq

��

oo // H˚pEq

��
C˚pXq C˚pBqoo // C˚pEq,

commute, we can concludeH˚pY q – TorC˚pBqpC˚X,C˚Eq – TorH˚pBqpH˚X,H˚Eq,
a strong emss collapse result, and in the case that Figure 5.1c is Figure 5.1a or Fig-
ure 5.1b, we obtain Theorem 0.2 or Theorem 0.3, respectively. We usually cannot
show (5.3) is commutative on the nose, but we will encounter more general versions
of Tor, each admitting a functorial algebraic emss and an analogue of Proposi-
tion 5.4, and for these generalizations, we will be able to follow this strategy.

6. Baum

Paul Baum’s 1962 thesis [Baum] aimed to establish Theorem 0.2 for k a field
by proving the collapse of the emss of Figure 5.1a. For T a maximal torus of K, he
noted there is a map of fibrations from G{T Ñ BT Ñ BG to G{K Ñ BK Ñ BG,
inducing a map of emsss which he showed was of the form Er ãÑ Er bH˚pK{T q.
As a consequence, one has the following.

Theorem 6.1 (Baum [Baum, 3.3.2]). Let k be a field. If T is a maximal torus
of K, the emss converging to H˚pG{Kq collapses if and only if that converging to
H˚pG{T q does.

Later proofs often call on mild variants of Theorem 6.1; for the purposes of this
survey, we will gloss all of them as Baum’s reduction .

Unfortunately, there is an error in the proof of the main collapse result.19 In
the 1968 published version [Baum68], the following is salvaged.

Theorem 6.2 (Baum). For any field k, the emss associated to Figure 5.1a col-
lapses when the kernel of the map QH˚pBGq Ñ QH˚pBT q of indecomposables has
dimension ď 2. In particular, Theorem 0.2 holds additively.

Proof. The emss is concentrated in even rows q, forcing d2 “ 0. By the
assumption on indecomposables, it is generated in columns ´2 ď p ď 0, forcing
dě3 “ 0. □

In particular, when G and K are of equal rank, H˚pBGq ÝÑ H˚pBKq is
surjective so the emss is concentrated in the 0th column, forcing a cga isomorphism
H˚pG{Kq

„
ÝÑ kbH˚pBGq H

˚pBKq recovering Borel’s result [Baum68, Cor. 7.5].

Example 6.3 (Borel). Consider K “ SUp5q ă Up5q ă Spp5q “ G. Computing
the map H˚BSpp5q ÝÑ H˚BSUp5q and computing Tor using a Koszul complex,
one has H˚pG{Kq “ Fp

␣

1, c3, c5, w21, w26, rG{Ks
(

, where cj P H2jpG{Kq are the
images of the universal Chern classes, dimG{K “ 31, and the only nonzero products
are those implied by Poincaré duality, for k “ Fp (p ‰ 2) or k “ Q. This looks
different than the previous results because the ideal of H˚BSUp5q generated by
Hě1BSpp5q is not generated by a regular sequence, and equivalently (for k “ Q),

19 Paul will readily tell you this if you happen to coincidentally sit next to him at a conference
and tell him you’ve just read his thesis.
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G{K is not formal in the sense of rational homotopy theory. For k “ F2, one instead
finds H˚pG{Kq – Λrz3s bF2rc2, c3, c4, c5s{pc22, c

2
3, c

2
4, c

2
5q.

Counterexample 6.4. The center of the unitary group Up2q is the diagonal copy
∆Up1q of Up1q, which meets SUp2q in ˘I. We thus have diffeomorphisms SOp3q –

SUp2q{t˘Iu – Up2q{∆Up1q, and we consider the emss of SOp3q Ñ B∆Up1q Ñ

BUp2q over F2, beginning with TorH˚BUp2q

`

F2, H
˚∆Up1q

˘

. To compute this, one
can check the differential on H˚B∆Up1q bUp2q “ F2ry2s bΛrz1, w3s takes z1 to 0
and w3 to y22 , so the Tor is isomorphic to Λrz1s bF2ry2s{py22q. This is isomorphic
to H˚SOp3q “ F2rx1s{px41q as a graded vector space but not as a ring, so the full
multiplicative version of Theorem 0.2 is not true for k “ F2.

7. Cup-i products

All later results showing emss collapse require notions of comparisons ofH˚pXq

and C˚pXq by linear maps that are multiplicative only up to homotopy. If krx, ys

is the cohomology ring of some space X, finding an isomorphic copy of krx, ys in
C˚pXq itself is generally impossible, because lifting to representatives x, y P C˚pXq,
one only has x ! y ” p´1q|x||y|y ! x modulo a coboundary. This coboundary
can be chosen in such a way as to yield a cochain homotopy from the cup prod-
uct to px, yq ÞÝÑ p´1q|x||y|y ! x, called the Steenrod cup-1 product and de-
noted !1 [Ste47, §§2, 5]. The cup-1 product is itself commutative up to a cochain
homotopy witnessed by an operation !2, and inductively Steenrod found a se-
quence of binary operations !i of degree ´i, each commutative up to a homotopy
witnessed by !i`1.

Definition 7.1. Given dgas A and B, there is a natural dga isomorphism χA,B :

AbB ÝÑ BbA given on pure homogeneous tensors by ab b ÞÝÑ p´1q|a||b|bb a.
A dga A is said to admit cup-i products if for 0 ď j ď i there exist degree-(´j)
operations µj : AbA ÝÑ A, starting with µ0 “ µA the ring multiplication of A,
such that for 0 ď j ă i one has Dµj`1 “ µj ´ µjχA,A.

8. May

Peter May characterized the differentials of the algebraic emss in terms of gen-
eralized Massey products defined using matrices of cochains, called matric Massey
products, and showed that in the emss associated to a bundle F Ñ E Ñ B, the ele-
ments of C˚pBq figuring in these matric Massey products were iterated !1-products
of cocycles. He announced [May68] that he had found a dga quasi-isomorphism
f : C˚pBT q ÝÑ H˚pBT q for any k, which by the commutativity of H˚pBT q annihi-
lates !1-products.20 This induces a map Toridpid, fq from TorC˚pBGqpk,C˚BT q to
TorC˚pBGqpk,H˚BT q, which is an isomorphism by Proposition 5.4. The differentials
in the emss converging to TorC˚pBGqpk,C˚BT q all involve !1-products on C˚pBT q,
which f annihilates, showing the algebraic emss converging to TorC˚pBGqpk,H˚BT q

collapses at E2 “ TorH˚pBGqpk,H˚BT q. With Baum’s reduction, this establishes
the following:

Theorem 8.1. Let k be Noetherian. Then Theorem 0.2 holds additively up to an
extension problem; i.e., with the filtration on H˚pY q – H˚

`

P‚ bC˚pBGq C
˚pBKq

˘

20 He also found dga quasi-isomorphisms C˚
`
ś

Kpπj , njq;F2

˘

ÝÑ H˚
`
ś

Kpπj , njq;F2

˘

for
positive integers nj and finitely generated abelian groups πj (with no 4-torsion for nj “ 1).
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induced by the resolution degree p, the associated graded module grH˚pY q is iso-
morphic to TorH˚pBGqpk,H˚BKq.

A preprint was circulated, but the proofs were involved and did not see print,
suppressed in favor of later proofs joint with V.K.A.M Gugenheim.

9. Gugenheim–May

Gugenheim and May [GM] construct a dga formality map f : C˚pBT q ÝÑ

H˚pBT q annihilating !1-products by dualizing dg Hopf algebra quasi-isomorphisms
from homology H˚pBT q to C˚pBT q, where the particular model of BT is a direct
power of a simplicial model of BS1. They assume only that k is a Noetherian ring.
Then, using a variant of Baum’s reduction 6.1 requiring a torsion hypothesis on BK,
they reduce the emss collapse for Figure 5.1a to that for GT Ñ BT

ρ
Ñ BG.

As May had earlier observed, the map Toridpid, fq : TorC˚pBGqpk,C˚BT q Ñ

TorC˚pBGqpk,H˚BT q is a linear isomorphism. To compute the codomain, Gugenheim–
May resolve k as a C˚pBGq-module in the following way. Fix exterior generators
zj P H˚pGq, corresponding polynomial generators xj “ τzj P H˚pBGq, and repre-
sentatives cj P C˚pBGq. Equip the bigraded module M “ C˚pBGq bH˚pGq with a
differential dM whose value on each pure tensor 1b zj1 ¨ ¨ ¨ zjn differs from the naive
choice

ř

i ˘cji b zj1 ¨ ¨ ¨ xzji ¨ ¨ ¨ zjn (the caret p denoting omission) by an element of
the ideal generated by !1-products on C˚pBGq.21 Resolving k by M , one can com-
pute TorC˚pBGqpk,H˚BT q from H˚pBT q bC˚pBGq M – H˚pBT q bH˚pGq, where
the differential annihilates H˚pBT q and takes 1b

ś

zji to pfρ˚ b idqdM p1b
ś

zjiq.
But fρ˚ annihilates the !1-products distinguishing these values from those of the
Cartan/Borel model, defined by 1b zj ÝÑ ρ˚xj b 1, so we have recovered the clas-
sical TorH˚pBGqpk,H˚BT q. This direct computation does not pass through an emss
collapse result and thus also resolves the additive extension problem.
Theorem 9.1 (Gugenheim–May). Let k be a Noetherian ring such that H˚pBK;Zq

has no p-torsion for any factor p of char k (but is not necessarily polynomial). Then
Theorem 0.2 holds additively.

10. A-infinity notions historically

We have seen the assumption of a cup-one product on a dga A limits how badly
a map krx, ys ÝÑ A lifting generators can fail to be a ring map. It is not hard to
check a dga A is commutative if and only if the multiplication µ : AbA ÝÑ A, a
cochain map, is in fact a dga map, so a more systematic way of limiting noncom-
mutativity is a system of homotopies moderating µ’s failure to be multiplicative.

Notions of strong homotopy multiplicativity (shm) and strong homotopy com-
mutativity (shc) originally apply to topological monoids and are due to Sug-
awara [Su60]. We cannot discuss them in detail here, but Sugawara was able to
show that an shm map between two monoids G and H induces a map BG ÝÑ BH
of classifying spaces, that a countable CW-complex B has loop space ΩB shc if
and only if B is an H-space, and that for G a topological group, BG is an H-space
if and only if G is shc. Allan Clark algebraized these notions [Cl65]22 weaken-
ing Sugawara’s hypotheses but obtaining similar consequences. He defines an shm

21 This is the best one can do, since C˚pBGq is not actually commutative.
22 He is interested in the monoid ΩX of variable-length (Moore) loops

š

rě0 Map
´

`

r0, rs, t0, ruq, pX,˚q

¯

q on a pointed space X and particularly in comparing the
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map of dgas A ÝÑ A1 as what is now called an A8-algebra map, a sequence of
maps Abn ÝÑ A1 satisfying certain homotopy coherence conditions approximating
multiplicativity. He shows these amount to a map of differential graded coalgebras
BA ÝÑ BA1, where BA is the bar construction defined in the next section.

Stasheff introduced associahedra Kn and An-spaces, and showed an An-space
is equivalently a space X endowed with a sequence of maps Kj ˆ Xj ÝÑ X for
j P r2, ns satisfying now–natural-seeming conditions [St63a, St63b]. He defined
an An-map in such a way that when n “ 8, it is an shm map in the sense of
Sugawara. An An-algebra is an augmented graded module equipped with a se-
quence of linear maps mj : A

b j ÝÑ A for j P r1, ns satisfying formally similar
conditions. Stasheff showed that an An-algebra is, in later language, a module for
the nth filtrand of the operad23 of cellular chains on K‚, so that if X is an An-
space, C˚pXq is an An-algebra. An A8-algebra is an augmented chain complex
A which is an An-algebra for all n, amounting to a differential making the tensor
coalgebra

À8

p“0A
bp a differential graded coalgebra. When A is a dga, this pre-

scription gives the differential on the bar construction of the next section, up to
sign. Stasheff also connects the algebraic and topological bar constructions via a
chain equivalence BC˚pGq ÝÑ C˚pBGq, for G a topological monoid, which will be
used in Section 16.

11. The bar construction

The bar construction is a functor from DGA to a category DGC of cochain
complexes satisfying axioms dual to the axioms for a ring with a derivation.

Definition 11.1. A coaugmented differential graded k-coalgebra (dgc) is
a cochain complex pC, dCq equipped with a comultiplication ∆C : C ÝÑ C bC

and maps k ηC
Ñ C

εC
Ñ k composing to idk, respectively the coaugmentation and

counit , satisfying the identities

pidb∆q∆ “ p∆b idq∆, ∆d “ pdb id` idb dq∆, pεb idq∆ “ id “ pidb εq∆.

A (coaugmentation-preserving) dgc map is a degree-0 cochain map g : C ÝÑ C 1

satisfying ∆C1g “ pg b gq∆C and ε1
Cg “ εC (and gηC “ η1

C). One writes ∆c “
ř

cp1q b cp2q. A tensor product C bC 1 of dgcs becomes a dgc under the tensor dif-
ferential and comultiplication taking cb c1 to

ř

p´1q|cp2q||c1
p1q|cp1q b c1

p1q
b cp2q b c1

p2q
.

When ∆ is itself a dgc homomorphism C ÝÑ C bC, then C is called cocommu-
tative . Write ∆rn`1s “ p∆bidbn´1

q∆rns : C ÝÑ Cbn for the iterates of ∆r2s “ ∆C

and C “ coker ηC for the coaugmentation coideal; a dgc C is cocomplete if each
homogeneous element is annihilated by one of the composites C Ñ Cbn Ñ Cbn.
Write DGC for the category of cocomplete dgcs, and coaugmentation-preserving
dgc maps. A dg Hopf algebra is a dga A equipped with a dga homomorphism
∆: A ÝÑ AbA (equivalently, a dgc A with a dgc map µ : AbA ÝÑ A).

monoids ΩpX ˆXq and ΩX ˆΩX. These are homotopy equivalent but not homeomorphic, which
had lead to an error in a lecture of Moore [Mo60, Thm. 7.II, pf.].

23 We do not assume or use any specific results about operads in this survey, so we state this
merely for historical context and those who already know about operads.
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Example 11.2. The singular chain complex C˚pXq associated to a topological
space X becomes a dgc under the map taking a singular simplex σ : ∆n Ñ X to
the sum of σ|∆r0,...,ps bσ|∆rp,...,ns P CppXq bCn´ppXq for 0 ď p ď n.24

Using the Eilenberg–Zilber dgc quasi-isomorphism if X is an H-space, the com-
posite dgc map C˚pµXq ˝∇ makes C˚pXq a dg Hopf algebra, and under sufficient
flatness hypotheses, H˚pXq becomes a cocommutative Hopf algebra. Dually, C˚pXq

becomes a dg Hopf algebra and H˚pXq a commutative Hopf algebra.

Definition 11.3. The desuspension s´1A of the submodule A “ ker εA of an
augmented cochain complex A is A regraded via ps´1Aqn :“ An`1, given differential
ds´1A “ ´s´1dAs. On the direct sum BA of BpA :“ ps´1Aqbp (p ě 0), the
tensor coalgebra structure takes s´1a1 b ¨ ¨ ¨ b s´1ap “: ra1| ¨ ¨ ¨ |aps P BpA to
ř

0ďℓďpra1| ¨ ¨ ¨ |aℓsbraℓ`1| ¨ ¨ ¨ |aps P BAbBA, where rs “ 1 P k “ B0A. When A is
a dga, the bar construction is the dgc structure on BA whose differential dBA
is the sum of the tensor differentials on the BpA “ ps´1Aqbp and the “bar-deletion”
maps idbi

bs´1µpsbsqbidbj on Bi`j`2 (i, j ě 0) taking ra|b|cs ÞÝÑ ˘ra|bcs˘rab|cs
and so on.25

We can use the bar construction to generalize the notion of commutativity. As we
have noted, a dga A is commutative if and only if µ : AbA ÝÑ A is itself a dga
map. Weakening this requirement, Stasheff–Halperin [StaH70, Def. 8] call a dga
A an shc-algebra when it admits a dgc map Φ: BpAbAq ÝÑ BA such that
Φrab bs “ rabs for ab b P AbA—asking, in other words, only that µ be the unary
component pAbAqb1 ÝÑ A of an A8-algebra map.26

Definition 11.4 (See Husemoller et al. [HMS74, Def. IV.5.3]). There exists a
natural transformation

∇ : BA1 bBA2 ÝÑ BpA1 bA2q

of functors DGA ˆ DGA ÝÑ DGC, the shuffle map, which is a homotopy equiv-
alence of cochain complexes. It is the direct sum of the maps BpAbBqB ÝÑ

Bp`qpAbBq sending ra1| ¨ ¨ ¨ |apsbrb1| ¨ ¨ ¨ |bqs to the sum of all tensor pp, qq-shuffles
(with Koszul sign) of ra1 b 1| ¨ ¨ ¨ |ap b 1|1 b b1| ¨ ¨ ¨ |1 b bqs.

Clark notes that the composite Φ˝∇ makes BA a (possibly nonassociative) dg Hopf
algebra. The earlier Eilenberg–Mac Lane paper [EM53, (7.7)] already showed this
for Φ “ Bµ when A is a cdga. We will strengthen this observation in Theorem 20.5.

The bar construction BA for a cdga A was introduced in print by Eilenberg–
Mac Lane [EM53, §11]27 not to parameterize homotopy-associative operations, but
to provide a functorial resolution of a dg A-module M , proper projective when A,
M , and H˚pAq are all flat over k.

Definition 11.5. The one-sided bar construction of a dga A and a right dg A-
moduleM is the graded k-moduleMbBA (noteMbB0A “ Mb k “ M) equipped

24 This is the case Y‚ “ SingX of a more general dgc structure on the chain complex C˚pY‚q

associated to a simplicial set Y‚.
25 Signs are all determined by the Koszul convention pf b gqpab bq “ p´1q|g||a|fpaq b gpbq.
26 Clark’s definition [Cl65] had asked even less, merely that Φrab 1s “ ras “ Φr1b as.
27 This is the same work where the Eilenberg–Zilber map ∇ is introduced; the Eilenberg–

Zilber theorem was originally proved using acyclic models. The bar shuffle ∇ : BA1 bBA2 ÝÑ

BpA1 bA2q and the observation it is a homotopy equivalence first appeared in Eilenberg–Mac
Lane’s sequel [EM54, Thm. 4.1a].
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with the sum of the tensor differential and the maps ℓp : µM pidM bsqbidbp´1 : Mb

BpA ÝÑ MbBp´1A taking mra1| . . . |ap´1|aps ÞÝÑ ˘ma1ra2| . . . |aps. Given a right
A-module N , the two-sided bar construction is pM bBAq bAN , which can be
identified with M b BAbN with the sum of the tensor differentials, the ℓp b idN ,
and the maps rp : ´idM b idbp´1

bµN psb idN q : MbBpAbN ÝÑ MbBp´1AbN
taking mra1| ¨ ¨ ¨ |apsn ÞÝÑ ˘mra1| ¨ ¨ ¨ |ap´1sapn.

Mild flatness hypotheses imply TorApM,Nq “ H˚BpM,A,Nq.

12. Stasheff–Halperin

Stasheff–Halperin28 [StaH70], in an offering to a workshop proceedings vol-
ume, suggested a program to generate collapse results for the emss of Figure 5.1a
using an A8-map they construct. Given an shc-algebra pA,Φq, define the iter-
ates Φrns : BpAbnq ÝÑ BA of its structure map by Φr2s :“ Φ and Φrn`1s :“
ΦpΦrns b idAq.29 From a list pfj : Aj Ñ Aq0ďjăκ of dga maps, one can define a
composite dgc map

(12.1) B
`
â

Aj
˘

ÝÝÝÝÝÝÑ
Bp

Â

fjq
BpAbκq ÝÝÝÑ

Φrκs
BA

combining the fj when κ is finite [StaH70, Thm. 9] (or, via a careful colimiting
argument, countably infinite [Mun74, Prop. 3.9(i); §4.3]). We will call this map
the compilation or assembly of the Bfj .

When A is an shc-algebra with countably generated polynomial cohomology
H˚A “ krx1, x2, . . .s –

Â

j krxjs, a choice of representative aj P A for each xj
induces a dga map fj : krxjs ÝÑ A sending xj to aj , so (12.1) gives a dgc map

(12.2) λA : BH˚A ÝÑ BA.

The map λA induces the identity map H˚A “ H˚pH˚Aq ÝÑ H˚A as follows.

Proposition 12.1 ([Mun74, Prop. 3.7]). If A and B are dgas and g : BA Ñ BB
a dgc map, the composite A ÝÑ

s´1
BA Ñ

g
BB B induces a graded algebra map

H5
˚g : H˚A ÝÑ H˚B

such that H5
˚λA “ idH˚A.

Stasheff–Halperin describe an shm module over a dga A as a dg module M
equipped with linear maps Abj bM ÝÑ M whose adjoints Abj ÝÑ EndM yield
an A8-map BA from BpEndMq. Using this data they define a certain differential
on BAbM generalizing the one-sided bar construction of Definition 11.5 and reuse
the notation TorApk,Mq for its cohomology. Then for λK and λG the H5

˚-quasi-
isomorphisms of the previous paragraph and ρ “ BpK ãÑ Gq, the composites

(12.3)
BH˚pBKq λK

--
BH˚pBGq

λG
--

BH˚
pρq 11

BC˚pBKq

BC˚pBGq BC˚
pρq

11

28 written in this order; the pun in the title is also deliberate and similarly unexplained
29 The iterates, including Φ, are themselves shc-algebra maps [Mun74, Prop. 4.5].
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induce two shm C˚pBGq-structures on TorC˚BGpk,H˚BKq. The maps λK and λG
respectively induce graded isomorphisms

TorH˚BGpk,H˚BKq
„

ÝÑ TortopH˚BGpk,C˚BKq,

TorbottomH˚BGpk,C˚BKq
„

ÝÑ TorC˚BGpk,C˚BKq.

If the top and bottom shm C˚pBGq-module structures on H˚pBKq agreed, the
composite isomorphism would imply Theorem 0.2 additively, but they do not, and
later work (1) finds a homotopy between them or (2) postcomposes a map annihi-
lating the difference. Both approaches involve the notion of a twisting cochain.

13. Twisting cochains

Twisting cochains were originally defined by Edgar Brown [Br59], who asked
what algebraic information was necessary to generalize the Eilenberg–Zilber quasi-
isomorphism ∇ : C˚pBq bC˚pF q ÝÑ C˚pB ˆ F q from a product to a fiber bundle
F Ñ E Ñ B. He found that C˚pEq was quasi-isomorphic to the chain complex
given by a new “twisted” differential on C˚pBq bC˚pF q defined using the infor-
mation encoded in an inhomogeneous cochain in C˚pB;C˚ΩBq, viewed as a map
tB : C˚pBq ÝÑ C˚´1pΩBq, and the continuous action ω : ΩB ˆ F ÝÑ F via path-
lifting. This new differential and the differential of the one-sided bar construction
BAbM are both instances of a single construction.

Definition 13.1 (Brown [Br59, §3]). For C a dgc and A a dga, the cup product
f ! g :“ µApf b gq∆C renders ModpC,Aq a dga [Mun74, §1.8].

Proposition 13.2. Let A be a dga. The composite tA : BA B1A “ s´1A
„

ÝÑ

A ãÑ A is a cochain map. For any dgc C, dgc maps F : C ÝÑ BA correspond
bijectively via F ÞÝÑ tA ˝ F to maps t P Mod1pC,Aq satisfying the three conditions

(13.1) εAt “ 0 “ tηC , Dt “ t! t.

Definition 13.3 (Brown [Br59, §3]). Let C be a dgc and A a dga. An element
of Mod1pC,Aq satisfying the conditions (13.1) is a twisting cochain . We write
TwpC,Aq for the set of these. The twisting cochain tA : BA ÝÑ A, called the
tautological twisting cochain , is natural in the dga A.

Definition 13.4 (Brown [Br59, §3]). Let C be a dgc, A a dga, Q a differential
right C-comodule, and N a differential left A-module. We define the cap product
with an element ϕ P ModpC,Aq by

δRϕ :“ pidQ bµN q pidQ bϕb idN q p∆Q b idN q : QbN ÝÑ QbN,

xb y ÞÝÑ
ÿ

˘xp1q b ϕpxp2qqy.

When ϕ “ t is a twisting cochain, dQ b idN ` idQ b dN ´ δRt is a differential on
QbN . The resulting cochain complex is the twisted tensor product QbtN .
Given another twisting cochain t1 : C ÝÑ A1, there is a similar “left” cap product
δLt1 , for M a right dg module over a dga A1, and one can define a twisted tensor
productM bt1 Q with differential differing from the tensor differential by δLt1 . Taking
Q “ C, one can also form a two-sided twisted tensor product M bt1 C btN .

Example 13.5. For A a dga and M a right dg A-module, the one-sided bar
construction of Section 11 is the twisted tensor product M btA BA and for a left dg
A-module N , the two-sided bar construction BpM,A,Nq is the two-sided twisted
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tensor product. More generally, for M an shm module over A, the Stasheff–Halperin
cochain complex defining their version of TorApk,Mq is computed by the twisted
tensor product BAbtM for t : BA Ñ BpEndMq Ñ EndM . In Brown’s setup,
C˚pBq is a dgc with comultiplication σ ÞÝÑ

ř

σ|r0,ps b σ|rp,|σ|s and C˚pF q is a
C˚pΩBq-module via the composite C˚pΩBq bC˚pF q ÝÑ

∇
C˚pΩB ˆ F q ÝÝÑ

ω˚

C˚pF q.

14. Wolf

Joel Wolf’s thesis work [W77, Thm. B] proves Theorem 0.2 for k a field. He
replaces K with its maximal torus T à la Baum, then deals with the noncommuta-
tivity of (12.3) by replacing λT with a formality map f : C˚pBT q ÝÑ H˚pBT q of
Gugenheim–May type, going in the opposite direction.

Write ρ “ BpT ãÑ Gq. Then under our hypotheses the twisted tensor prod-
uct BC˚pBGq b

tC˚pBT qC˚pρq
C˚pBT q computes TorC˚pBGqpk,C˚BT q – H˚pG{T q.

Using maps of twisted tensor products induced by f and λG respectively, one gets

TorC˚pBGqpk,C˚BT q ÝÑ TorC˚pBGqpk,H˚BT q ÐÝ TorH˚pBGqpk,H˚BT q,

which a generalization of Proposition 5.4 shows are linear isomorphisms. The last
Tor is computed by the twisted tensor product BH˚pBGq btH

˚pBT q with respect
to t “ fC˚pρqtC

˚
pBGqλG and Wolf will be done if he can show that t is equal to

H˚pρqtH
˚

pBGq and hence gives the classical Tor.
Now tH

˚
pBT qB

`

fC˚pρq
˘

λG “ fC˚pρqtC
˚

pBGqλG by naturality of the tauto-
logical twisting cochain. Wolf shows one can select λG so that for j ě 2, the im-
ages of the components λj “ tC

˚
pBGq ˝ λG|BjH˚pBGq lie in the ideal generated

by !1-products. As C˚pρq preserves !1-products and f annihilates them, this
means fC˚pρqtC

˚
pBGqλ vanishes on Bě2H

˚pBGq. Since H˚pρqtH
˚

pBGq also van-
ishes on Bě2H

˚pBGq by definition, it remains only to check if the restrictions to
B1H

˚pBGq “ s´1H˚pBGq agree. We can identify these with the two paths around
the square

(14.1)
H˚pBT q mm f

H˚pBGq

λ1s
--

H˚
pρq 11

C˚pBT q

C˚pBGq C˚
pρq

11

By construction, we have identifications H˚pλ1sq “ H5
˚pλGq “ id

H˚pBGq
and

H˚pfq “ idH˚pBT q, so the maps in cohomology induced by H˚pρq and fC˚pρqλ1s
are both H˚pρq. But H˚pBGq and H˚pBT q are dgas with zero differential, so the
maps induced in cohomology are the maps themselves, meaning fC˚pρqλ1s and
H˚pρq are themselves equal, completing the proof.

Theorem 14.1 (Wolf). Let k be a field. Then Theorem 0.2 holds additively, even
without the hypothesis on H˚pBKq.

15. The cobar construction

The work of Husemoller–Stasheff–Moore [HMS74] completing the program
proposed in Stasheff–Halperin provides a wholesale reformulation of differential ho-
mological algebra that allows them to reprove many of the known quasi-isomorphisms.
As this approach is homological, we will need to dualize several notions.
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Proposition 15.1. Given a dgc C, there exists a twisting cochain tC : C ÝÑ ΩC
initial in the sense that for any dga A, any twisting cochain t : C ÝÑ A factors
uniquely through a dga map f t : ΩC ÝÑ A with t “ f t ˝ tC .

Definition 15.2. The dga ΩC is referred to as the cobar construction and
gives the object component of a functor Ω : DGC ÝÑ DGA [Mun74, §1.7]. The
tautological twisting cochain tp´q : id ÝÑ Ω is a natural transformation. As an
algebra, the cobar construction ΩC is the tensor algebra on the suspension sC of
the coaugmentation coideal, and the differential is the sum of all the differentials
idbi b dsC b idbj and operations idbi

b psb sq∆Cs
´1 b idbj . There is also a dual

version of the shuffle map of Definition 11.4, a natural transformation

γ : ΩpC1 bC2q ÝÑ ΩC1 bΩC2

of functors DGC ˆ DGC ÝÑ DGA.

The two functors Ω % B form an adjoint pair [Mun74, §1.9–10]:

gt : ΩC ÝÑ A

f t : C ÝÑ BA,

linked by the twisting cochain t : C ÝÑ A. We will have frequent recourse to the
unit and counit of the adjunction Ω % B,

η : id ÝÑ BΩ and ε : ΩB ÝÑ id

respectively. These are both natural quasi-isomorphisms and homotopy equivalences
on the level of dg modules [HMS74, Thm. II.4.4–5][Mun74, Cor. 2.15].

Definition 15.3. Dualizing the diagrams defining a dg module over a dga A
gives a notion of a dg comodule over a dga C. Given a right dg A-module M
and a left dg A-module N , the tensor product M bAN can be understood as
the kernel of the map µM b idN ´ idM bµN : M bAbN ÝÑ M bN , and dually,
given a left dg C-comodule M and a right dg C-comodule N , one can define a
cotensor product M ˝C N as the cokernel of ∆M b idN ´ idM b∆N : M bN ÝÑ

M bC bN . A notion of proper injective resolution I‚ of a dg C-comodule M
is defined dually to the notion of proper projective resolution and CotorCpM,Nq is
defined as H˚pI‚ ˝C Nq. Subject to k-flatness of C, H˚pCq, N , and H˚pNq, there is
a homological algebraic emss CotorH˚pCq

pH˚M,H˚Nq ùñ CotorCpM,Nq, which
can be computed using a one-sided cobar constructionM bΩC as a proper injective
resolution of M .

There is also a homological Eilenberg–Moore theorem, stating that the square of
Figure 5.1c induces a coalgebra isomorphism CotorC˚pBq

pC˚X,C˚Eq – H˚pY q (re-
ducing to Adams’s theorem from Remark 15.4 when X » ˚ » E, so that Y » ΩB),
and there corresponds a homological emss CotorH˚pBq

pH˚X,H˚Eq ùñ H˚pY q.

Remark 15.4. Adams [A56] introduced the cobar construction as a model for the
loop space ΩB of a simply-connected space B and proved H˚ΩC˚pBq – H˚pΩBq

(we dually have H˚BC˚pBq – H˚pΩBq via Eilenberg–Moore).30 He was motivated
by a desire to rephrase his joint result with Hilton [AH56], which gives a dga
model for the Pontrjagin ring H˚pΩBq in terms of the dgc C˚pBq, in terms of a
functor Ω : Mod ÝÑ Mod which would in principle be iterable.

30 Rivera and Zeinalian recently extended this to path-connected spaces [RZ18, R19].
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Baues [Baues81] found a comultiplication on ΩC˚pBq making it a dg Hopf
algebra and inducing the standard comultiplication on H˚pΩBq, and allowing one
iteration.31 Dually, he found a multiplication on BC˚pBq making it a dg Hopf alge-
bra and inducing the cup product on H˚pΩBq. This multiplication in fact renders
C˚pBq a homotopy Gerstenhaber algebra in the sense we will discuss in Section 20.

16. Husemoller–Stasheff–Moore

Husemoller–Moore–Stasheff’s proof of Theorem 0.2 first reduces to K “ T a
torus following Baum, then proves the collapse of the homological emss of Fig-
ure 5.1a as follows. Taking the canonical simplicial model KpZn, 1q for T , they
note C˚pT q is a commutative dg Hopf algebra and there are quasi-isomorphisms
H˚pBT q – H˚BC˚pT q ÝÑ BC˚pT q – C˚pBT q of divided power Hopf algebras.
Moreover, they note that the cobar construction of both domain and codomain carry
a cocommutative dg Hopf algebra structure ∆˚ preserved by this map [HMS74,
Prop. IV.6.1]. If k is chosen such that H˚pGq is an exterior Hopf algebra on exterior
generators xj , there are induced dgc maps C˚pBGq

„
ÝÑ BC˚G Ñ BΛrxjs, whose

adjoint dga maps ΩC˚pBGq ÝÑ Λrxjs assemble to a map

ΩBC˚pGq
„

ÝÑ ΩC˚pBGq
p∆˚

q
rrkGs

ÝÝÝÝÝÝÑ
`

ΩC˚pBGq
˘

b rkG ÝÑ
â

Λrxjs – H˚pGq

with adjoint BC˚pGq ÝÑ BH˚pGq a quasi-isomorphism. They show the composite

H˚pBT q ÝÑ C˚pBT q ÝÑ C˚pBGq ÝÑ BH˚pGq

factors through

H˚pBGq
„

ÝÑ
â

BΛrxjs
∇rrkns

ÝÝÝÝÑ B
`
â

Λrxjs
˘ „

ÝÑ BH˚pGq

because H˚pBT q “ H˚BC˚pT q is commutative [HMS74, Prop. IV.7.2], and then
the commutativity of the diagram

H˚pBT q //

��

H˚pBGq

��
BH˚pGq

C˚pBT q // C˚pBGq

OO

gives the desired sequence of quasi-isomorphisms

CotorH˚pBGq
`

k,H˚pBT q
˘ „ // CotorBH˚pGq

`

k,H˚pBT q
˘

.CotorC˚pBGq
`

k,C˚pBT q
˘

CotorC˚pBGq
`

k,H˚pBT q
˘

„

OO

„
oo

The dg Hopf algebra structure can be seen as a strategy for compilation of maps
replacing the Stasheff–Halperin (12.1).

After all the work poured into this long paper, there is a minor hitch in the
proof of a lemma near the very end. This lemma, however, can be substituted
with a result of the present author, proven for other reasons, and an alternative

31 But this goes no further: there is no suitable diagonal on ΩΩC˚pBq.
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definition due to Munkholm (see Theorem 17.5) of the map ψ they use in defining
the coproducts ∆˚ on ΩC˚pBGq and ΩC˚pBT q.32

Theorem 16.2. Let k be a ring such that H˚pGq and H˚pKq are exterior algebras
on odd-degree generators. Then there is an isomorphism of graded modules

H˚pG{Kq – CotorH˚pBGq
`

k,H˚pBKq
˘

.

17. Munkholm

Munkholm proves Theorem 0.3 by showing (12.3) is homotopy-commutative in
a strong sense, assuming only that k is a principal ideal domain and a certain extra
condition in characteristic 2.

Definition 17.1 ([Mun74, §1.11][Mun78, §4.1]). Given dga maps f0, f1 : A1 ÝÑ

A, a dga homotopy f0 » f1 is a map h : A1 ÝÑ A of degree ´1 such that

εAh “ 0, hηA1 “ 0, dphq “ f0 ´ f1, hµA1 “ µApf0 bh` hb f1q .

Given twisting cochains t0, t1 : C ÝÑ A, a twisting cochain homotopy t0 » t1
is a map x : C ÝÑ A of degree 0 such that

εAx “ εC , xηA “ ηC , dpxq “ t0 ! x´ x! t1.

Given dgc maps g0, g1 : C ÝÑ C 1, a dgc homotopy g0 » g1 is a map j : C ÝÑ C 1

of degree ´1 such that

εC1j “ 0, jηC “ 0, dpjq “ g1 ´ g0, ∆C1j “ pg0 b j ` jb g1q∆C .

The bijections
DGApΩC,Aq – TwpC,Aq – DGCpC,BAq

preserve these notions of homotopy, as do the functors Ω and B.

Munkholm enhances the notion of strong homotopy commutativity by asking
that the structure map Φ: BpAbAq ÝÑ BA satisfy up-to-homotopy unitality,
commutativity, and associativity criteria. The canonical example is that of an au-
thentically commutative algebra.

Example 17.2. If A is a cdga, then ΦA :“ BµA : BpAbAq ÝÑ BA makes A an
shc-algebra. The cohomology ring H˚pX‚; kq of a simplicial set is of this type, and
will always be considered with this shc-algebra structure. If ρ : A ÝÑ B is a map
of cdgas, then Bρ is an shc-algebra map per the coming Definition 17.7.

Example 17.3. If A is an shc-algebra, then H˚pAq is a cga, so ΦH˚pAq :“
BµH˚pAq gives an shc-algebra structure on H˚pAq by Example 17.2. The cohomol-
ogy ring of an shc-algebra will always be endowed with this shc-algebra structure.

32 In the proof of Proposition IV.6.1, the commutativity of the necessary diagram depends on
Proposition IV.5.7, which one can check by hand is false. However, this diagram can be replaced
by another relevant diagram, which actually commutes owing to the following result:

Lemma 16.1 (Carlson (unpublished)). Let A1 and A2 be dgas, ∇ as given in Definition 11.4,
and ψ as in Theorem 17.5. Then the map γ of Definition 15.2 is equal to the composition

ΩpBA1 bBA2q
Ω∇

ÝÝÑ ΩBpA1 bA2q
ψ

ÝÑ ΩBA1 bΩBA2.
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Theorem 17.4 ([Mun74, Prop. 4.7]). Let X be a simplicial set and k any ring.
Then the normalized cochain algebra C˚pXq “ C˚pX; kq admits a natural shc-
algebra structure ΦC˚pXq.33

Munkholm defines an shc-algebra map to be a dgc map making a natural
square commute, but to define the square, we require some auxiliary concepts.

Theorem 17.5 ([HMS74, Prop. IV.5.5] [Mun74, kA1,A2
, p. 21, via Prop. 2.14]).

There exists a homotopy equivalence of cochain complexes

ψ : ΩBpA1 bA2q ÝÑ ΩBA1 bΩBA2

which is a natural transformation of functors DGA ˆ DGA ÝÑ DGA satisfying

pεA1
b εA2

q ˝ ψ “ εA1 bA2
: ΩBpA1 bA2q ÝÑ A1 bA2

and reducing to the identity if A1 or A2 is k.

Definition 17.6 ([Mun74, Prop. 3.3]). Let Aj , Bj be dgas and gj : BAj Ñ BBj
dgc maps for j P t1, 2u. The internal tensor product g1 b g2 is the composite

BpA1 bA2q
η
ÝÑ BΩBpA1 bA2q

Bψ
ÝÝÑ BpΩBA1 bΩBA2q

BpεΩg1 b εΩg2q
ÝÝÝÝÝÝÝÝÝÝÑ BpB1 bB2q.

This construction becomes functorial on passing to the homotopy category, or if
enough of the dgc maps gj involved are Bfj for dga maps fj [Mun74, Prop. 3.3(ii)].
It is related to the ordinary tensor product by the shuffle map in the sense that
∇ ˝ pg1 b g2q “ pg1 b g2q ˝ ∇ : BA1 bBA2 ÝÑ BpB1 bB2q [Fr21a, Lem. 4.4].

Definition 17.7. Given shc-algebras Z and A, a dgc map g : BZ ÝÑ BA is said
to be an shc-algebra map if there exists a dgc homotopy between the two paths
around the square

(17.1)

BpZ bZq

g b g
��

ΦZ // BZ

g

��
BpAbAq

ΦA

// BA.

Munkholm also generalizes the construction of (12.1): given a finite or countable
list pgj : BAj ÝÑ BAq0ďjăκ of dgc maps, the compilation

(17.2) B
`
â

Aj
˘

ÝÝÝÑ
Â

gj
BpAbκq ÝÝÝÑ

Φrκs
BA

is again a dgc map. This operation enjoys good homotopy properties.

Proposition 17.8 ([Mun74, Props. 3.9(iv) & 4.6]). The dgc homotopy class of
the compiled map (17.2) depends only on the homotopy classes of the inputs gj.

Proposition 17.9 ([Mun74, p. 44, top]). Up to dgc homotopy, postcomposition
with an shc-algebra map commutes with compilation.

Using this enhanced notion, Munkholm is also able to verify homotopies by
checking them on generators.

33 This natural shc structure on cochains is a reinterpretation of the classical Eilenberg–
Zilber theorem; only verifying the homotopy-associativity axiom requires much additional work.
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Theorem 17.10 ([Mun74, Lem. 7.3]). If A is an shc-algebra with polynomial
cohomology, the dgc map λA : BH˚A ÝÑ BA of (12.2) is an shc-algebra map
when

‚ the characteristic of k is not 2, or
‚ the characteristic of k is 2, and the cup-one–squares xj!1xj of the chosen

generators xj of H˚A are zero.

Proof. Recall that λA is the compilation of maps B
`

fj : krxjs Ñ A
˘

where
fjpxjq “ aj P A represents xj P H˚pAq. One checks that λA bλA is dgc-homotopic
to the compilation of the maps B

`

fb2
j : krxjs

b2 Ñ Ab2
˘

, so by Proposition 17.8,
λA will be an shc-algebra map if and only if each Bfj is. To check this, form
the associated square (17.1), postcompose tA and check if the twisting cochains
t1 “ tAΦABpfj b fjq and t2 “ tABpfjµkrxjsq “ fjµkrxjst

krxjs
b2

are homotopic.
Write x “ 1bxj and y “ xj b 1. Munkholm [Mun74, Prop. 6.2] characterizes
homotopy classes of twisting cochains t : Bkrx, ys ÝÑ A in terms of the classes in
H˚pAq of three cochains: trxs, trys, and a certain cocycle c12ptq of degree |x|`|y|´1.
One easily checks t1pxq “ t2pxq “ aj “ t2pyq “ t1pyq. If char k ‰ 2, then H˚pAq is
evenly graded, so c12pt1q “ 0 “ c12pt2q for degree reasons. If char k “ 2, it turns out
c12pt1q “ 2aj !1 aj “ 0 and c12pt2q “ aj !1 aj , so t1 and t2 are homotopic if and
only if the class in H2|aj |´1pAq of aj !1 aj is zero. □

Theorem 17.11 ([Mun74, §7.4]). Given shc-algebras A, X, shc-algebra maps
λX : BH˚X ÝÑ BX and ξ : BA ÝÑ BX, if H˚A is a polynomial ring on count-
ably many generators, λA is the dgc map of (12.2), and H5

˚λX is the identity,
then there exists a dgc homotopy between the two paths around the central square
below:

(17.3)
BH˚pXq λX

--Bkrxjs
Bij // BH˚pAq

λA
--

BH5
˚ξ 11

BX
tX // X,

BA ξ

11

where H˚pAq “ krx1, x2, x3, . . .s and ij : krxjs ãÝÝÑ H˚pAq are the inclusions.

Proof. First we examine the twisting cochain homotopy classes of the two
composites t : Bkrxjs Ñ X in (17.3) for each j. Each is determined [Mun74,
Prop. 6.2] by the class of trxjs inH˚pXq, and becauseH5

˚pBH5
˚ξq “ H5

˚ξ andH5
˚λA

and H5
˚λX are identity maps, on unravelling definitions one sees they are both

pH5
˚ξqpxjq. By Definition 17.1, this implies dgc homotopies between the composites

Bkrxjs Ñ BX. By Proposition 17.8, it will suffice to see that λX ˝BpH5
˚ξq is dgc-

homotopic to the compilation of the λX ˝BpH5
˚ξ ˝ ijq and ξ ˝λA to the compilation

of the ξ ˝λA ˝Bij . For the former, recall that λX and BH5
˚ξ are shc-algebra maps

while idBH˚pAq “ Bp
Â

ijq is the compilation of the Bij , and use Proposition 17.9.
For the latter, note ξ is an shc-algebra map and λA was defined as the compilation
Φ

rκs

A ˝Bp
Â

fjq of the Bfj for fj : krxjs Ñ A, so precomposing Bij recovers Bfj . □

By Theorem 17.4, cochain algebras are shc-algebras, so in the situation of the
Eilenberg–Moore theorem 5.2, ifX χ

Ñ B
π

Ð E have countably-generated polynomial
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cohomology, one can apply (12.2) three times to obtain the following:

(17.4)

BH˚pXq

λX

��

BH˚pBq

λB

��

BH˚
pχqoo BH˚

pπq// BH˚pEq

λE

��
BC˚pXq BC˚pBq

BC˚
pχq

oo
BC˚

pπq

// BC˚pEq.

If X and E satisfy the additional hypotheses one can apply Theorem 17.10, then
λX and λE are shc-maps, so applying Theorem 17.11 twice to (17.4), both squares
commute via dgc homotopies. Applying Ω to (17.4) gives a diagram Ω(17.4) of
dgas commutative up to dga homotopy. We want to see this induces a linear iso-
morphism TorH˚pBqpH˚X,H˚Eq

„
ÝÑ TorC˚pBqpC˚X,C˚Eq. The dgas are all of

the wrong form, ΩBA but the counit ΩBA ÝÑ A of the Ω % B adjunction is a nat-
ural dga quasi-isomorphism, so by two applications of Proposition 5.4, we can in-
stead show Ω(17.4) induces an isomorphism TorΩBH˚pBqpΩBH˚X,ΩBH˚Eq

„
ÝÑ

TorΩBC˚pBqpΩBC˚X,ΩBC˚Eq.
Munkholm achieves this by re-encoding homotopies. Recall that a homotopy

j : g0 » g1 : C ÝÑ C 1 of maps of chain complexes is equivalent by a single map
C b I ÝÑ C 1, where I is the complex ktur0,1su Ñ ktur0s, ur1su of nondegenerate
chains in the standard simplicial structure on the interval r0, 1s. For dgas, the dual
algebra I˚ “ ktv0, v1, eu of normalized cochains on the simplicial interval plays
an analogous role [Mun74, Thm. 5.4, pf.]. For any dga A, the dga I˚ bA comes
with two (non-unital) dga maps πj : I˚ bA kvjbA

„
ÝÑ A, and a dga homotopy

h : f0 » f1 : A
1 ÝÑ A induces a dga map hP : A1 ÝÑ I˚ bA with fj “ πj ˝ hP .34

Since H˚pI˚q – k, one sees the πj are quasi-isomorphisms.
Now Ω from (17.4) induces a map of Tors in the following way [Mun74,

Thm. 5.4]. Given dga maps as in (5.2), with the squares commuting up to dga
homotopies represented by hPM : A1 ÝÑ I˚ bM 1 and hPN : A1 ÝÑ I˚ bN . Then the
following diagram commutes by definition:

(17.5)

M 1 u // M I˚ bM
π0oo π1 // M

A1

ϕM1

OO

ϕN1

��

A1

OO

��

A1

hP
M

OO

hP
N

��

f // A

ϕM

OO

ϕN

��
N 1

v
// N I˚ bN

π0

oo
π1

// N,

inducing a graded linear map Torf pπ1, π1q ˝ Toridpπ0, π0q´1 ˝ Toridpu, vq, where
Toridpπ0, π0q is an isomorphism by Proposition 5.4. If u, f , and v are also quasi-
isomorphisms, the composite is similarly an isomorphism.

Applying this to Ω(17.4), we get Munkholm’s main result.

34 To render these maps unital and augmentation-preserving, which is important for any
further use of the adjunction, replace I˚ bA with the sub-dga PA “ k

␣

pv0 ` v1q b 1
(

‘ I˚ bA

and modify the πj in the obvious way; then dga maps A1 Ñ PA and dga homotopies of dga
maps A1 Ñ A are in bijection.
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Theorem 17.12. In the situation of Theorem 5.2, suppose that H˚pXq, H˚pBq,
and H˚pEq are polynomial rings on at most countably many generators, and if
char k “ 2, assume there exist polynomial generators for H˚pXq and H˚pEq whose
!1-squares vanish. Then there is a graded linear isomorphism

TorH˚pBqpH˚X,H˚Eq
„

ÝÑ H˚pY q.

Corollary 17.13. Let k be a principal ideal domain. Then Theorem 0.2 holds
additively.

Munkholm observes that applying Baum’s reduction 6.1 and his own corol-
lary 17.13 for K “ T a torus, one recovers the Gugenheim–May theorem 9.1.

Counterexample 17.14. One might hope the isomorphism of Theorem 17.12 is
multiplicative, but it is not without some added conditions. Let B be the Eilenberg–
Mac Lane space KpZ{2, 2q and E the contractible space PB of paths in B start-
ing at a fixed basepoint, with PB Ñ B evaluation at the other end. If we take
for X the basepoint of B, the pullback Y is the loop space ΩB “ KpZ{2, 1q »

RP8, with polynomial cohomology ring F2rι1s over k “ F2. On the other hand,
H˚KpZ{2, 2q is a polynomial ring on generators of degrees 2, 3, 5, 9, 17, . . ., so that
TorH˚KpZ{2,2qpF2,F2q is exterior on generators of degrees 1, 2, 4, 8, 16, . . .. Theo-
rem 17.12 applies and correctly reflects that the underlying graded F2-modules are
isomorphic, but this isomorphism is not multiplicative.

18. Singhof

Singhof [Si93] directly applies Munkholm’s theorem 17.12 to Figure 5.1b in the
case H ˆK acts freely on G, so that H {G{K is a smooth manifold.

Theorem 18.1 (Singhof, 1993). Let k be a principal ideal domain. Then Theo-
rem 0.3 holds additively.

Corollary 18.2. If additionally rkG “ rkH ` rkK, then Theorem 0.3 holds mul-
tiplicatively as well.

Proof. In this case one has Tor “ Tor0 “ H˚pBHq bH˚pBGq H
˚pBKq, so the

ring map H˚pBHq bH˚pBKq Ñ Tor is surjective. □

Singhof shows the total Pontrjagin p class of the tangent bundle of K {G{H
lies in the image of Tor0. Write n “ rkG ´ rkpH ˆ Kq and n1 “ dimH {G{K ´

n. Through an inductive algebraic argument, Singhof shows Torp,q vanish outside
the parallelogram with vertical edges pp, qq P 0 ˆ r0, n1s and ´n ˆ r´2n, n1 ´ 2ns.
In particular pℓ vanishes for ℓ ą n1. He further computes χpH {G{Kq, which can
nowadays be more easily done using Kapovitch’s model in Section 4.

19. Gugenheim–Munkholm

Gugenheim and Munkholm’s joint work [GMu74] precedes Munkholm’s solo
effort and contains arguments that a homotopy-commutative diagram like (17.4)
induces an additive isomorphism of Tors. It also states Munkholm’s hypotheses for
the diagram to homotopy-commute, at the end, but does not include a proof that
they suffice, and the statement that Theorem 17.12 follows.

The main material, of which this suggested proof of Theorem 17.12 is an ap-
plication, is focused on extending the definition and functoriality of Tor to a more
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general context than a spanM Ð A Ñ N of dga maps. The approach in Munkholm
to this is that dgc maps BM Ð BA Ñ BN are enough, for applying Ω one gets
ΩBM Ð ΩBA Ñ ΩBN , defining TorΩBApΩBM,ΩBNq, and applying Torεpε, εq,
this specializes to the TorApM,Nq one already had if one was lucky enough to have
dga maps M Ð A Ñ N to begin with.

Gugenheim–Munkholm, by contrast, assume M and N are respectively right
and left dg A-modules and use the two-sided bar construction BpM,A,Nq as a
model for TorApM,Nq. They generalize the notion of a map of dg modules, for
M a right dg A-module and M 1 a right dg A-module, and f : BA ÝÑ BA1 a
dgc map, to what they call a f-sh linear map M ñ M 1 This is a cochain
map g : BpM,A, kq ÝÑ BpM 1, A1, kq such that gb f makes the square with the
comodule structure maps BpM,A, kq Ñ BpM,A, kq bBA and BpM 1, A1, kq Ñ

BpM 1, A1, kq bBA1 commute. There is a symmetric notion of f -sh linear map
h : N Ñ N 1 for a left dg A-module N and a left dg A1-module N 1, together induc-
ing a chain map gbf h : BpM,A,Nq Ñ BpM 1, A1, N 1q by the cotensor product and
hence a map of Tors.

Gugenheim–Munkholm then introduce an appropriate notion of homotopy of
f -sh linear maps, and show that given only homotopy-commutative squares as in
(17.4) (λB standing in for f), one can actually replace the outer maps by maps
which are λB-sh linear. Then the functorality of Tor from the previous paragraph,
will give Munkholm’s theorem 17.12, so long as the homotopies are known to exist.

20. The surjection operad

The remaining work requires further cochain-level operations generalizing the
cup-i products. The value c1pσ|∆r0,ps qc2pσ|∆rp,p`qs q of the cup product of homoge-
neous cochains c1, c2 P C˚pXq and c2 P CqpX; kq on a singular simplex σ : ∆p`q ÝÑ

X can be seen as the value of µkpc1 b c2q on the diagonal
řp`q
j“0 σ|∆r0,js b σ|∆rj,p`qs ;

the only term with the right dimensions not to evaluate to zero is σ|∆r0,ps bσ|∆rp,p`qs .
The higher Steenrod cup-i products are defined by apportioning the vertices dif-
ferently; for example, to define c1 !1 c

2 on σ : ∆r Ñ X, one sums, over all possible
subdivisions 0 ď p ď q ď r, the product of the values of c1 and c2 at the respec-
tive restrictions of σ to ∆r0,psYrq,rs and ∆rp,qs.35 More generally, given n cochains
cpiq and an ℓ-simplex, one can break up the vertex set r0, ℓs into m ě n endpoint-
overlapping intervals (in all possible ways) and assign some of the intervals to
each cpiq (getting zero unless |cpiq| ` 1 is the number of vertices assigned). Multi-
plying over i and summing over subdivisions then yields a cochain. The resulting
interval-cut operations C˚pXqbn ÝÑ C˚pXq are parameterized by the surjec-
tions φ : t1, . . . ,mu ÝÑ t1, . . . , nu assigning subintervals to cochains.

Example 20.1. Identifying φ with the sequence
`

φp1q, . . . , φpmq
˘

, the cup product
corresponds up to sign with the sequence p1, 2q, the cup-1 product to p1, 2, 1q, and
the cup-i product in general to an alternating sequence p1, 2, 1, 2, . . .q of length i`2.

One considers only sequences with no two consecutive entries equal, to avoid
producing degenerate simplices, and redefines the notion of cochain accordingly.
The normalized cochain algebra C˚pX‚; kq on a simplicial set X‚ is the dg
subalgebra containing all and only cochains vanishing on each degenerate simplex.

35 We ignore a sign here.
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It has been shown that the interval-cut operations on C˚pX‚; kq are closed
under the action of the symmetric group and composition, and that the differen-
tial of such an operation is a linear combination of other such operations [BF04,
Prop. 1.2.7][McS03, Props. 2.18, 19, 26].

In the language of operads36 they form a symmetric dg-operad X, called the
surjection operad [BF04]. The normalized cochain algebra of a pointed simplicial
set is then functorially a X-algebra [McS03, Thm. 2.15].

Definition 20.2 ([Fr20a, §3.2]; [Kad03, §2.1] over F2; [Fr20b, (3.13)] for signs).

A homotopy Gerstenhaber algebra (hga) is an algebra over the symmetric
dg operad F2X of X generated by the dga product p1, 2q and the operations Eℓ
corresponding to p1, 2, 1, 3, 1, . . . , 1, ℓ ` 1, 1q.37 An extended hga is an algebra
over the symmetric dg operad F 1

3X of X generated by F2X and the operations
Fp,q corresponding to

p1, p` 1, 1, p` 2, 1, p` 3, . . . , 1, p` q, 1, p` q, 2, p` q, 3, p` q, . . . , p, p` qq.

An (extended) hga homomorphism f : A ÝÑ B is a dga map distributing over
the operations (Fp,q and) Eℓ.

To explain the notation, the dg suboperad F2X is a term of a certain increasing
filtration FnX on X with F 1

3X Ď F3X .38,39

Example 20.3. A cdga A is canonically an X-algebra with FℓX zFℓ´1X acting
identically as 0 for ℓ ě 2. In particular, a cdga A is naturally an extended hga.

Corollary 20.4. For any pointed simplicial set X‚, its algebra C˚pX‚q of normal-
ized cochains is also naturally an extended hga with ´E1 “ !1 and ´F1,1 “ !2.

An hga structure on a dga A is known to induce a multiplication µBA on the
dgc BA rendering it a dg Hopf algebra.40

Theorem 20.5 (Franz [Fr20a]). A homotopy Gerstenhaber algebra A admits a
natural dgc map ΦA : BpAbAq ÝÑ BA satisfying the unitality and associativity

36 Here, we use the terminology as a kind of shorthand, and as a familiar reference point for
those familiar with operads, but for the reader who has not, it is enough to understand “a system
of composable operations (of varying arities) closed under composition.” These satisfy a long but
intuitive set of axioms and give a formal organizing notion for certain algebraic structures.

37 hgas were first defined [GeV95] as dgas equipped with operations Eℓ satisfying certain
axioms. It is a theorem [McS03, Thm. 4.1][BF04, §1.6.6] that this yields precisely F2X-algebras.

38 F0X contains functions with 0 or 1 value. FℓX zFℓ´1X contains sequences such that ℓ is
the maximum number of alternations in a two-value subsequence. For example, p1, 2q lies in F1X
and p3, 1, 4, 3, 4, 2, 1, 2q in F3X, with maximum alternation attained by the subsequence p3, 1, 3, 1q.

39 For those who know what this is, FnX is equivalent to the cochains on the operad of little
n-cubes. In fact [BF04, Thm. 1.3.2, Lem. 1.6.1], X is a quotient of the dg-operad E associated to
the classical Barratt–Eccles simplicial operad, which is filtered by a sequence FnE of En-operads
(of which the FnX are the images), so the normalized cochain algebra is an E8-algebra.

The filtrands FnX had been already identified and shown to be equivalent to the little n-cubes
operads by other methods [McS03] before this surjection was found. Earlier still, McClure–Smith
had shown F2X is equivalent to the little squares operad [McS02] in order to prove Deligne’s
conjecture that the Hochschild cohomology of a ring is naturally an E2-algebra.

40 Extended hgas over F2 were first studied by Kadeishvili [Kad03], seeking conditions
on an hga A under which BA admitted cup-i products. He gave a characterization in terms of
operations of X acting on A; for i “ 1, these are the Fp,q .
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axioms for shc-algebras and such that µBA “ ΦA˝∇. If A is an extended homotopy
Gerstenhaber algebra, then ΦA is an shc-algebra structure.

This shc-algebra structure is not complicated to define, but the fact it actually
satisfies the axioms is an extraordinarily complex computational result (found by
hand but verified by computer) for which we still have no conceptual explanation.

21. Franz

In 2019, Franz [Fr21a] proved the following.

Theorem 21.1 (Franz). Let k be principal ideal domain in which 2 is a unit. Then
Theorem 0.2 holds.

Recall that the characteristic-0 multiplicative results work because there exist
dga structures on the complexes computing Tor. Kadeishvili–Saneblidze [KadS05,
Thm. 7.1] found a dga structure on the twisted tensor product BAbtA

1 when A

and A1 are hgas and t “ tA
1

˝ Bϕ for an hga homomorphism ϕ : A Ñ A1. This
dga structure is functorial on the category of hga diagrams of shape ‚ Ñ ‚. By
Theorem 5.2, Definition 11.5, and Corollary 20.4, BC˚pBGq b

tC˚pBKqBρ C
˚pBKq

is a dga with cohomology ring H˚pG{Kq, and BH˚pBGq b
tH˚pBKqBH˚ρH

˚pBKq

is a dga with cohomology ring TorH˚BGpk,H˚BKq. Using the Halperin–Stasheff
maps (12.2), Franz considers the composite cochain map

Θ: BH˚pBGq b

tH
˚pBKq BH˚ρ

H˚pBKq
id bλ

p1q

H// BH˚pBGq b

tC
˚pBKq λH BH˚ρ

C˚pBKq
„ δh
��

BC˚pBGq b

tC
˚pBKq Bρ

C˚pBKq BH˚pBGq b

tC
˚pBKq Bρ λG

C˚pBKq
λG b id
oo

where λp1q

H “ tH
˚

pBKq ˝λH ˝s´1
C˚pBKq

and δh is the cap product with the homotopy h
of twisting cochains BC˚pBGq ÝÑ H˚pBKq implied by the commutativity of
(12.3), as proved by Munkholm. By a variant of Proposition 5.4, H˚pΘq is a linear
isomorphism.

Because λG and λH are not multiplicative, Θ may not preserve the dga struc-
tures, but we follow Wolf in postcomposing a formality map to kill !1-products
preventing λG from being multiplicative. Let T be a maximal torus of H and set
ϕ “ BpT ãÑ Hq. Franz follows Θ with

Ψ: BC˚pBGq b
tC˚pBKq Bρ˚

C˚pBKq
id b fϕ˚

ÝÝÝÝÝÑ BC˚pBGq b
tC˚pBT q Bpfϕ˚ρ˚q

H˚pBT q,

where idbϕ˚ induces an injection in cohomology and idb f is a quasi-isomorphism
by Proposition 5.4. Since ϕ is an hga map, if f can also be chosen to be an hga
map, Ψ will be multiplicative by functoriality of the dga structure.

The existing Gugenheim–May map does not meet these desiderata, so Franz
defines a certain ideal kX of undesirable cochains, functorial in spaces X, and then
constructs a new formality map f : C˚pBT q ÝÑ H˚pBT q which is an hga map
annhilating kBT so long as 2 is a unit of k. At the same time, using the fact
C˚pBT q is an extended hga, he applies Theorem 20.5 to obtain an shc-algebra
structure Φ such that the dgc quasi-isomorphism λT : BH

˚pBT q ÝÑ BC˚pBT q
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compiled with respect to Φ has image in the error ideal kBT . Moreover, the compiled
maps make (12.3) commute up to a homotopy h such that tC

˚
pBKqh is congruent

to the identity modulo kBK . Further, λG is an shc-algebra map in the sense of
making (17.1) homotopy-commute via a dgc homotopy whose associated twisting
cochain homotopy takes the coaugmentation coideal into kBG. This twisting cochain
homotopy is hence annihilated by postcomposing with fϕ˚ρ˚. With these choices
of shc-algebra structure and formality map, one checks postcomposing with Ψ
simplifies Θ so that the composite ΨΘ is

λG bϕ˚ : BH˚pBGq b
H˚pρqtH˚pBGq

H˚pBKq ÝÑ BC˚pBGq b
fϕ˚ρ˚tC˚pBGq

H˚pBT q.

Since H˚pΨq is a multiplicative injection and H˚pΘq is a bijection, to show
H˚pΘq is multiplicative, it suffices to show H˚pΨΘq is. When A1 is a cdga, the
multiplication on the twisted tensor product BAbtA

1 making it a dga is just the
naive multiplication permuting the tensor factors and then multiplying components
using µBA bµA1 , because the commutativity of A1 means the higher-order hga
operations on A1 figuring in the multiplication formula vanish. To show H˚pΨΘq

is multiplicative, it is thus enough to construct a dgc homotopy between the two
paths around the large diagram

pBH˚BGqb2 b pH˚BKqb2 ∇ b id //

λb2
G

b pϕ˚
q

b2

��

BpH˚BGqb2 b pH˚BKqb2 Φ bµ //

λG bλG b pϕ˚
q

b2

��

BH˚BGbH˚BK

λG bϕ˚

��
pBC˚BGqb2 b pH˚BT qb2

∇ b id
// BpC˚BGqb2 b pH˚BT qb2

Φ bµ
// BC˚BGbH˚BT.

By Theorem 20.5, the product on BC˚pBGq factors as Φ ˝ ∇, so it is enough to
find a dgc homotopy for the right square. The dga coordinates commute on the
nose since ϕ˚ is a ring map. For the bar coordinates, λG is an shc-algebra map via
a homotopy H such that the coaugmentation coideal of BpH˚BGqb2 is annihilated
by the twisting cochain tH

˚
pBT qfϕ˚ρ˚H defining the twisted differential on the

codomain. An easy lemma then shows H bϕ˚ is the desired dgc homotopy.

Example 21.2. Let H – Up1q be the subgroup of SUp4q with diagonal entries
diagpz´3, z, z, zq. Then, indexing generators by degree, we have a ring isomorphism

H˚
`

SUp4q{H;Zr 12 s
˘

–
Zr 12 srs2s b Λra5, b7s

p3s2, s3, s2a5q
.

22. Carlson–Franz

On seeing Franz’s paper, the present author at once had the insight that Franz’s
proof of Theorem 0.2 would effortlessly generalize to a proof of Theorem 0.3. That
insight was wrong: Franz pointed out no one had defined a multiplication µ on
a two-sided twisted tensor product A2 bt2 BAbt1 A1 generalizing the product of
Kadeishvili–Saneblidze. One also needs a version of the Eilenberg–Moore theorem
preserving µ; more precisely, one needs to show that in the situation of Theorem 5.2,
the relevant instance C˚pXq bt2 BC˚pBq bt1 C˚pEq Ñ C˚pXq bC˚pEq Ñ C˚pY q

of the map of (5.1) is multiplicative up to a homotopy h.
Within a month, however, Franz shared formulas for µ and h he believed should

work once a correct choice of signs was discovered. The present author guessed the
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signs and proved that these formulas work as expected.41 After that, the proof
summarized in the preceding section works mutatis mutandis. This was the work
presented at the conference session.

Theorem 22.1 ([CaF21]). Theorem 0.3 holds whenever 2 is a unit of k.

As one needs to invert 2 for this approach to work, this result is not strictly an
improvement on Munkholm’s additive theorem 17.12 in all cases.
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