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Motivation

This note is intended to contain full solutions to all exercises in this venerable text,1 as well as proofs of results
omitted or left to the reader. It has none of the short text’s pith or elegance, tending rather to the other extreme, citing
chapter and verse from the good book and spelling out, step-by-step, things perhaps better left unsaid. It attempts to
leave no “i” undotted, no “t” uncrossed, no detail unexplained. We are rather methodical in citing results when we
use them, even if they’ve likely long been assimilated by the reader. Having found some solution sets online unclear
at points (sometimes due to our own shortcomings, at other times due to theirs), we in this note strive to suffer
from the opposite problem. Often we miss the forest for the trees. We prefer to see this not as “pedantic,” but as
“thorough.” Sometimes we have included multiple proofs if we have found them, or failed attempts at proof if their
failure seems instructive. The work is our own unless explicitly specified otherwise. It is hoped that the prolix and
oftentimes plodding nature of these solutions will illuminate more than it conceals.

1 [A–M]
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Notation

Problems copied from the book and propositions are in italics, definitions emphasized (italic when surrounding
text is Roman, and Roman when surrounding text is italic), and headings in bold or italics, following the book, and
our solutions and occasional comments in Roman. Solutions that were later supplanted by better ones but still might
potentially be worth seeing have usually been included, but as footnotes, decreasing both page count and legibility.
Propositions, exercises, theorems, lemmas, and corollaries from the main body of the text will always be cited as
“(n.m)” or (n.m.t)”, where n is the chapter number, m the section number, and “t” an optional Roman numeral.
For example, Proposition 1.10, part ii) is cited as “(1.10.ii)”. Propositions or assertions proved in these solutions
but not stated in the text are numbered with an asterisk, e.g. “Proposition 4.12*” and thereafter “(4.12*)”. Exercises
from the “EXERCISES” sections that follow each chapter, on the other hand, we cite with (square) brackets as e.g.
“[3.1]” and “[1.2.i]”. Displays in this document are referred back to as e.g. “Eq. 1.1” or “Seq. 2.2”. Ends of proofs for
exercises go unmarked, though we will sometimes mark proofs for discrete propositions we prove in the course of
doing problems or expanding upon material.

Our mathematical notation follows that of the book, with a few exceptions as noted below. For strict set con-
tainment, “⊂” is supplanted by “(”, which is preferred for its lack of ambiguity; it is not to be confused with “6⊆”,
which means “does not contain.” “3” is a backward “∈”, and means “contains the element” (rather than “such that”).
The ideal generated by a set of elements is noted by listing them between parentheses: e.g., (x, y) is generated by
{x, y} and (xα)α∈A is generated by {xα : α ∈A}. Contrastingly (and disagreeing with the book), we notate sequences
and ordered lists with angle brackets: 〈x, y〉 is an ordered pair and 〈xα〉α∈A is a list of elements xα indexed by a set A;
in particular 〈xn〉n∈N is a sequence. Popular algebraic objects like N, Z,Q, R, and C will be denoted in blackboard
bold instead of bold, and 0 is included in N. Fq denotes a (“the”) finite field with q elements. “a Ã A” means that
a is an ideal of the ring A. For set complement/exclusion, the symbol “\” replaces “−” on the off chance it might
otherwise be confused with subtraction in cases (like topological groups) where both operations are feasible. The
set of units of the ring A will be denoted by A× rather than A∗, which is assigned a different meaning on p. 107.
Bourbaki’s word “quasi-compact” for the condition that every open cover has a finite subcover (not necessarily re-
quiring the space be Hausdorff) we replace with “compact”; this usage seems to hold generally outside of algebraic
geometry and most of the topologies we encounter here are not Hausdorff anyway. “ker”, “im”, and “coker” will
go uncapitalized. N(A) and R(A) always denote, respectively, the nilradical and the Jacobson radical of the ring A;
we just write N and R where no ambiguity is possible. The notation idM : M →M for the identity map replaces the
book’s “1” as slightly more unambiguous; 1 or 1A is instead the unity of the ring A. “Multiplicative submonoid” is
preferred to the book’s “multiplicatively closed subset” as indicating that a subset of a ring contains 1 and is closed
under the ring’s multiplication. “Zorn’s Lemma,” capitalized, is the proper name of a result discovered by Kazimierz
Kuratowski some thirteen years earlier than by Max Zorn. For a map f : A→ B , we can replace the arrow with “�”
when f is surjective, “�” when it is injective, “,→” when it is an inclusion, and “

∼−→” when it is an isomorphism.
A∼= B means that there exists some isomorphism between A and B , and X ≈ Y that X and Y are homeomorphic
topological spaces. [M ] is the isomorphism class of M . For a map f : A→ B , if U ⊆ A and V ⊆ B are such that
f (U )⊆V , then f |VU is the restricted and corestricted map U →V . Very occasionally, κ, λ, µ may be cardinals (or
homomorphisms), and indices α, β, γ may be ordinals. ℵ0 is the cardinality of N.
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Rings and Ideals

Theorem 1.3. Every ring A 6= 0 has at least one maximal ideal.

In order to apply Zorn’s Lemma, it is necessary to prove that if 〈aα〉α∈A is a chain of ideals (meaning, recall, that
for all α, β ∈A we have aα ⊆ aβ or aβ ⊆ aα) then the union a=

⋃

α∈A aα is an ideal. Indeed, if a, b ∈ a, then there
are α, β ∈A such that and a ∈ aα and b ∈ aβ. Without loss of generality, suppose aα ⊆ aβ. Then a, b ∈ aβ, so since
aβ is an ideal we have a − b ∈ aβ ⊆ a. If x ∈ A and a ∈ a, then there is α ∈ A such that a ∈ aα. As aα is an ideal,
xa ∈ aα ⊆ a. Therefore a is an ideal.

Exercise 1.12.
i) a⊆ (a : b).

For each a ∈ a we have ab⊆ ab⊆ a, so a ∈ (a : b).

ii) (a : b)b⊆ a.

By definition, for x ∈ (a : b) we have xb⊆ a.

iii)
�

(a : b) : c
�

= (a : bc) =
�

(a : c) : b
�

.

x ∈
�

(a : b) : c
�

⇐⇒ xc⊆ (a : b) ⇐⇒ xcb⊆ a ⇐⇒ x ∈ (a : bc);

x ∈
�

(a : c) : b
�

⇐⇒ xb⊆ (a : c) ⇐⇒ xbc⊆ a ⇐⇒ x ∈ (a : bc).

iv)
�⋂

i ai : b
�

=
⋂

i (ai : b).

x ∈
�

⋂

i

ai : b
�

⇐⇒ xb⊆
⋂

i

ai ⇐⇒ ∀i (xb⊆ ai ) ⇐⇒ x ∈
⋂

i

(ai : b).

v)
�

a :
∑

i bi

�

=
⋂

i (a : bi ).

x ∈
�

a :
∑

i

bi

�

⇐⇒ a⊇ x
�

∑

i

bi

�

=
∑

i

xbi ⇐⇒ ∀i (xbi ⊆ a) ⇐⇒ x ∈
⋂

i

(a : bi ).

For an A-module M and subsets N ⊆ M and E ⊆A, define (N : E) := {m ∈ M : Em ⊆N}; for subsets N , P ⊆ M
and E ⊆A, define (N : P ) := {a ∈A : aP ⊆N}.

Note for future use that then ii) holds equally well for subsets a, b ⊆ M , or b ⊆ A and a ⊆ M ; iii) holds for
a, b⊆M and c⊆A; and iv) and v) hold for modules a, ai and modules or ideals b, bi .

Exercise 1.13.
−i) a⊆ b =⇒ r (a)⊆ r (b).

If x ∈ r (a), for some n > 0 we have xn ∈ a⊆ b, so x ∈ r (b).

0) r (an) = r (a) for all n > 0.

an ⊆ a, so by part −i) we have r (an) ⊆ r (a). If x ∈ r (a), then for some m > 0, x m ∈ a. But then x mn ∈ an and
x ∈ r (an).

i) r (a)⊇ a.
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Chapter 1: Rings and Ideals

For each a ∈ a we have a1 ∈ a, so a ∈ r (a).

ii) r
�

r (a)
�

= r (a).

x ∈ r
�

r (a)
�

⇐⇒ ∃n > 0
�

xn ∈ r (a)
�

⇐⇒ ∃n, m > 0
�

(xn)m = x mn ∈ a
�

⇐⇒ x ∈ r (a).

iii) r (ab) = r (a∩ b) = r (a)∩ r (b).

For the first equality, note (a∩b)2 ⊆ ab⊆ a∩b, so by parts 0) and−i), r (a∩b) = r
�

(a∩b)2
�

⊆ r (ab)⊆ r (a∩b).
For the second, note that if m, n > 0 are such that x m ∈ a and xn ∈ b, then xmax{m, n} ∈ a∩ b, and conversely.

iv) r (a) = (1) ⇐⇒ a= (1).

If r (a) = (1), then 1 ∈ r (a), so for some n we have 1= 1n ∈ a, and then a= (1).

v) r (a+ b) = r
�

r (a)+ r (b)
�

.

Since a, b ⊆ a+ b, by part −i) we have r (a), r (b) ⊆ r (a+ b), so r (a) + r (b) ⊆ r (a+ b). By parts −i), and ii),
we see r

�

r (a) + r (b)
�

⊆ r
�

r (a+ b)
�

= r (a+ b). Conversely, by part i), we have a ⊆ r (a) and b ⊆ r (b), so adding,
a+ b⊆ r (a)+ r (b). By part −i), r (a+ b)⊆ r

�

r (a)+ r (b)
�

.

vi) If p is prime, r (pn) = p for all n > 0.

By part 0), r (pn) = r (p). By (1.14), r (p) = p.

Proposition 1.17. iv*) Both extension and contraction are order-preserving with respect to containment; i.e. for ideals
a1 ⊆ a2 of A we have ae

1 ⊆ ae
2 and for ideals b1 ⊆ b2 of B we have bc

1 ⊆ bc
2.1

If a1 ⊆ a2, then f (a1)⊆ f (a2), so ae
1 = Bf (a1)⊆ Bf (a2) = ae

2. If b1 ⊆ b2, then bc
1 = f −1(b1)⊆ f −1(b2) = bc

2.

Exercise 1.18. Let f : A→ B be a ring homomorphism, and let a, a j be ideals of A and b, b j ideals of B.
�
∑

a j

�e =
∑

ae
j .

Because the homomorphism f distributes over finite sums and multiplication of ideals distributes over addition,
�

∑

a j

�e
= Bf

�

∑

a j

�

= B ·
∑

f (a j ) =
∑

Bf (a j ) =
∑

ae
j .

(a1a2)
e = ae

1a
e
2.

Because 1 ∈ B , we have B = BB ; as f is a homomorphism and ideal multiplication commutes,

(a1a2)
e = Bf (a1a2) = BBf (a1) f (a2) = Bf (a1)Bf (a2) = ae

1a
e
2.

�
∑

b j

�c ⊇
∑

bc
j .

Given any finitely many nonzero a j ∈ f −1(b j ), we have f
�
∑

j a j

�

=
∑

j f (a j ) ∈
∑

j b j .

(b1b2)
c ⊇ bc

1b
c
2.

If f (a j ) ∈ b j for j = 1, 2, then f (a1a2) = f (a1) f (a2) ∈ b1b2.

�⋂

j a j

�e ⊆
⋂

j a
e
j .

�

⋂

a j

�e
= Bf

�

⋂

a j

�

⊆ B ·
⋂

f (a j ) =
⋂

Bf (a j ) =
⋂

ae
j .

�⋂

b j

�c =
⋂

bc
j .

�

⋂

b j

�c
= f −1

�

⋂

b j

�

=
⋂

f −1(b j ) =
⋂

bc
j .

(a1 : a2)
e ⊆ (ae

1 : ae
2).

1 This is trivial, but the book never seems to explicitly state that it is the case, so here is a place to cite when we use it.
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Ex. 1.1 Chapter 1: Rings and Ideals

By the result on multiplying extended ideals, and since (a1 : a2)a2 ⊆ a1 by (1.13.ii), we have

(a1 : a2)
eae

2 =
�

(a1 : a2)a2

�e (1.17.iv*)
⊆ ae

1.

(b1 : b2)
c ⊆ (bc

1 : bc
2).

By the result on multiplying contracted ideals, and since (b1 : b2)b2 ⊆ b1 by (1.13.ii),

(b1 : b2)
cbc

2 ⊆
�

(b1 : b2)b2

�c (1.17.iv*)
⊆ bc

1.

r (a)e ⊆ r (ae ).

Let b =
∑

j b j f (x j ) for b j ∈ B and x
n j

j ∈ a. Some f (x j )
n j divides each term of b

∑

j (n j−1)+1, so b ∈ r (ae ).

r (b)c = r (bc ).

a ∈ f −1
�

r (b)
�

⇐⇒ ∃n > 0
�

f (an) = f (a)n ∈ b
�

⇐⇒ ∃n > 0
�

an ∈ f −1(b)
�

⇐⇒ a ∈ r
�

f −1(b)
�

.

The set of extended ideals is closed under sum and product, and the set of contracted ideals is closed under intersection,
quotient, and radical.

It now suffices to show (bc
1 : bc

2) = (b
c e
1 : bc e

2 )
c . Indeed, using the preceding facts and (1.17.ii),

a ∈ (bc
1 : bc

2) ⇐⇒ abc
2 ⊆ bc

1 =⇒ f (a) f (bc
2)⊆ f (bc

1) ⇐⇒ f (a)bc e
2 ⊆ bc e

1 ⇐⇒ a ∈ (bc e
1 : bc e

2 )
c ;

a ∈ (bc e
1 : bc e

2 )
c ⇐⇒ f (a)bc e

2 ⊆ bc e
1 =⇒ abc

2 ⊆ f −1� f (a)
�

bc
2 = f −1� f (a)

�

bc ec
2 ⊆ bc ec

1 = bc
1 =⇒ a ∈ (bc

1 : bc
2).

EXERCISES
Let x be a nilpotent element of a ring A. Show that 1+ x is a unit of A. Deduce that the sum of a nilpotent element and a unit is

a unit.

The nilradical is a subset of the Jacobson radical, and by (1.9), for any x ∈R we have 1+ x = 1− (−x) a unit.2

Now if x is nilpotent and u a unit, then u−1x is nilpotent as well and u + x = u(1+ u−1x) is invertible.

Let A be a ring and let A[x] be the ring of polynomials in an indeterminate x, with coefficients in A. Let f = a0+a1x+· · ·+an xn ∈
A[x]. Prove that
i) f is a unit in A[x] ⇐⇒ a0 is a unit in A and a1, . . . , an are nilpotent.

⇐=: If a0 is a unit and the a j are nilpotent for j ≥ 1, then since N is an ideal by (1.7), the a j x j are nilpotent for
j ≥ 1 and y =

∑n
j=1 a j x j is nilpotent, and by [1.1], f = a0+ y is invertible.

=⇒: We induct on deg f . The degree zero case is trivial. Suppose we have proved the result for degrees < n, and
let deg f = n. Suppose that f is a unit, with inverse g =

∑m
i=0 bi x i ; assume for uniformity of notation that a j = bi = 0

for integers i , j outside the ranges indicated. Write ck =
∑k

j=0 a j bk− j for 0≤ k ≤ m+ n, so that 1= f g =
∑

k ck xk .
We have 1= c0 = a0b0, so a0 and b0 are units, and the other ck are all 0. Note in particular 0= cm+n = an bm : a power
of an annihilates bm . This is the r = 1 case of a general claim that a r

n bm+1−r = 0 for 1≤ r ≤ m+ 1. Indeed, fix such
an r and inductively assume a s

n bm+1−s = 0 for 1≤ s ≤ r . We have

0= cm+n−r = bm−r an + bm−r+1an−1+ · · ·+ bman−r .

Multiplying by a r
n , we get

0= a r+1
n bm−r + a r

n bm−r+1
︸ ︷︷ ︸

0

(an−1an)+ · · ·+ an bm
︸ ︷︷ ︸

0

(an−r a r−1
n ),

2 Alternatively, let n > 0 be minimal such that xn = 0, and let y =
∑n−1

j=0 (−x) j ; then

(1+ x)y =
n−1
∑

j=0

(−x) j −
n
∑

j=1

(−x) j = 1± xn = 1.

6



Chapter 1: Rings and Ideals Ex. 1.3

so 0 = a r+1
n bm−r , completing the induction. When we get to r = m we see b0am+1

n = 0, so since b0 is a unit, an is
nilpotent. Hence an xn is nilpotent, and by [1.1], f −an xn is a unit. This has degree< n, so by induction, a1, . . . , an−1
are nilpotent.

ii) f is nilpotent ⇐⇒ a0, a1, . . . , an are nilpotent.

⇐=: Since N
�

A[x]
�

is an ideal by (1.7), if all a j ∈N, then all a j x j ∈N, so f =
∑

a j x j ∈N.
=⇒: On the other hand, for each prime pÃA, we have p[x]ÃA[x] prime since it is the kernel of the surjection

A[x] � (A/p)[x], whose image is an integral domain by [1.2.iii]: if a j x j ∈ A[x] is a zero-divisor, there exists a
nonzero c ∈A with c ·

∑

a j x j = 0, so each c · a j = 0, and hence a j = 0 as A/p is an integral domain. Thus

N
�

A[x]
�

(1.8)
⊆
⋂

�

p[x]
�

=
�

⋂

p
�

[x] =N(A)[x].3

iii) f is a zero-divisor ⇐⇒ there exists a 6= 0 in A such that af = 0.

The “if” direction is trivial; the “only if” we prove by induction. We prove something slightly more specific: if a
nonzero g = b0+ b1x + · · ·+ bm x m ∈ (0 : f ) is of least possible degree m, then bm f = 0.

For the base case, if f = a0 has degree zero, then of course bma0 = bm f = 0. Suppose inductively that for all
zero-divisors f ′ of degree n − 1 we know there is some b ∈ A such that b f ′ = 0. Let deg f = n and g and m be as
before. Since f g = 0, also an bm = 0, so deg(an g )< m. As an g f = 0 as well, by minimality of m, we know an g = 0.
Now 0= f g − an xn g = ( f − an xn)g . Since f ′ = f − an xn is of degree < n, by the inductive assumption bm f ′ = 0,
so bm f = bman xn + bm f ′ = 0, completing the induction.

iv) f is said to be primitive if (a0, a1, . . . , an) = (1). Prove that if f , g ∈ A[x], then fg is primitive ⇐⇒ f and g are
primitive.

We can actually let A[x] := A[x1, . . . , xr ] be a polynomial ring in several indeterminates, writing x for the se-
quence x1, . . . , xr , in the proof below.

Note that a polynomial is primitive just if no maximal ideal contains all its coefficients. Let mÃ A be maximal.
Since A/m is a field, A[x]/m[x]∼= (A/m)[x] is an integral domain. Thus

f, g /∈m[x] ⇐⇒ f̄, ḡ 6= 0 in (A/m)[x] ⇐⇒ f g 6= 0 in (A/m)[x] ⇐⇒ f g /∈m[x].

Therefore no maximal ideal contains all the coefficients of f g just if the same holds for f and g .4

This result is called Gauß’s Lemma and was originally proven in his Disquisitiones Arithmeticae for A= Z. Cf.
also [9.2].

Generalize the results of Exercise 2 to a polynomial ring A[x1, . . . , xr ] in several indeterminates.

We start with an assumption about the ring B =A[x1, . . . , xr ] and prove the corresponding statement about the
ring B[y] =A[x1, . . . , xr , y] in one more indeterminate. For a multi-index α= 〈 j1, . . . , jr 〉we write aα, k := a j1, ..., jr , k

and xα := x j1
1 · · · x

jr
r . If f ∈ B[y], we can write it as f =

∑

α, k aα, k xαyk =
∑

k hk yk , where hk =
∑

α aα, k xα ∈ B .

i) f is a unit in B[y] ⇐⇒ a0,0 is a unit in A and all other aα, k are nilpotent.

f ∈ B[y]×
[1.2.i]
⇐⇒
B[y]/B

h0 ∈ B× and other hk ∈N(B)
[1.3.i], [1.3.ii]
⇐⇒
B/A

a0,0 ∈A× and other aα, k ∈N(A).

3 Alternate proof: suppose f m = 0 and j is minimal with a j 6= 0. Then the lowest term am
j x j m of f is 0, so a j is nilpotent and f − a j x j is

nilpotent. Repeatedly lopping off lowest terms, we see each a j ∈N(A).
4 We also have the following generalization of the classical proof. Suppose f is not primitive, so that for some maximal m Ã A we have

f ∈m[x]. Then f g ∈m[x], so f g is not primitive. The same holds if g is not primitive.
Now suppose f g is not primitive; we show one of f and g is also not. There is a maximal idealm containing all of the coefficients cr =

∑

j a j br− j
of f g ; we suppose that neither all of the a j nor all of the bk lie inm and obtain a contradiction. There are a least J and a least K such that aJ , bK /∈m.
Now m contains the coefficient cJ+K =

∑

j<J a j bJ+K− j + aJ bK +
∑

k<K aJ+K−k bk , and each of the sums is in m by assumption, so aJ bK ∈m as
well. Since m is prime, we have aJ or bK in m, a contradiction.
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Ex. 1.4 Chapter 1: Rings and Ideals

Use of [1.3.ii] is permissible because it is independent, but we could also perform the induction in both exercises at
the same time.

ii) f is nilpotent ⇐⇒ all aα, k are nilpotent.

f ∈N
�

B[y]
� [1.2.ii]
⇐⇒
B[y]/B

all hk ∈N(B)
[1.3.ii]
⇐⇒
B/A

all aα, k ∈N(A).

iii) f is a zero-divisor ⇐⇒ there exists a 6= 0 in A such that af = 0.

The inductive assumption will be that if g ∈ B is a zero-divisor, and b ∈ B is of minimal multidegree α (in the
reverse lexicographic order) such that b g = 0, then if a is the coefficient of the leading term of b , we have ag = 0.

The “if” is again trivial. For the “only if,” suppose f is a zero-divisor in B[y]. By [1.2], there exists a nonzero
b ∈ B such that b f = 0. Thus bhk = 0 for each k. By the inductive assumption the highest coefficient a ∈ A of b is
such that ahk = 0 for each k. Then af = 0.

iv) Prove for f , g ∈A[x1, . . . , xr ] that f g is primitive over A ⇐⇒ f and g are primitive over A.

The proof in [1.2.iv] goes through equally well in this case.

In the ring A[x], the Jacobson radical is equal to the nilradical.

We know N⊆R by (1.8), since maximal ideals are prime, so it remains to show all elements of R are nilpotent.
Let f =

∑

a j x j ∈R, where a j ∈A. By (1.9), 1− x f is a unit. By [1.2.i], then, all a j ∈N, so by [1.2.ii], f ∈N.

Let A be a ring and let A[[x]] be the ring of formal power series f =
∑∞

n=0 an xn with coefficients in A. Show that
i) f is a unit in A[[x]] ⇐⇒ a0 is a unit in A.

⇐=: Supposing a0 is a unit, we construct an inverse g =
∑

m bm x m to f . Let b0 = a−1
0 . We want f g =

∑

j c j x j = 1,

so for j ≥ 1 we want c j =
∑ j

n=0 an b j−n = 0. Now suppose we have found satisfactory coefficients b j for j ≤ k. We
need ck+1 = a0bk+1+

∑k+1
n=1 an bk+1−n = 0; but we can solve this to find the solution bk+1 =−a−1

0

�
∑k+1

n=1 an bk+1−n

�

.
Since we can do this for all k, we have constructed an inverse to f .
=⇒ : If g =

∑

m bm x m is an inverse of f , then f g = 0 implies a0b0 = 1 so that a0 is a unit.

ii) If f is nilpotent, then an is nilpotent for all n ≥ 0. Is the converse true?

The two proofs of “=⇒” in [1.2.ii] both hold, mutatis mutandis, here.
The converse is untrue. Let B = C [y1, y2, . . .] be a polynomial ring in countably many indeterminates over an

integral domain C , and let b= (y1, y2
2 , y3

3 , . . .) be the smallest ideal containing each yn
n for n ≥ 1. Then writing zn for

the image of yn in A= B/b, we have zn
n = 0 and zn−1

n 6= 0. Thus an element of A is equal to zero just if, written as a
polynomial in the zn over C , each term is divisible by some zn

n . Now let f =
∑∞

n=0 zn xn ∈A[[x]]. By construction,
each coefficient is nilpotent. However, for each n, one term of the coefficient in A of xn(n+1) in f n is zn

n+1, which is
nonzero and cannot be cancelled, so f n 6= 0.

iii) f belongs to the Jacobson radical of A[[x]] ⇐⇒ a0 belongs to the Jacobson radical of A.

If the constant coefficient of g ∈A[[x]] is b0 ∈A, then the constant coefficient of 1− f g is 1− a0b0. Now

f ∈R
�

A[[x]]
� (1.9)
⇐⇒ ∀g ∈A[[x]]

�

1− f g ∈A[[x]]×
� [1.5.i]
⇐⇒ ∀b0 ∈A

�

1− a0b0 ∈A×
� (1.9)
⇐⇒ a0 ∈R(A).

iv) The contraction of a maximal ideal m of A[[x]] is a maximal ideal of A, and m is generated by mc and x.

Since x ∈ A[[x]] has constant term 0 ∈R(A), by iii) above, x ∈R
�

A[[x]]
�

, and hence (x)⊆m. As m\(x) =mc ,
we get m=mc +(x). Now A/mc ∼=A[[x]]/m is a field, so mc ÃA is maximal.5

5 I was tempted to use here that ae = aA[[x]] = a[[x]] for any aÃA, but it turns out this is wrong in general. It does hold for finitely generated
a (see [Eisenbud, Ex. 7.13]), and it is true ([4.7.i]) that aA[x] = a[x] in A[x], but there are counterexamples if a is not finitely generated. For
example, as in part ii) let C be a ring and b = (y1, y2, y3, . . .) in B = C [y1, y2, y3, . . .]. Then

∑

yn xn is in b[[x]] but not in bB[[x]]. To see
this, suppose not; then there is a finite collection of b j ∈ b and there are b ′j, n ∈ B such that

∑

yn xn =
∑

j
�

b j
∑

n b ′j, n xn�, so that for all n we
have

∑

j b j b ′j, n = yn in B . But then b would be finitely generated by these finitely many b j , which is impossible because each b j is in a subring of
C generated over B by finitely many yn .

8



Chapter 1: Rings and Ideals Ex. 1.6

v) Every prime ideal of A is the contraction of a prime ideal of A[[x]].

Let pÃA be prime, and let q= pA[[x]]+ (x) be the ideal of A[[x]] generated by p and x. Evidently qc = p, and
A[[x]]/q∼=A/p is an integral domain, so q is prime.

A ring A is such that every ideal not contained in the nilradical contains a nonzero idempotent (that is, an element e such that
e2 = e 6= 0). Prove that the nilradical and Jacobson radical of A are equal.

N ⊆ R in any ring. Now suppose a /∈ N. Then (a) 6⊆ N, so there is a nonzero idempotent e = ax ∈ (a). Since
(1− e)e = 0, we see 1− e is a zero-divisor, and hence not a unit; by (1.9), ax = e /∈R, so a /∈R. Thus R⊆N.

Let A be a ring in which every element satisfies xn = x for some n > 1 (depending on x). Show that every prime ideal in A is
maximal.

Let p Ã A be prime and x ∈ A\p, with xn = x for some n ≥ 2. In the domain A/p we can cancel x̄ 6= 0, and so
x̄x̄n−2 = x̄n−1 = 1, showing an inverse x̄−1 = x̄n−2 exists. Thus A/p is a field and p was maximal.6

Let A be a ring 6= 0. Show that the set of prime ideals of A has minimal elements with respect to inclusion.

Partially order the set Spec(A) of prime ideals of A by p ≤ q :⇐⇒ p ⊇ q. We find minimal elements by Zorn’s
Lemma. Let 〈pα〉α∈A be a totally ordered chain in Spec(A), and let p =

⋂

α∈A pα be the intersection. It is an ideal.
Now suppose xy ∈ p and x /∈ p. Then xy ∈ pα for each a; as pα is prime, this means each pα contains either x or
y. Since x /∈ p, there is some β such that x /∈ pβ; since α ≥ β ⇐⇒ pα ⊆ pβ, we have for all α ≥ β that x /∈ pα, so
y ∈ pα. As for γ ≤ β we have y ∈ pβ ⊆ pγ , we know y ∈ pα for all α ∈ A. Thus y ∈ p. Therefore p ∈ Spec(A), and
Spec(A) has minimal elements.

Let a be an ideal 6= (1) in a ring A. Show that a= r (a) ⇐⇒ a is an intersection of prime ideals.

By (1.14), r (a) =
⋂

{p ∈ Spec(A) : a ⊆ p}. If a is an intersection of prime ideals, it is the intersection r (a) of all
primes that contain it, and if not, it then cannot be r (a), so it must be a proper subset.

Let A be a ring, N its nilradical. Show the following are equivalent:
i) A has exactly one prime ideal;
ii) every element of A is either a unit or nilpotent;
iii) A/N is a field.

i) =⇒ ii): If p is the only prime, N
(1.8)
= p and p is also the only maximal ideal. Then x /∈A×

(1.5)
⇐⇒ x ∈ p=N.

ii) =⇒ iii): If x̄ ∈A/N is nonzero, any lift x /∈N, and so has an inverse y. Then x̄−1 = ȳ in A/N.

iii) =⇒ i): If A/N is a field, then N is a maximal ideal. Since every prime p⊇N, we have p=N the only prime.

A ring A is Boolean if x2 = x for all x ∈A. In a Boolean ring A, show that
i) 2x = 0 for all x ∈A;

x + 1= (x + 1)2 = x2+ 12+ 2x = (x + 1)+ 2x, so subtracting x + 1 from both sides, 0= 2x.

ii) every prime ideal p is maximal, and A/p is a field with two elements;

By [1.7], every prime ideal is maximal. x2− x = x(x−1) = 0 holds for each x ∈A, so x̄(x̄−1) = 0 holds for each
x̄ ∈A/p; as A/p is an integral domain, this means each element is either 0 or 1, so A/p∼= F2.

iii) every finitely generated ideal in A is principal.

We induct on the number of generators. The one-generator case is trivial. Suppose every ideal generated by
n elements is principal, and a = (x1, . . . , xn , y). Let x generate (x1, . . . , xn), and let z = x + y − xy. Then xz =
x2+ xy − x2y = x and yz = y, so a= (x, y) = (z).

6 Here is a more baroque proof. Since xn = x, if for any m > 0 we have x m = 0, then taking p such that n p > m, we see 0 = x m xn p−m =
xn p
= x, so N = (0). If 0 and 1 (possibly equal) are the only elements of A, we are done. If not, let x /∈ {0, 1}. We have x(1− xn−1) = 0, and by

assumption x and xn−1 are nonzero, so 1− xn−1 is a zero-divisor, hence not a unit, and so xn−1 is not in the Jacobson radical by (1.9), meaning
x is not in the Jacobson radical either. Thus R= (0).

9



Ex. 1.12 Chapter 1: Rings and Ideals

A local ring contains no idempotent 6= 0, 1.

Let A be a ring. For any idempotent unit e , we have e = e−1e2 = e−1e = 1. Suppose e2 = e 6= 0, 1 in A. Then e
is not a unit, and by (1.5) is contained in some maximal ideal m. Similarly (1− e)2 = 1− 2e + e2 = 1− e is another
idempotent 6= 0, 1, hence not a unit. But were A local, e would be in m=R, so 1− e would be a unit by (1.9).7

Let K be a field and let Σ be the set of all irreducible monic polynomials f in one indeterminate with coefficients in K. Let A be
the polynomial ring over K generated by indeterminates xf , one for each f ∈ Σ. Let a be the ideal of A generated by the
polynomials f (xf ) for all f ∈Σ. Show that a 6= (1).

If a = (1), there exist finitely many af ∈A such that 1=
∑

af f (xf ). The set I of xg occurring in this expression
(not only those in the f (xf ), but also those occurring in the af ) is finite. We may enumerate I as x1, . . . , xi , . . . , xn ,
corresponding to irreducible polynomials fi , and suppose n is minimal such that such an equation holds. Write
B =K[x1, . . . , xn−1], C = B[xn], and b :=

�

f1(x1), . . . , fn−1(xn−1)
�

Ã B . By minimality of n, the ideal b is proper, so
be = b[xn]ÃC is as well, while by the equation above, be +

�

fn(xn)
�

=C . Since b 6= B , we know B/b 6= 0. Let g be
the image of fn(xn) in (B/b)[xn]. Since fn is irreducible in K[xn], its degree degxn

fn ≥ 1 and also degxn
g ≥ 1. Then

0=
C

be +
�

fn(xn)
�

∼=
C/
�

b[xn]
�

(g )
=

B[xn]/
�

b[xn]
�

(g )
∼=
(B/b)[xn]
(g )

6= 0,

which is a contradiction.8

Let m be a maximal ideal of A containing a and let K1 = A/m. Then K1 is an extension field of K in which each f ∈ Σ
has a root. Repeat the construction with K1 in place of K, obtaining a field K2, and so on. Let L=

⋃∞
n=1 Kn . Then L is a

field in which each f ∈Σ splits completely into linear factors. Let K be the set of all elements of L which are algebraic over
K. Then K is an algebraic closure of K.

We should probably show that K is closed under subtraction and multiplication. Let a, b ∈ K have conjugates
ai , b j over K . Then

∏

i , j (x − ai + b j ) is symmetric in the ai and the b j , and so has coefficients in K , so a− b ∈ K .
Similarly

∏

i , j (x − ai b j ) is symmetric, so ab ∈K .

In a ring A, let Σ be the set of all ideals in which every element is a zero-divisor. Show that the set Σ has maximal elements and
that every maximal element of Σ is a prime ideal. Hence the set of zero-divisors in A is a union of prime ideals.

OrderΣ by inclusion; to show it has maximal elements, it suffices by Zorn’s Lemma to show every chain 〈aα〉α∈A
has an upper bound inΣ. Let a=

⋃

α aα. It contains only zero-divisors, since if x ∈ a, then there is α such that x ∈ aα,
and then by definition x is a zero-divisor.

Let p be a maximal element ofΣ; we must show it to be prime. Suppose x, y /∈ p. Then there are non-zero-divisors
in (x)+ p and (y)+ p, and their product is an element of (xy)+ p that is again a non-zero-divisor. Thus xy /∈ p, lest
there be something in p other than a zero-divisor. This shows p is prime.

ThusΣ has maximal elements and every element ofΣ is contained in one; considering principal ideals, this shows
every zero-divisor is in a maximal element of Σ. The last statement follows.

The prime spectrum of a ring
Let A be a ring and let X be the set of all prime ideals of A. For each subset E of A, let V (E) denote the set of all prime ideals of A

which contain E. Prove that
i) if a is the ideal generated by E, then V (E) =V (a) =V (r (a)).

Let p ∈ X. We have E ⊆ a, so if a ⊆ p, then E ⊆ p. On the other hand, if E ⊆ p, then a = AE ⊆ Ap = p. Thus
V (E) =V (a). By (1.14), r (a) =

⋂

V (a), so p⊇ r (a) ⇐⇒ p⊇ a and V (a) =V
�

r (a)
�

.

ii) V (0) =X, V (1) =∅.
For every prime ideal p we have 0 ∈ p and 1 /∈ p.

7 Cf. the implication iii) =⇒ ii) in [1.22] for another proof: by (1.4), each of (e) and (1− e) is contained in a maximal ideal, and we can show
the two are coprime, so no maximal ideal can contain both. Actually, there is even an isomorphism A

∼−→ A/(e)×A/(1− e), so A obviously has
more than one maximal ideal.

8 This proof is taken from [Morandi].
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iii) if 〈Ei 〉i∈I is any family of subsets of A, then V
�

⋃

i∈I

Ei

�

=
⋂

i∈I

V (Ei ).

p ∈V
�

⋃

i

Ei

�

⇐⇒
⋃

i

Ei ⊆ p ⇐⇒ ∀i ∈ I (Ei ⊆ p) ⇐⇒ ∀i ∈ I (p ∈V (Ei )) ⇐⇒ p ∈
⋂

i

V (Ei ).

Note also for future use that
⋃

Ei ⊆ p ⇐⇒
⋃

AEi ⊆Ap= p ⇐⇒
∑

AEi ⊆ p, so in particular for ideals ai we
have V

�⋃

ai

�

=V
�
∑

ai

�

iv) V (a∩ b) =V (ab) =V (a)∪V (b) for any ideals a, b of A.

Suppose ab⊆ p and b 6⊆ p. Then there is b ∈ b\p, and ab ∈ p for all a ∈ a, so the primality of p gives a ∈ p and
thus a⊆ p. Thus if p ∈V (ab), we have shown a⊆ p or b⊆ p, so p ∈V (a)∪V (b). On the other hand, if p contains
a or contains b, then it must contain the subset ab. Thus V (ab) =V (a)∪V (b).

Now ab⊆ a∩ b, so if a∩ b⊆ p, then ab⊆ p. On the other hand, if ab⊆ p, then we have shown either a⊆ p or
b⊆ p, so since a∩ b is a subset of both of these we have a∩ b⊆ p. Thus V (a∩ b) =V (ab).

These results show that the sets V (E) satisfy the axioms for closed sets in a topological space. The resulting topology is called
the Zariski topology. The topological space X is called the prime spectrum of A, and is written Spec(A).

Draw pictures of Spec(Z), Spec(R), Spec(C[x]), Spec(R[x]), Spec(Z[x]).

There is only one point, (0), in Spec(R).
In Spec(Z), the elements are (0) and (p) for each positive prime p ∈N, and the closed sets are X , ∅, and all finite

sets containing (0).
In C[x], all polynomials split into linear factors, so the irreducible polynomials are x −α for α ∈ C. Since C is

a field, this means the only primes are (0) and (x − α) for α ∈ C. The closed sets are again X , ∅, and all finite sets
containing (0). As a point set, it makes sense to think of X as the complex plane plus one additional dense point.

In R[x], all polynomials split into linear factors and polynomials of the form (x − α)(x + α) for α ∈ C with
Im (α)> 0. Thus the primes of R[x] correspond to points of R, points of the upper half plane, and the dense point
(0) again.

In Z[x], there are irreducible polynomials f of all degrees ≥ 1, giving rise to prime ideals ( f ), there are ideals
(p) for all positive primes p ∈N, and there are ideals (p, f ) = (p) + ( f ), which are maximal. There is also (0). The
closed sets are X , ∅, and all finite sets C containing (0) and such that if (p, f ) ∈C then (p), ( f ) ∈C .9

For each f ∈A, let Xf denote the complement of V ( f ) in X = Spec(A). The sets Xf are open. These are called the basic open sets
of Spec(A). Show that they form a basis of open sets for the Zariski topology.

To see the collection {Xf } is a basis for the topology of X we can show it i) contains, for each p ∈Xf ∩Xg , an Xh
with p ∈Xh ⊆Xf ∩Xg , ii) includes ∅, and iii) covers X. These follow, respectively, from i), ii), and iii) below.

i) Xf ∩Xg =Xf g ;

Taking complements, this is the same as saying V ( f )∪V (g ) =V ( f g ), or that a prime contains f g if and only if
it contains one of f and g . But this is in the definition of a prime ideal.

ii) Xf =∅ ⇐⇒ f is nilpotent;

Xf =∅ ⇐⇒ V ( f ) =X ⇐⇒ ∀p ∈X ( f ∈ p)
(1.8)
⇐⇒ f ∈N.

iii) Xf =X ⇐⇒ f is a unit;

Xf =X ⇐⇒ V ( f ) =∅ ⇐⇒ ∀p ∈X ( f /∈ p)
(1.5)
⇐⇒ f ∈A×.

iv) Xf =Xg ⇐⇒ r
�

( f )
�

= r
�

(g )
�

;

9 Mumford’s famous picture of this space can be seen at [LeBruyn].
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Ex. 1.18 Chapter 1: Rings and Ideals

We can prove something slightly better: Xf ⊆Xg ⇐⇒ V (g )⊆V ( f ) ⇐⇒ r
�

( f )
�

⊆ r
�

(g )
�

. The first step is ob-
vious because complementation is containment-reversing. Recall from [1.15.i] that V ( f ) =V

�

( f )
�

. For the second
step, we generalize again, from ( f ), (g )ÃA to arbitrary ideals a, b.10 Note the antitone Galois correspondence11

a⊆
⋂

Y ⇐⇒ ∀p ∈ Y (a⊆ p) ⇐⇒ Y ⊆V (a)

between ideals aÃA and subsets Y ⊆ Spec(A). Applying it to Y =V (b) yields

V (b)⊆V (a) ⇐⇒ a⊆
⋂

V (b)
(1.14)
= r (b)

(1.13)
⇐⇒ r (a)⊆ r (b).

v) X is compact (that is, every open covering of X has a finite sub-covering).

This follows from the more general vi), taking f = 1.

vi) More generally, each Xf is compact.

Recall that the closed sets of X are all of the form V (a) for aÃ A. Let a collection
�

X \V (aα)
	

α
of open sets be

given. This collection covers Xf if and only if the following equivalent conditions hold:
⋂

α

V (aα)⊆V ( f )
[1.15]
⇐⇒ V

�

∑

α

aα

�

⊆V
�

( f )
� proof
⇐⇒
of iv)

r
�

( f )
�

⊆ r
�

∑

α

aα

� (1.13)
⇐⇒ ∃m ≥ 1

h

f m ∈
∑

α

aα

i

;

and then our task is to find a finite set of aα for which the last still holds. But each element of
∑

aα is a finite sum of
elements from the individual aα, so f m ∈

∑

aα just if for some finite subset {a j }nj=1 we have f m∈
∑n

j=1 a j .

vii) An open subset of X is compact if and only if it is a finite union of sets Xf .

Each Xf is compact, and a union of a finite collection of compact sets is compact12, so a finite union of basic open
sets Xf is compact.

On the other hand, suppose a set is open and compact. Since it is open, we can write it as a union of some basic
open sets X fα

; since it is compact, we can take a finite subcover, showing it is a union of finitely many basic open
sets.

For psychological reasons it is sometimes convenient to denote a prime ideal of A by a letter such as x or y when thinking of it as
a point of X = Spec(A). When thinking of x as a prime ideal of A, we denote it by px (logically, of course, it is the same
thing). Show that
i) The set {x} is closed (we say that x is a “closed point”) in Spec(A) ⇐⇒ px is maximal;

Let Y ⊆X, and let V (a)⊆X be a closed set. Recall our Galois correspondence: Y ⊆V (a) ⇐⇒ a⊆
⋂

y∈Y py .

Y =
⋂

n

V (a) : Y ⊆V (a)
o

=
⋂

n

V (a) : a⊆
⋂

y∈Y

py

o

[1.15]
= V

�

∑

n

a : a⊆
⋂

y∈Y

py

o

�

=V
�

⋂

y∈Y

py

�

, (1.1)

so {x} is closed just if {x}=V (px ), or in other words iff no other prime contains px .

ii) {x}=V (px );

{x}
Eq.
=
1.1

V
�

⋂

{px}
�

=V (px ).

10 The proof branches here; if you like, you can apply what follows in this footnote instead of the final two sentences in the body text. Recall
also from (1.14) that for all ideals aÃA we have r (a) =

⋂

V (a), from [1.15.i] that V (a) =V
�

r (a)
�

, and from [1.15.iii] that V (−) is containment-
reversing. Finally note taking intersections of collections is a containment-reversing operation. Then

r (a)⊆ r (b) =⇒ V (b) =V
�

r (b)
�

⊆V
�

r (a)
�

=V (a);

V (b)⊆V (a) =⇒ r (a) =
⋂

V (a)⊆
⋂

V (b) = r (b).

11 [WPGalois]
12 To see this, let a cover V of the finite union K =

⋃n
j=1 of compact sets K j be given. For each K j take a finite subcollectionU j ⊆V covering

K j ; then
⋃

j U j ⊆V is a finite collection covering K .
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iii) y ∈ {x} ⇐⇒ px ⊆ py ;

y ∈ {x} ii)
=V (px ) ⇐⇒ px ⊆ py .

iv) X is a T0-space (this means that if x, y are distinct points of X, then either there is a neighborhood of x which does not
contain y, or else there is a neighborhood of y which does not contain x).

If every neighborhood of x contains y and vice versa, then y ∈ {x} and x ∈ {y}, so by part iii); px ⊆ py ⊆ px and
x = y.

A topological space X is said to be irreducible if X 6=∅ and if every pair of non-empty open sets in X intersect, or equivalently if
every non-empty open set is dense in X. Show that Spec(A) is irreducible if and only if the nilradical of A is a prime ideal.

∅ is not an intersection of two nonempty open sets just if X is not a union of two proper closed sets V (a), V (b).
By the proof of [1.17.iv],

X =V (0) 6=V (a) ⇐⇒ r (a) 6⊆ r (0)
(1.8)
= N

(1.13)
⇐⇒ a 6⊆N,

and by [1.15.iv], V (a)∪V (b) = V (ab), so X is irreducible just if for all ideals a, b 6⊆ N we also have ab 6⊆ N; by
contraposition, this is that ab⊆N =⇒ a⊆N or b⊆N.

But this condition is just a rephrasing of primality: if N is prime, then as in [1.15.iv], ab ⊆ N =⇒ a ⊆ N or
b⊆N; conversely, if the condition holds, then ab ∈N =⇒ (a)(b )⊆N =⇒ (a) or (b )⊆N =⇒ a or b ∈N, so N
is prime.

Let X be a topological space.
i) If Y is an irreducible (Exercise 19) subspace of X, then the closure Y of Y in X is irreducible.

Let open U , V ⊆ Y be non-empty. Then U ∩Y and V ∩Y are non-empty by the definition of closure. Since Y
is irreducible, U ∩V ∩Y 6=∅, and a fortiori U ∩V 6=∅.

ii) Every irreducible subspace of X is contained in a maximal irreducible subspace.

We apply Zorn’s Lemma. Order the irreducible subspaces Σ of X by inclusion, and let 〈Yα〉 be a linearly ordered
chain. Set Z =

⋃

αYα; we will be done if we can show Z ∈Σ. Let U , V ⊆ Z be open and non-empty. By definition,
U meets some Yα and V meets some Yβ. Without loss of generality, suppose α≤β. Then as Yα ⊆ Yβ, we have both
U ∩Yβ and V ∩Yβ non-empty and open in Yβ, so by irreducibility of Yβ we have U ∩V ∩Yβ 6=∅ and U ∩V 6=∅,
showing Z is irreducible.

iii) The maximal irreducible subspaces of X are closed and cover X. They are called the irreducible components of X.
What are the irreducible components of a Hausdorff space?

To see that a maximal irreducible subspace is closed, note that its closure is irreducible by part i) and contains
it, and so equals it by maximality. To see the maximal irreducible subspaces cover X, note that each singleton is
irreducible and contained in some maximal irreducible subspace.

Every subspace of a Hausdorff space is Hausdorff. If a Hausdorff space has two distinct points, they have two
disjoint neighborhoods by definition, so the space is not irreducible. Thus the irreducible components of a Hausdorff
space are the singletons.

iv) If A is a ring and X = Spec(A), then the irreducible components of X are the closed sets V (p), where p is a minimal
prime ideal of A (Exercise 8).

Any closed subset of X is of the form V (a) for some ideal aÃA, and is homeomorphic to Spec(A/a) by [1.21.iv].
By [1.19], V (a) = V

�

r (a)
�

is irreducible if and only if N(A/a) is prime, or equivalently if r (a) is prime in A; so
the irreducible closed subspaces of X are V (p) for p ∈ X . Such a V (p) is maximal just if there is no q ∈ X with
V (p)(V (q), or equivalently, by the proof of [1.17.iv], there is no prime q( p.
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Ex. 1.21 Chapter 1: Rings and Ideals

Let φ : A→ B be a ring homomorphism. Let X = Spec(A) and Y = Spec(B). If q ∈ Y , then φ−1(q) is a prime ideal of A, i.e., a
point of X. Hence φ induces a mapping φ∗ : Y →X. Show that
i) If f ∈A then φ∗−1(Xf ) = Yφ( f ), and hence that φ∗ is continuous.

q ∈ Yφ( f ) ⇐⇒ φ( f ) /∈ q ⇐⇒ f /∈φ−1(q) ⇐⇒ φ∗(q) =φ−1(q) ∈Xf ⇐⇒ q ∈ (φ∗)−1(Xf ).

ii) If a is an ideal of A, then φ∗−1
�

V (a)
�

=V (ae ).

First, note that (1.17.i) implies extension and contraction of ideals form an isotone Galois correspondence:13

a⊆ bc ⇐⇒ ae ⊆ b.

Indeed, if a⊆ bc , then extending, ae ⊆ bc e ⊆ b, and if ae ⊆ b, then contracting, a⊆ aec ⊆ bc . Now for q ∈ Spec(B),

q ∈ (φ∗)−1�V (a)
�

⇐⇒ φ∗(q) ∈V (a) ⇐⇒ a⊆ qc ⇐⇒ ae ⊆ q ⇐⇒ q ∈V (ae ).

iii) If b is an ideal of B, then φ∗(V (b)) =V (bc ).

By Eq. 1.1 from [1.18.i], φ∗(V (b)) is the set of prime ideals containing
⋂

φ∗
�

V (b)
�

, which ideal equals

⋂

{qc : b⊆ q ∈ Y }
(1.18)
=

�

⋂

b⊆q∈Y

q
�c
=
(1.14)

r (b)c
(1.18)
= r (bc ).

But V
�

r (bc )
�

=V (bc ).

iv) If φ is surjective, then φ∗ is a homeomorphism of Y onto the closed subset V
�

ker(φ)
�

of X. (In particular, Spec(A)
and Spec(A/N) (where N is the nilradical of A) are naturally homeomorphic.)

If φ : A→ A/a is surjective, (1.1) gives an containment-preserving and -reflecting bijection between the set of
ideals b Ã A containing a and the ideals b/a Ã A/a. Since this relation preserves and reflects primes (p. 9), for any
ideal b/a of A/a,

φ∗(V
�

b/a)
�

=
�

p ∈ Spec(A) : b/a⊆ p/a ∈ Spec(A/a)
	

=V (b),

so φ∗|V (a) is a bijection taking closed sets to closed sets, continuous by part i), and hence a homeomorphism. For
the parenthetical remark, note that Spec(A) =V

�

N(A)
�

by (1.8).

v) If φ is injective, then φ∗(Y ) is dense in X. More precisely, φ∗(Y ) is dense in X ⇐⇒ ker(φ)⊆N.

The second statement does imply the first, because if φ is injective, then indeed ker(φ) = 0⊆N. Now φ∗(Y ) is
dense just if

X =φ∗(Y ) =φ∗
�

V (0)
� [1.12.iii]
= V (0c ) =V

�

ker(φ)
�

.

But ker(φ) is contained in every prime of A if and only if it is contained in their intersection, which by (1.8) is N(A).

vi) Let ψ : B→C be another ring homomorphism. Then (ψ ◦φ)∗ =φ∗ ◦ψ∗.

By definition, a ∈ (ψ ◦φ)∗(px ) ⇐⇒ ψ
�

φ(a)
�

∈ px ⇐⇒ φ(a) ∈ψ∗(px ) ⇐⇒ a ∈φ∗
�

ψ∗(px )
�

.

vii) Let A be an integral domain with just one nonzero prime ideal p, and let K be the field of fractions of A. Let B =
(A/p)×K. Define φ : A→ B by φ(x) = (x̄, x), where x̄ is the image of x in A/p. Show that φ∗ is bijective but not a
homeomorphism.

Ahas two prime ideals, p and (0), and B , a product of two fields, has prime ideals q1 = {0̄}×K and q2 = (A/p)×{0};
the zero ideal of B is not prime. Now φ∗(q1) = {x ∈ A : x̄ = 0} = p, and φ∗(q2) = {x ∈ A : x = 0} = (0), so φ∗ is
bijective. However, by [1.18.iii] p ∈ {(0)} in Spec(A), while in Spec(B) we have q2 /∈ {q1}= {q1} (both primes being
maximal), so φ∗ cannot be a homeomorphism.

13 [WPGalois]
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Chapter 1: Rings and Ideals Ex. 1.22

Let A=
∏n

i=1 Ai be a direct product of rings Ai . Show that Spec(A) is the disjoint union of open (and closed) subspaces Xi , where
Xi is canonically homeomorphic with Spec(Ai ).

Let pri : A→Ai be the canonical projection, and bi =
∏

j 6=i Aj its kernel; then by [1.21.iv], pr∗i is a homeomor-
phism Spec(Ai )

≈−→V (bi ). Since
⋂n

i=1 bi = 0, it follows by [1.15.iv] that
⋃

V (bi ) =V
�⋂

bi

�

=V (0) = Spec(A), so
the V (bi ) cover Spec(A).14 Since bi + b j = A for i 6= j and by [1.15], V (bi )∩V (b j ) = V (bi + b j ) = V (1) = ∅, it
follows the V (b j ) are disjoint. Since the complement

⋃

j 6=i V (b j ) of each V (bi ) is a finite union of closed sets, the
V (bi ) are also open.

Conversely, let A be any ring. Show that the following statements are equivalent:
i) X = Spec(A) is disconnected.
ii) A∼=A1×A2 where neither of the rings A1, A2 is the zero ring.
iii) A contains an idempotent 6= 0, 1
In particular, the spectrum of a local ring is always connected (Exercise 12).

We showed ii) =⇒ i) above; in this case X =X1qX2 is a disjoint union two non-empty open sets.

i) =⇒ iii): Suppose X = Spec(A) is disconnected; then by definition it is a disjoint union of two non-empty
closed sets V (a), V (b). By [1.15.iii] we have ∅=V (a)∩V (b) =V (a+b), so no prime contains a+b, which must
then equal (1). Let a ∈ a and b ∈ b be such that a + b = 1. By [1.15.iv], X = V (a) ∪V (b) = V (ab), so by (1.8),
ab ⊆N and there is some n ≥ 1 with (ab )n = 0. We have (1) = (an) + (b n) by (1.16), so we can find e ∈ (an) such
that 1− e ∈ (b n). We then have e− e2 = e(1− e) ∈ (ab )n = 0, so e = e2. If e = 1 we would have 1 ∈ a and if e = 0 we
would have 1 ∈ b, contrary to assumption, so e is a nontrivial idempotent.

iii) =⇒ ii): Suppose e 6= 0, 1 is an idempotent. Then as in the proof of [1.12], 1− e is also an idempotent 6= 0, 1,
and neither is a unit. This means (e) and (1−e) are proper, nonzero ideals, and they are coprime since e+[1−e] = 1.
Since (e)(1− e) = (e − e2) = (0), then, (1.10.i) shows (e)∩ (1− e) = (0). Let φ : A→A/(e)×A/(1− e) be the natural
homomorphism. (1.10.ii,iii) show φ is an isomorphism.15

Let A be a Boolean ring (Exercise 11), and let X = Spec(A).
i) For each f ∈A, the set Xf (Exercise 17) is both open and closed in X.

Xf is open because it is the complement of V ( f ). It is open because V ( f ) =X1− f . Indeed, X =Xf ∪X1− f , since
any ideal containing both f and 1− f contains 1; and Xf ∩X1− f =Xf (1− f ) =X0 =∅ by [1.17.i] and [1.17.ii].

ii) Let f1, . . . , fn ∈A. Show that X f1
∪ · · · ∪X fn

=Xf for some f ∈A.
⋃

Xfi
=
⋃�

X \V ( fi )
�

= X \
⋂

V ( fi ) = X \V
�
∑

( fi )
�

by [1.15]. By [1.11.iii],
∑

( fi ) = ( f ) for some f ∈ A, so
⋃

Xfi
=X \V ( f ) =X f .

iii) The sets Xf are the only open subsets of X which are both open and closed.

Let U be both open and closed. Since it is closed and X is compact, U is compact. By [1.17.vii], U is a union of
finitely many X f j

. By part ii), it is an Xf for some f ∈A.

iv) X is a compact Hausdorff space.

The compactness of X is [1.17.v]. To show X is Hausdorff, let x, y ∈ X ; we will show that if they do not have
disjoint neighborhoods Xf and X1− f , then x = y. Now Xf 3 x and X1− f 3 y just if f /∈ px and 1− f /∈ py . By part i),
this is the same as saying f /∈ px and f ∈ py . If no such f exists, we have py ⊆ px , and since [1.11.ii] showed py is
maximal, px = py .

14 In unnecessary detail, for each j there is an element e j ∈A with a 1 in the j coordinate and 0 at each other coordinate. Let aÃA be an ideal,
and a = 〈a1, . . . , an〉 ∈ a. Then ae j = a j e j ∈ a, and a =

∑

a j e j =
∑

ae j , so a=
∑

ae j . We have b j =
∑

i 6= j (ei ). To see Spec(A) =
⋃

X j , note that
if a Ã A contains neither ei nor e j for some i 6= j , then since ei e j = 0 ∈ a, we know a is not prime. Therefore all the prime ideals of A contain
some b j , and thus are of the form p= pr∗j (p j ) = p j e j + b j for some p j ∈ Spec(Aj ), and hence are in some X j .

15 We can also show ii) =⇒ iii): 〈1, 0〉 ∈A1×A2 is an idempotent 6= 0, 1.
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Ex. 1.24 Chapter 1: Rings and Ideals

Let L be a lattice, in which the sup and inf of two elements a, b are denoted by a∨ b and a∧ b respectively. L is a Boolean lattice
(or Boolean algebra) if
i) L has a least element and a greatest element (denoted by 0, 1 respectively);
ii) each of ∨, ∧ is distributive over the other;
iii) Each a ∈ L has a unique “complement” a′ ∈ L such that a ∨ a′ = 1 and a ∧ a′ = 0.
For example, the set of all subsets of a set, ordered by inclusion, is a Boolean lattice.

Let L be a Boolean lattice. Define addition and multiplication in L by the rules

a+ b = (a ∧ b ′)∨ (a′ ∧ b ), ab = a ∧ b .

Verify that in this way L becomes a Boolean ring, say A(L).

To verify the ring axioms, we first require some lemmas about Boolean algebra.

• Commutativity: The supremum x ∨ y, by definition, is the unique z ≥ x, y such that for all other w ≥ x, y
we have w ≥ z, and this definition is symmetric in x and y; thus x ∨ y = y ∨ x. Dually, x ∧ y = y ∧ x is the
unique z ≤ x, y such that for all other w ≤ x, y we have w ≤ z, and this definition is symmetric in x and y.

• Associativity: (x∨y)∨ z is the unique least element t ≥ x∨y, z. Then we have t ≥ x, y, z, so (x∨y)∨ z ≥ x∨
y∨z, the joint supremum of x, y, z. On the other hand, x∨y∨z ≥ x, y, z as well, so x∨y∨z ≥ x∨y, z, and by
definition x∨y∨z ≥ (x∨y)∨z. Since we have both inequalities and 〈L, ≤〉 is a partial order, (x∨y)∨z = x∨y∨z.
Symmetrically, x ∨ y ∨ z = x ∨ (y ∨ z). The proof (x ∧ y)∧ z = x ∧ y ∧ z = x ∧ (y ∧ z) is dual, exchanging ∧ for
∨ and ≥ for ≤.

• Idempotence: x ∨ x = x = x ∧ x, for x is the least element greater than both x and x, and also the greatest
element less than both of them.

• Absorption: x ∨ (x ∧ y) = x = x ∧ (x ∨ y), because x is the least element≥ x, x ∧ y and the greatest≤ x, x ∨ y.

• Identity: for all x ∈ L we have 0≤ x ≤ 1, so 0∧ x = 0 and 0∨ x = x = x ∧ 1 and x ∨ 1= 1.

• De Morgan’s laws: (x ∨ y)′ = x ′ ∧ y ′ and (x ∧ y)′ = x ′ ∨ y ′. For the first, note that

(x ′ ∧ y ′)∧ (x ∨ y) = (x ′ ∧ y ′ ∧ x)∨ (x ′ ∧ y ′ ∧ y) = (0∧ y ′)∨ (x ′ ∧ 0) = 0∨ 0= 0,

(x ′ ∧ y ′)∨ (x ∨ y) = (x ′ ∨ x ∨ y)∧ (y ′ ∨ x ∨ y) = (1∨ y)∧ (x ∨ 1) = 1∧ 1= 1;

since (x ∨ y)′ is postulated to be unique with these properties, we have (x ∨ y)′ = x ′ ∧ y ′. The other law
(x ∧ y)′ = x ′ ∨ y ′ is dual; the proof is the same, exchanging ∧ for ∨ and vice versa everywhere.

From now on write · for ∧. We prove a few more miscellaneous facts.

• a+ b = (ab ′)∨ (a′b ) = (a ∨ a′)(a ∨ b )(b ′ ∨ a′)(b ′ ∨ b ) = 1(a ∨ b )(a′ ∨ b ′)1= (a ∨ b )(a′ ∨ b ′).

• (a+ b )′ =
�

(a ∨ b )(a′ ∨ b ′)
�′ = (a ∨ b )′ ∨ (a′ ∨ b ′)′ = a′b ′ ∨ ab .

• 1′ = 0: for 1∧ 0= 1 and 1∧ 0= 0.

• 1+ a = (a ∨ 1)(a′ ∨ 0) = 1a′ = 1∧ a′ = a′.

Now we can prove the ring axioms for A(L).

• Commutativity of +: a+ b = (a ∨ b )(a′ ∨ b ′) = (b ∨ a)(b ′ ∨ a′) = b + a.

• Associativity of ·: · is ∧.

• Commutativity of ·: · is ∧.
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Chapter 1: Rings and Ideals Ex. 1.24

• Associativity of +: (a+ b )+ c is
�

[a+ b ]∨ c
��

[a+ b ]′ ∨ c ′
�

= (ab ′ ∨ a′b ∨ c)(a′b ′ ∨ ab ∨ c ′)

= ab ′a′b ′ ∨ ab ′ab ∨ ab ′c ′∨
a′ba′b ′ ∨ a′bab ∨ a′b c ′∨
ca′b ′ ∨ cab ∨ cc ′ (1.2)

= 0∨ 0∨ ab ′c ′ ∨ 0∨ 0∨ a′b c ′ ∨ ca′b ′ ∨ cab ∨ 0.

= ab ′c ′ ∨ a′b c ′ ∨ a′b ′c ∨ ab c .

Write x+ = x and x− = x ′. Then (a+ b )+ c is the supremum of the four possible terms a±b±c± with an odd
number of+’s. This is invariant under permutations of a, b , c , so by commutativity, a+(b+c) = (b+c)+a =
(a+ b )+ c .

• 1a = a: for 1a = 1∧ a = a.

• a+ 0= a: for a+ 0= (a ∨ 0)(a′ ∨ 1) = a1= a.

• a =−a: for a+ a = (a ∨ a)(a′ ∨ a′) = aa′ = 0.

• Distributivity of · over +: a(b + c) = a
�

[bc ′]∨ [b ′c]
�

= abc ′ ∨ ab ′c , while

ab + ac = (ab ∨ ac)
�

[ab ]′ ∨ [ac]′
�

= ab [ab ]′ ∨ ac[ab ]′ ∨ ab [ac]′ ∨ ac[ac]′

= 0∨ ac[a′ ∨ b ′]∨ ab [a′ ∨ c ′]∨ 0

= aca′ ∨ acb ′ ∨ aba′ ∨ abc ′

= 0∨ abc ′ ∨ 0∨ ab ′c = abc ′ ∨ ab ′c .

• Boolean ring: a2 = a ∧ a = a by idempotence of ∧.

Conversely, starting from a Boolean ring A, define an ordering on A as follows: a ≤ b means that a = ab . Show that, with
respect to this ordering, A is a Boolean lattice. In this way we obtain a one-to-one-correspondence between (isomorphism
classes of) Boolean rings and (isomorphism classes of) Boolean lattices.

Write L = L(A) for ordered set. We verify the partial order axioms, the lattice axioms, and the Boolean algebra
axioms.

• ≤ is reflexive: a = aa, so a ≤ a.

• ≤ is antisymmetric: Suppose a ≤ b ≤ a. Then a = ab and b = ab , so a = b .

• ≤ is transitive: Let a ≤ b ≤ c . Then a = ab and b = bc , so a = ab = a(b c) = (ab )c = ac and a ≤ c .

• Binary suprema exist in 〈L, ≤〉: Let a∨ b = a+ b +ab . We have a(a∨ b ) = a(a+ b +ab ) = a2+ab +a2b = a
by [1.11.i], so a ≤ a ∨ b , and symmetrically b ≤ a ∨ b . Now suppose a, b ≤ c . Then a = ac and b = bc , so
(a ∨ b )c = (a+ b + ab )c = ac + bc + a(b c) = a+ b + ab = a ∨ b , and a ∨ b ≤ c . This shows a ∨ b is the least
upper bound of a, b in the partial order 〈L, ≤〉.

• Binary infima exist in 〈L, ≤〉: Let a∧b = ab . Then (a∧b )a = aba = ab = a∧b , so a∧b ≤ a, and symmetrically
a ∧ b ≤ b . Now suppose c ≤ a, b . Then c = ca = cb , so c(a ∧ b ) = c(ab ) = (ca)b = cb = c , and so c ≤ a ∧ b .
This shows a ∧ b is the greatest lower bound of a, b in the partial order 〈L, ≤〉.

• A least element exists in 〈L, ≤〉: For any a ∈A we have 0= 0a, so 0≤ a.

• A greatest element exists in 〈L, ≤〉: For any a ∈A we have a = a1, so a ≤ 1.

• ∧ distributes over∨: (a∨b )∧c = (a+b+ab )c = ac+bc+abc = ac+bc+(ac)(b c) = ac∨bc = (a∧c)∨(b∧c).
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• ∨ distributes over ∧: (a ∧ b )∨ c = ab ∨ c = ab + c + abc , while also

(a ∨ c)∧ (b ∨ c) = (a+ c + ac)(b + c + bc)
= ab + ac + abc + cb + cc + cbc + acb + acc + acbc
= ab + 2ac + 3abc + 2bc + c
= ab + c + abc .

• Each a ∈ A has a unique complement: Suppose a′ is such that a ∨ a′ = 1 and a ∧ a′ = 0. Then aa′ = 0, while
1= a+ a′+ aa′ = a+ a′. Then a′ = 1− a = 1+ a. Thus the complement, if it exists, is unique. And a′ = 1+ a
is indeed a complement: a ∧ a′ = a(1+ a) = a+ a2 = 0, while a ∨ a′ = a+ a′+ aa′ = a+(1+ a)+ 0= 1.

We finally should verify that these correspondences are inverse. Let A be a Boolean ring, and A′ =A
�

L(A)
�

. Then
·A′ = ∧L(A) = ·A, and addition in A′ is

a+A′ b = ab ′ ∨ a′b = ab ′+A a′b +A ab ′a′b = ab ′+A a′b = a(1+A b )+A (1+A a)b = a+A ab +A b +A ab = a+A b ,

so A
�

L(A)
�

=A. On the other hand let L be a Boolean algebra and L′ = L
�

A(L)
�

. Then ∧L′ = ·A(L) = ∧L. Finally the
join in L′ is given by

x ∨L′ y = x + y + xy
Eq.
=
1.2

xyxy ∨L x ′y ′xy ∨L x ′y(xy)′ ∨L xy ′(xy)′

=xy ∨L 0∨L x ′y(x ′ ∨L y ′)∨L xy ′(x ′ ∨L y ′)

=xy ∨L x ′yx ′ ∨L x ′yy ′ ∨L xy ′x ′ ∨L xy ′y ′

=xy ∨L x ′y ∨L xy ′

=xy ∨L xy ′ ∨L yx ∨L yx ′

=x(y ∨L y ′)∨L y(x ∨L x ′)
=x ∨L y

From the last two exercises deduce Stone’s theorem, that every Boolean lattice is isomorphic to the lattice of open-and-closed subsets
of some compact Hausdorff topological space.

Let a Boolean algebra L be given, and let A be the associated Boolean ring. By [1.23.iv], X = Spec(A) is a com-
pact Hausdorff space. Let B be the algebra of simultaneously open and closed sets in X. By the definition of open
and closed, it is closed under binary union and intersection, so it is a sublattice of the power set 〈P (X ), ⊆〉 under
inclusion. By the definition of a topology, ∅, X ∈ B . By set algebra, ∪ and ∩ each distribute over the other. The
complement V of an open and closed set U is open and closed, and is the unique V ⊆P (X ) with U ∪V = X and
U ∩V =∅. Thus B is a Boolean algebra.

By [1.23.i] and [1.23.iii], B is the set of Xf for f ∈A, so the correspondenceφ : L→ B taking f 7→Xf is surjective.
Since no nonzero element of A is nilpotent, by [1.17.ii], φ is also injective.

To showφ is an order isomorphism (hence a Boolean algebra isomorphism), it remains to show that f ≤ g ⇐⇒
Xf ⊆ Xg . Now f ≤ g ⇐⇒ f = f g =⇒ f ∈ (g ), and conversely if f = ag ∈ (g ), then f g = (ag )g = ag = f . Thus
f ≤ g ⇐⇒ f ∈ (g ). Now

f ∈ (g ) ⇐⇒ ∃n ≥ 1
�

f = f n ∈ (g )
�

⇐⇒ f ∈ r
�

(g )
� (1.13)
⇐⇒ r

�

( f )
�

⊆ r
�

(g )
�

,

and from the proof of [1.17.iv], r
�

( f )
�

⊆ r
�

(g )
�

⇐⇒ Xf ⊆ Xg . Therefore f ≤ g ⇐⇒ Xf ⊆ Xg , so φ is an order
isomorphism.

Let A be a ring. The subspace of Spec(A) consisting of the maximal ideals of A, with the induced topology, is called the maximal
spectrum of A and is denoted by Max(A). For arbitrary commutative rings it does not have the nice functorial properties of
Spec(A) (see Exercise 21), because the inverse image of a maximal ideal under a ring homomorphism need not be maximal.

Let X be a compact Hausdorff space and let C (X ) denote the ring of all real-valued continuous functions on X (add
and multiply functions by adding and multiplying their values). For each x ∈ X, let mx be the set of all f ∈ C (X ) such
that f (x) = 0. The ideal mx is maximal, because it is the kernel of the (surjective) homomorphism C (X )→R which takes
f to f (x). If eX denotes Max

�

C (X )
�

, we have therefore defined a mapping µ : X → eX, namely x 7→mx .
We shall show that µ is a homeomorphism of X onto eX.
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i) Let m be any maximal ideal of C (X ), and let V =V (m) be the set of common zeros of the functions in m: that is,

V = {x ∈X : f (x) = 0 for all f ∈m}.

Suppose that V is empty. Then for each x ∈X there exists fx ∈m such that fx (x) 6= 0. Since fx is continuous, there is an
open neighborhood Ux of x in X on which fx does not vanish. By compactness a finite number of the neighborhoods,
say Ux1

, . . . , Uxn
, cover X. Let

f = f 2
x1
+ · · ·+ f 2

xn
.

Then f does not vanish at any point of X, hence is a unit in C (X ). But this contradicts f ∈m, hence V is not empty.
Let x be a point of V . Then m⊆mx , hence m=mx because m is maximal. Hence µ is surjective.

ii) By Urysohn’s lemma (this is the only non-trivial fact required in the argument) the continuous functions separate the
points of X. Hence x 6= y =⇒ mx 6=my , and therefore µ is injective.

iii) Let f ∈C (X ); let
Uf = {x ∈X : f (x) 6= 0}

and let
eUf = {m ∈ eX : f /∈m}.

Show that µ(Uf ) = eUf . The open sets Uf (resp. eUf ) form a basis of the topology of X (resp. eX ) and therefore µ is a
homeomorphism.
Thus X can be reconstructed from the ring of functions C (X ).

For each f ∈C (X ), we have

x ∈Uf ⇐⇒ f (x) 6= 0 ⇐⇒ f /∈mx ⇐⇒ mx ∈ eUf ,

so µ restricts to a bijection Uf ↔ eUf . It remains to show these sets form bases.
The Uf will form a basis for X if whenever x ∈W ⊆X with W open, there is an f ∈C (X ) such that x ∈Uf ⊆W .

But as X is compact Hausdorff, it is normal, and so the Urysohn lemma applies to show closed sets can be separated
by continuous functions. Thus there is f ∈ C (X ) such that f (X \W ) = {0} and f (x) = 1, and then evidently
x ∈Uf ⊆W .

Each eUf is open the subspace topology inherited from Spec
�

C (X )
�

, being the intersection of eX with the open set
Spec

�

C (X )
�

f of [1.17]. As these sets form a basis for Spec
�

C (X )
�

(see [1.17]), the eUf form a basis for eX.

Affine algebraic varieties
Let k be an algebraically closed field and let

fα(t1, . . . , tn) = 0

be a set of polynomial equations in n variables with coefficients in k. The set X of all points x = 〈x1, . . . , xn〉 ∈ kn which
satisfy these equations is an affine algebraic variety.

Consider the set of all polynomials g ∈ k[t1, . . . , tn] with the property that g (x) = 0 for all x ∈X. This set is an ideal
I (X ) in the polynomial ring, and is called the ideal of the variety X . The quotient ring

P (X ) = k[t1, . . . , tn]/I (X )

is the ring of polynomial functions on X, because two polynomials g , h define the same polynomial function on X if and
only if g − h vanishes at every point of X, that is, if and only if g − h ∈ I (X ).

Let ξi be the image of ti in P (X ). The ξi (1≤ i ≤ n) are the coordinate functions on X: if x ∈X, then ξi (x) is the ith
coordinate of x. P (X ) is generated as a k-algebra by the coordinate functions, and is called the coordinate ring (or affine
algebra) of X.

As in Exercise 26, for each x ∈X let mx be the ideal of all f ∈ P (X ) such that f (x) = 0; it is a maximal ideal of P (X ).
Hence, if eX =Max

�

P (X )
�

, we have defined a mapping µ : X → eX, namely x 7→mx . It is easy to show that µ is injective:
if x 6= y, we must have xi 6= yi for some i (1≤ i ≤ n), and hence ξi − xi is in mx but not in my , so that mx 6=my . What
is less obvious (but still true) is that µ is surjective. This is one form of Hilbert’s Nullstellensatz (see Chapter 7).

Abbreviate k[t ] := k[t1, . . . , tn]. As in [1.26], mx is maximal because it is the kernel of the surjective homomor-
phism f 7→ f (x) : P (X )→ k. To be more explicit about what mx looks like, note that if x = 〈x1, . . . , xn〉, then the
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Ex. 1.27 Chapter 1: Rings and Ideals

polynomial function ξi−xi ∈ P (X ) vanishes at x, so that ξi−xi ∈mx . On the other hand, since (t1−x1, . . . , tn−xn)
is the kernel of the surjective homomorphism k[t ]� k taking 1 7→ 1 and ti 7→ xi , it is a maximal ideal of k[t ], so
by the correspondence (1.1) we have (ξ1− x1, . . . , ξn − xn)⊆mx maximal, which shows the the containment must
in fact be an equality.

We then want to show the images of these mx are the only maximal ideals of P (X ). By (1.1), it will suffice to do
this for X = kn and P (X ) = k[t ] and then prove that x ∈ X ⇐⇒ I (X ) ⊆ mx , which will be item 8 in a list of
remarks that follows.

First we show all maximal ideals of P (X ) come from points. One way is to use an equivalent result traditionally
called the weak Nullstellensatz; see [5.17] for a statement and proof. Another is to use Zariski’s Lemma ((5.24), [5.18],
(7.9)) that any field L finitely generated as an algebra over a field K is a finite algebraic extension of K, which implies
both. This is done in [5.19]. Here is a more elementary proof16 avoiding the technology of Chapter 5, but it too
runs through Zariski’s Lemma.

Lemma 1.27.1*. If an integral domain Ais algebraic over a field k, then Ais a field.

Proof. Let 0 6= a ∈ A. Since A is a domain and a is algebraic over k, the kernel of the projection k[x]� k[a] is a
nonzero prime ideal. But k[x] is a PID, so this kernel is maximal, k[a] is a field, and a is a unit.

Proposition 1.27.2*. If k ⊆ L are fields in some integral domain B finitely generated as a k-algebra, L is algebraic over
k.

Proof. Imagine there were a transcendental element a ∈ L, and include a in a finite set T of generators for B as
a k-algebra. Select a maximal k-algebraically independent set S ⊆ T containing a, so that the field of fractions L′

of B is a finite extension of k(S).17 Picking an k(S)-basis of L′ gives us a representation φ of multiplication on L′

by square matrices over k(S). Writing the entries of the matrices φ(t ) for t ∈ T as fractions in k[S], let g be the
product of all the denominators, so that φ(B) has entries in k[S, g−1]. If p ∈ k[a] is any irreducible element, then
p−1 ∈ L since L is a field, so φ(p−1) is a diagonal matrix with entries p−1. Then this entry lies in k[S, g−1], so there
is some positive power g m such that g m p−1 ∈ k[S], meaning p|g m . Since p is irreducible and k[a] and k[S], being
isomorphic to polynomial rings, are UFDs, it follows p is a scalar multiple of one of those finitely many irreducible
factors qi ∈ k[S] of g which also lie in k[a]. By unique factorization, it follows each element of k[a] is divisible by
a qi ; but this obviously doesn’t hold of 1+

∏

qi , so we have a contradiction.

Taking B = L in (1.27.2*) yields Zariski’s Lemma. One could at this point use the proof of [5.19], but we will
follow an alternate route, proving another lemma we will encounter again later.

Lemma 1.27.3*. If k is a field, B a finitely generated k-algebra, and A→ B a k-algebra homomorphism, then contractions
in Aof maximals ideal of B are maximal.

Proof. Since B is a finitely generated k-algebra, it is a fortiori finitely generated over A, so B/m is a field finitely
generated over the integral domain A/mc . By (1.27.2*), B/m is algebraic over k. Since A/mc is contained in B/m, it
is also algebraic over k too. But then A/mc is a field by (1.27.1*), so mc is maximal.

Proposition 1.27.4*. If k is an algebraically closed field, all maximal ideals of the polynomial ring k[t ] are of the form
mx .

Proof. Let m Ã k[t ] be maximal. Then each contraction m ∩ k[ti ] is maximal in the PID k[ti ] by (1.27.3*), and
hence generated by an irreducible polynomial.18 As k is algebraically closed, this polynomial is linear, so we may
rescale it to be ti − xi for some xi ∈ k. But then ti − xi ∈m, so mx ⊆m and m=mx .

We take this opportunity to collect some remarks, culminating in the desired item 8. If S ⊆ k[t ] is a set of
polynomials, generating the ideal a= (S), we define the zero set Z(S) of S to be

Z(S) = Z(a) :=
n

〈a1, . . . , an〉 ∈ kn : ∀f ∈ a
�

f (a1, . . . , an) = 0
�

o

;

16 [Kemper, Prop. 1.5]
17 This proof can be modified to use concepts from later on: pick a finite basis for L′ over k(S); each basis element satisfies a monic polynomial

with coefficients in k(S). Let g ∈ k[S] be a common multiple of the denominators of these coefficients. Then L′ is integral over k[S]g by (5.3),
so k[S]g is a field by (5.7) or [5.5.i]. But this is a contradiction, for the polynomial ring k[S] cannot be a Goldman domain by (5.18.1*).

18 Note that the only reason we need the lemmas is to show this polynomial is not zero.
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with this definition,19 it is clear that an affine algebraic variety X is just a set Z(S) for some dimension n and some
S ⊆ k[t ]; and the maximal ideals of P (kn) = k[t ] referred to above are mx = I

�

{x}
�

.
We have the following inclusion relations20 involving Z and I , for x ∈ kn , X , X1, X2 ⊆ kn , and S, S1, S2 ⊆ k[t ].

0. X ⊆ Z(S) ⇐⇒ S ⊆ I (X ): for both mean f (x) = 0 for all f ∈ S and all x ∈X .

1. X1 ⊆X2 =⇒ I (X2)⊆ I (X1): for if f ∈ k[t ] vanishes on X2, it also does on the subset X1.

2. S1 ⊆ S2 =⇒ Z(S2)⊆ Z(S1): for if S2 annihilates x ∈ kn , so does the subset S1.

3. X ⊆ ZI (X ): “X is annihilated by everything annihilating X ”; apply item 0 to I (X )⊆ I (X ).

4. S ⊆ I Z(S): “S vanishes on everything S vanishes on”; apply item 0 to Z(S)⊆ Z(S).

5. I (X ) = I ZI (X ): for X
3.
⊆ ZI (X ), so I ZI (X )

1.
⊆ I (X ); but I (X )

4.
⊆ I ZI (X ).

6. Z(S) = ZI Z(S): for S
4.
⊆ I Z(S), so ZI Z(S)

2.
⊆ Z(S); but Z(S)

3.
⊆ ZI Z(S).

7. Z(mx ) = {x}: if I
�

{x}
�

=mx annihilates y ∈ kn , then ∀i (yi − xi = 0), so y = x;

and {x}
3.
⊆ Z(mx ).

8. X = Z(S) =⇒
�

I (X )⊆mx ⇐⇒ x ∈X
�

: if I (X )⊆mx , then {x} 7.= Z(mx )
2.
⊆ ZI (X ) = ZI Z(S) 6.= Z(S) =X ;

and if x ∈X, then I (X )
1.
⊆mx .

9. r
�

I (X )
�

= I (X ): Since N(k) = 0, if f (x)m = 0 for m ≥ 1, then f (x) = 0.

Note as a consequence of item 8 that a variety is non-empty just if its ideal is contained in some mx . In particular,
if there were some maximal ideal m that were not one of the mx , we would have Z(m) =∅.

Let f1, . . . , fm be elements of k[t1, . . . , tn]. They determine a polynomial mapping φ : kn → k m : if x ∈ kn , the coordinates of
φ(x) are f1(x), . . . , fm(x).

Let X, Y be affine algebraic varieties in kn , k m respectively. A mapping φ : X → Y is said to be regular if φ is the
restriction to X of a polynomial mapping from kn to k m .

If η is a polynomial function on Y , then η ◦φ is a polynomial function on X. Hence φ induces a k-algebra homo-
morphism P (Y )→ P (X ), namely η 7→ η ◦φ. Show that in this way we obtain a one-to-one correspondence between the
regular mappings X → Y and the k-algebra homomorphisms P (Y )→ P (X ).

The map φ# induced by φ is a ring homomorphism: for all x ∈X, η, ζ ∈ P (Y ), and ∗ ∈ {+, −, ·}, we have
�

(η ∗ ζ ) ◦φ
�

(x) = (η ∗ ζ )
�

φ(x)) = η
�

φ(x)
�

∗ ζ
�

φ(x)
�

=
�

(η ◦φ) ∗ (ζ ◦φ)
�

(x).

Preservation of k is trivial: for a ∈ k we have a ◦φ= a because a takes no arguments.
To see that the correspondenceφ 7→φ# is injective, supposeφ# =ψ# forφ, ψ regular mappings X → Y induced,

respectively, by coordinates φ j , ψ j : kn → k for 1 ≤ j ≤ m. Letting υi (1 ≤ i ≤ m) be the coordinate functions on
Y , we then have

φi = υi ◦φ=φ
#(υi ) =ψ

#(υi ) = υi ◦ψ=ψi

on X, so φi =ψi on X ; thus φi −ψi ∈ I (X ) for each i , and φ=ψ as regular maps from X.
To see the correspondence is surjective, let λ be a k-algebra homomorphism P (Y )→ P (X ). Precomposing with

a quotient projection π : k[u] := k[u1, . . . , um] → P (Y ) from the polynomial ring, we have a homomorphism
κ : k[u]→ P (X ). By the universal property of polynomial rings, this function is uniquely determined by its values
on indeterminates, say φi = κ(ui ) ∈ P (X ), which each define a regular function X → k. Let φ : X → k m be the
regular function with coordinates φi . Then if η ∈ k[u], we have

κ(η) = η
�

κ(u1), . . . , κ(um)
�

= η(φ1, . . . , φm) = η ◦φ.

19 This is closely related indeed to the sets V (E) of [1.15], to the extent that the same letter V is often used, and the topology on kn gotten
by taking the Z(S) as closed sets is also called the Zariski topology. The correspondence is gotten by taking A= k[t ]; then under the bijection
kn ↔Max(A) (to be proved), we have Z(S)↔V (S)∩Max(A).

20 The first three show among other things show Z and I form an antitone Galois connection between the powersets P
�

k[t ]
�

and P (kn), as
partially ordered by inclusion—see e.g. [WPGalois]—and the next four are formal consequences of this Galois connection.
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Ex. 1.28 Chapter 1: Rings and Ideals

To show λ = φ# is as hoped, it remains to show that imφ ⊆ Y . This is the case just if for all η ∈ I (Y ) ⊆ k[u] and
x ∈X we have η

�

φ(x)
�

= 0, or in other words if η◦φ= 0; but this is true because η◦φ= κ(η) = λ
�

π(η)
�

= λ(0) = 0.
For later use, note that given X φ−→ Y ψ−→ Z we have (ψ ◦φ)# = (φ# ◦ψ#). Indeed, if ζ ∈ P (Z), then

(ψ ◦φ)#(ζ ) = ζ ◦ψ ◦φ=φ#(ζ ◦ψ) =φ#�ψ#(ζ )
�

. (1.2)

This shows the coordinate ring is a contravariant functor from the category of affine algebraic varieties and regular
maps to the category of finitely generated k-algebras and k-algebra homomorphisms. This functor is actually an
equivalence of categories.

Note in particular that in this framework, point inclusions {0} → {x} ,→ X correspond bijectively to k-algebra
homomorphisms P (X )→ k.
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Modules

Exercise 2.2. i) Ann(M +N ) =Ann(M )∩Ann(N ).

a ∈Ann(M +N ) ⇐⇒ 0= a(M +N ) = aM + aN ⇐⇒ aM = aN = 0 ⇐⇒ a ∈Ann(M )∩Ann(N ).

ii) (N : P ) =Ann
�

(N + P )/N
�

.

xP ⊆N ⇐⇒ x(N + P ) = xN + xP ⊆N ⇐⇒ x
�

(N + P )/N
�

= 0 in (N + P )/N .

Proposition 2.9. i) Let
M ′ u−→M v−→M ′′→ 0 (2.1)

be a sequence of A-modules and homomorphisms. Then Seq. 2.1 is exact ⇐⇒ for all A-modules N , the sequence

0→Hom(M ′′, N ) v̄−→Hom(M , N ) ū−→Hom(M ′, N ) (2.2)

is exact.

The book proves that if Seq. 2.2 is exact for all N , then Seq. 2.1 is exact. So suppose Seq. 2.1 is exact, let N be
any A-module, and consider Seq. 2.2. Let φ ∈Hom(M ′′, N ). If 0 = φ ◦ v = v̄(φ), then φ = 0 since v is surjective;
thus v̄ is injective. We have ū

�

v̄(φ)
�

= v̄(φ) ◦ u = φ ◦ v ◦ u = φ ◦ 0 = 0, so ū ◦ v̄ = 0. Now let ψ ∈ Hom(M , N )
and suppose ψ ∈ ker ū. Then ψ ◦ u = 0, so ker v = im u ⊆ kerψ, and ψ factors through the quotient module
M ′′ = im v ∼=M/u(M ′) (see p. 19): there is ψ̄ ∈Hom(M ′′, N ) with ψ= ψ̄ ◦ v = v̄(ψ). Thus ψ ∈ im v̄.

ii) Let
0→N ′ u−→N v−→N ′′ (2.3)

be a sequence of A-modules and homomorphisms. Then Seq. 2.3 is exact ⇐⇒ for all A-modules M , the sequence

0→Hom(M ,N ′) ū−→Hom(M ,N ) v̄−→Hom(M ,N ′′) (2.4)

is exact.

Suppose Seq. 2.3 is exact, let M be an A-module, and consider Seq. 2.4. Let φ ∈ Hom(M , N ′). If φ ∈ ker ū,
then u ◦ φ = 0; since u is injective, φ = 0. Also v̄

�

ū(φ)
�

= v ◦ u ◦ φ = 0 ◦ φ = 0, so v̄ ◦ ū = 0. Finally, let
ψ ∈ ker v̄ ⊆Hom(M , N ). Then v ◦ψ= 0, so imψ⊆ ker v = im u. Since u is injective, φ̄= u−1 ◦φ is a well-defined
map such that ū(φ̄) = u ◦ φ̄=φ.

For the other direction, suppose that for all A-modules M , Seq. 2.4 is exact, and consider Seq. 2.3. First, let
M = Z. Suppose n′ ∈N ′ is such that u(n′) = 0. Let φ : Z→N ′ be given by φ(1) = n′. Then (u ◦φ)(1) = u(n′) = 0,
so φ ∈ ker ū; since ū is injective, φ= 0, so n′ = 0. This shows u is injective. Also, letting M = N ′, and considering
the map idN ′ , we get 0 = v̄

�

ū(idN ′)
�

= v ◦ u ◦ idN ′ = v ◦ u. Finally, let n ∈ ker v ⊆ N , and let ψ : Z→ N be given
by ψ(1) = n. Then im

�

v̄(ψ)
�

= im(v ◦ψ) = v(nZ) = 0. By exactness of Seq. 2.4, there is ψ̄ : Z → N ′ such that
ū(ψ̄) = u ◦ ψ̄=ψ; in particular, n =ψ(1) = u

�

ψ̄(1)
�

, so n ∈ im u, and ker v ⊆ im u.
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Proposition 2.10. The Snake Lemma.

Starting with the two middle rows exact and maps α, β, γ making the two middle squares commute, we derive
the rest of the commutative diagram. For convenience, we have renamed objects and maps and will tend to omit
parentheses. Except where otherwise noted, all deductions are by commutativity or exactness.

kerα� _
iα
��

κ′ // kerβ� _
iβ
��

λ′ // kerγ� _
iγ
��

δ

//

A

α
��

κ // B

β
��

λ // C

γ
��

// 0

0 // D

qα
����

φ // E

qβ
����

ψ // F

qγ
����

cokerα
φ // cokerβ

ψ // cokerγ

• Note that if a ∈ kerα, then αa = 0, so βκa = φαa = 0, and
κa ∈ kerβ; thus we can define a restriction κ′ : kerα→ kerβ.

• In the same way, we can define a restriction λ′ : kerβ→ kerγ .

• Since φ(imα) = im(βκ), φ induces a map φ : cokerα →
cokerβ taking d = d + imα 7→φd + imβ=φd .

• ψ : cokerβ→ cokerγ is defined similarly.

The new squares all commute by definition.

• We check that the connecting map δ := qαφ
−1βλ−1iγ is well defined. Let c ∈ kerγ and b ∈ λ−1{c}. Since

ψβb = γλb = γc = 0, there is a unique d ∈ D such that φd = βb , so δ can assign the value d = d + imα
to c . We made a choice of b in this definition. Suppose b ′ ∈ λ−1{c} as well, and d ′ is the unique element of
φ−1{βb ′}. Since λ(b − b ′) = c − c = 0, there is a ∈A with κa = b − b ′. As

φd =βb =β(b ′+κa) =βb ′+φαa =φ(d ′+αa),

from the injectivity of φ we see d = d ′+αa, so that d = d ′ and δc is well defined.

Now we show exactness of kerα→ kerβ→ kerγ → cokerα→ cokerβ→ cokerγ . First come the easier parts:

• iγλ
′κ′ = λκiα = 0iα = 0. As iγ is a monomorphism, λ′κ′ = 0.

• ψφqα = qγψφ= qγ0= 0. As qα is an epimorphism, ψφ= 0.

• δλ′ = qαφ
−1β(λ−1iγλ

′) = qαφ
−1(βiβ) = qαφ

−10= 0.

• φδ= (φqα)φ
−1βλ−1iγ = (qβφ)φ

−1βλ−1iγ = (qββ)λ
−1iγ = 0λ−1iγ = 0.

The other containments aren’t much worse:

• kerλ′ ⊆ imκ′: Suppose b ∈ kerβ∩kerλ. Then there is a ∈ A such that κa = b . Now φαa =βκa =βb = 0,
and since φ is injective, a ∈ kerα; thus b ∈ imκ′.

• kerψ ⊆ imφ: Suppose ψe = 0; then there is c ∈ C such that ψe = γ c . As λ is surjective, there is b ∈ B
such that λb = c , and then ψβb = γλb = γc = ψe , so e −βb ∈ kerψ = imφ. Letting a ∈ A be such that
φa = e −βb , we see φa = e −βb = e , so e ∈ imφ.

• kerδ ⊆ imλ′: Suppose 0= δc and pick b ∈ λ−1{c}. Then d = 0 for the unique d ∈φ−1{βb}, so d ∈ imα. If
αa = d , then βκa =φαa =φd =βb , so b −κa ∈ kerβ. We have λ(b −κa) = c − 0, so c ∈ imλ′.

• kerφ⊆ imδ: Suppose φ(d ) =φd = 0, so that there exists b ∈β−1{φd}. Setting λb = c , we see γc = γλb =
ψβb = (ψφ)d = 0, so c ∈ kerγ . Now δc = qαφ

−1βλ−1c = qαφ
−1βb = qαφ

−1φd = d , so d ∈ imδ.

Further, if the first sequence given is short exact (i.e., κ is injective), then κ′, as a restriction of κ, is injective; and if
the second sequence given is short exact (i.e., ψ is surjective), then ψ is surjective, for if f ∈ cokerγ , there is some
e ∈ E such that ψe = f , and then ψe = f .
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Proposition 2.12. Let M1, . . . , Mr be A-modules. Then there exists a pair 〈T , g 〉 consisting of an A-module T and an
A-multilinear mapping g : M1× · · ·×Mr → T with the following property:

Given any A-module P and any A-multilinear mapping f : M1×· · ·×Mr → P, there exists a unique A-homomorphism
f ′ : T → P such that f ′ ◦ g = f .

Moreover, if 〈T , g 〉 and 〈T ′, g ′〉 are two such pairs with this property, then there exists a unique isomorphism j : T →
T ′ such that j ◦ g = g ′.

“The details may safely be left to the reader.” First we prove existence. Let C be the free A-module on M =
∏r

j=1 M j , and let D be the submodule generated by the following elements, for all x j , x ′j ∈ M j ( j = 1, . . . , r ), and
a ∈A:

〈x1, . . . , x j + x ′j , . . . , xr 〉− 〈x1, . . . , x j , . . . , xr 〉− 〈x1, . . . , x ′j , . . . , xr 〉,

〈x1, . . . , ax j , . . . , xr 〉− a〈x1, . . . , x j , . . . , xr 〉.

Let T = C/D , and write the image of (x1, . . . , xr ) ∈ C as x1 ⊗ · · · ⊗ xr ∈ T ; these elements evidently generate
T , and we have, for all x j , x ′j ∈M j ( j = 1, . . . , r ), and a ∈A,

x1 ⊗ · · · ⊗ (x j + x ′j ) ⊗ · · · ⊗ xr = (x1 ⊗ · · · ⊗ x j ⊗ · · · ⊗ xr )+ (x1 ⊗ · · · ⊗ x ′j ⊗ · · · ⊗ xr , )

x1 ⊗ · · · ⊗ ax j ⊗ · · · ⊗ xr = a(x1 ⊗ · · · ⊗ x j ⊗ · · · ⊗ xr ),

so the map g : M → T given by 〈x1, . . . , xr 〉 7→ x1 ⊗ · · · ⊗ xr is A-multilinear.
Let P be an A-module; any map f : M → P extends uniquely to a linear map f̄ : C → P since C is freely generated

over A by the elements of M . f is A-multilinear just if f̄ vanishes on the elements we specified to generate D and
thus induces on the quotient a unique A-linear map f ′ : T → P taking x1 ⊗ · · · ⊗ xr 7→ f (x1, . . . , xr ); in this case,
f = f ′ ◦ g .

Now suppose 〈T ′, g ′〉 has the same universal property as 〈T , g 〉. Then the A-multilinear map g : M → T factors
through g ′ as g = j ◦ g ′ for a unique A-linear map j : T ′→ T . Similarly, g ′ : M → T ′ factors through g as g ′ = j ′ ◦ g
for a unique j ′ : T → T ′, and we have

g = j ◦ g ′ = j ◦ j ′ ◦ g .

Because g : M → T is itself multilinear, by the definition of a tensor product, there is a unique linear map i : T → T
such that g = i ◦ g ; but clearly the identity map idT has this property, so j ◦ j ′ = idT . Symmetrically,

g ′ = j ′ ◦ g = j ′ ◦ j ◦ g ′,

so j ′ ◦ j = idT ′ and j and j ′ = j−1 are isomorphisms.

Proposition 2.14. Let M , N , P be A-modules. Then there exist the following unique isomorphisms:
i) M ⊗N →N ⊗M , x ⊗ y 7→ y ⊗ x;

The map 〈x, y〉 7→ 〈y, x〉 7→ y ⊗ x from M ×N → N ×M → N ⊗M is bilinear, so it corresponds to a unique
linear map M ⊗N → N ⊗M taking x ⊗ y 7→ y ⊗ x. The same argument provides a map N ⊗M → M ⊗N taking
y ⊗ x 7→ x ⊗ y. These maps are clearly inverse on the decomposable elements x ⊗ y ∈ M ⊗N and y ⊗ x ∈ N ⊗M ,
and since these elements generate the modules, the maps are inverse.

ii) (M ⊗N )⊗ P →M ⊗ (N ⊗ P )→M ⊗N ⊗ P, (x ⊗ y)⊗ z 7→ x ⊗ (y ⊗ z) 7→ x ⊗ y ⊗ z;

The book demonstrates the isomorphism (M ⊗ N ) ⊗ P → M ⊗ N ⊗ P . A symmetric argument provides an
isomorphism M ⊗ (N ⊗ P )→M ⊗N ⊗ P .

iii) (M ⊕N )⊗ P → (M ⊗ P )⊕ (N ⊗ P ), 〈x, y〉⊗ z 7→ 〈x ⊗ z, y ⊗ z〉;

Let f : (M ⊕N )×P → (M ⊗P )⊕ (N ⊗P ) be given by f
�

〈x, y〉, z
�

:= 〈x⊗ z, y⊗ z〉. We claim it is A-bilinear. Let
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x, x ′ ∈M, y, y ′ ∈N, z, z ′ ∈ P, and a ∈A: then indeed

f
�

a〈x, y〉, z
�

= f
�

〈ax, ay〉, z
�

= 〈ax ⊗ z, ay ⊗ z〉=



a(x ⊗ z), a(y ⊗ z)
�

= a〈x ⊗ z, y ⊗ z〉= af
�

〈x, y〉, z
�

,

f
�

〈x, y〉, az
�

= 〈x ⊗ az, y ⊗ az〉=



a(x ⊗ z), a(y ⊗ z)
�

= a〈x ⊗ z, y ⊗ z〉= af
�

〈x, y〉, z
�

,

f
�

〈x, y〉+ 〈x ′, y ′〉, z
�

= f
�

〈x + x ′, y + y ′〉, z
�

=



(x + x ′)⊗ z, (y + y ′)⊗ z
�

= 〈x ⊗ z, y ⊗ z〉+ 〈x ′⊗ z, y ′⊗ z〉= f
�

〈x, y〉, z
�

+ f
�

〈x ′, y ′〉, z
�

,

f
�

〈x, y〉, z + z ′
�

=



x ⊗ (z + z ′), y ⊗ (z + z ′)
�

= 〈x ⊗ z + x ⊗ z ′, y ⊗ z + y ⊗ z ′〉
= 〈x ⊗ z, y ⊗ z〉+ 〈x ⊗ z ′, y ⊗ z ′〉= f

�

〈x, y〉, z
�

+ f
�

〈x, y〉, z ′
�

.

Thus f factors through the canonical map g : (M ⊕N )× P → (M ⊕N )⊗ P as f = f ′⊗ g , where

f ′: (M ⊕N )⊗ P → (M ⊗ P )⊕ (N ⊗ P ),
〈x, y〉⊗ z 7→ 〈x ⊗ z, y ⊗ z〉

is A-linear.
On the other hand, we also have bilinear maps

j1: M × P → (M ⊕N )⊗ P,
〈x, z〉 7→ 〈x, 0〉⊗ z

and
j2 : N × P → (M ⊕N )⊗ P,
〈y, z〉 7→ 〈0, y〉⊗ z,

which give rise to linear maps

̄1: M ⊗ P → (M ⊕N )⊗ P,
x ⊗ z 7→ 〈x, 0〉⊗ z

and
̄2 : N ⊗ P → (M ⊕N )⊗ P,

y ⊗ z 7→ 〈0, y〉⊗ z.

By the universal property of the direct sum, we get a unique A-linear map

j : (M ⊗ P )⊕ (N ⊗ P )→ (M ⊕N )⊗ P,
〈x ⊗ z, 0〉 7→ 〈x, 0〉⊗ z,
〈0, y ⊗ z〉 7→ 〈0, y〉⊗ z.

Now the image of 〈x, y〉⊗ z ∈ (M ⊕N )⊗ P under j ◦ f is

j (x ⊗ z, y ⊗ z) = 〈x, 0〉⊗ z + 〈0, y〉⊗ z = 〈x, y〉⊗ z,

and since these elements generate (M ⊕N )⊗ P, we see j ◦ f is the identity. Similarly, the images of the elements
〈x ⊗ z, 0〉 and 〈0, y ⊗ z〉 of (M ⊗ P )⊕ (N ⊗ P ) under f ◦ j are respectively

f
�

〈x, 0〉⊗ z
�

= 〈x ⊗ z, 0〉 and f
�

〈0, y〉⊗ z
�

= 〈0, y ⊗ z〉,

and these elements generate (M ⊗ P )⊕ (N ⊗ P ), so f ◦ j is the identity, and f and j are inverse isomorphisms.

iii*) For any A-modules Mi (i ∈ I ) and N,

N ⊗
⊕

i∈I

Mi
∼=
⊕

i∈I

(N ⊗Mi ).
1

Proof. For each finite subset J ⊆ I , write MJ :=
⊕

j∈J M j . Then MJ +MJ ′ = MJ∪J ′ , for all finite J , J ′ ⊆ I . Taking all
maps to be the natural insertions, [2.17] shows M ∼= lim−→ MJ . Similarly, for J ⊆ J ′, the natural injection

⊕

j∈J (N ⊗

M j )→
⊕

j∈J ′(N ⊗M j ), can be viewed as an inclusion, and [2.17] again says lim−→J

�

⊕

j∈J (N ⊗M j )
�

∼=
⊕

i∈I (N ⊗Mi ).

Thus

N ⊗
⊕

i∈I

Mi

[2.17]∼= N ⊗ lim−→
J

MJ

[2.20]∼= lim−→
J

(N ⊗MJ )
(2.14.iii)∼= lim−→

J

�

⊕

j∈J

(N ⊗M j )
� [2.17]∼=

⊕

i∈I

(N ⊗Mi ).

1 This generalizes (2.14.iii) and uses independent later exercises regarding direct limits.
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iv) A⊗M →M , a⊗ x 7→ ax.

By the definition of an A-module M there is a bi-additive map µ : A× M → M , A-linear in the first variable.
The required identity µ

�

a, µ(b , m)
�

= µ(ab , m) shows that µ is A-linear in the second variable if we consider M
to have the A-module structure induced by µ. Thus, with g : A×M → A⊗M the canonical map, we get a unique
factorization µ = µ′ ◦ g , where µ′ : A⊗M → M is A-linear and µ′(a⊗ x) = ax. On the other hand there is also an
obviously A-linear map ι : M →A⊗M given by x 7→ 1⊗ x. We check that these maps are inverse:

ι
�

µ′(a⊗ x)
�

= ι(ax) = 1⊗ ax = a⊗ x and µ′
�

ι(x)
�

=µ′(1⊗ x) = x.

Exercise 2.15. Let A, B be rings, let M be an A-module, P a B-module, and N an (A, B)-bimodule (that is, N is simulta-
neously an A-module and a B-module and the two structures are compatible in the sense that a(xb ) = (ax)b for all a ∈A,
b ∈ B, x ∈N). Then M ⊗A N is naturally a B-module, N ⊗B P an A-module, and we have

(M ⊗A N )⊗B P ∼=M ⊗A (N ⊗B P ).

As in the proof of (2.14.iii), for each z ∈ P we have a map fz : M×N →M⊗A (N⊗B P ) given by 〈x, y〉 7→ x⊗(y⊗z),
which we claim is A-bilinear in the first two variables. Bi-additivity is clear, and for a ∈A we have

fz (ax, y) = ax ⊗ (y ⊗ z) = a
�

x ⊗ (y ⊗ z)
�

= afz (x, y),

fz (x, ay) = x ⊗ (ay ⊗ z) = x ⊗ a(y ⊗ z) = a
�

x ⊗ (y ⊗ z)
�

= afz (x, y).

Thus each fz induces an A-linear map f̄z : M ⊗A N →M ⊗A (N ⊗B P ) taking x⊗ y 7→ x⊗ (y⊗ z). Allowing z to vary,
we have a bi-additive map g : (M ⊗A N )× P → M ⊗A (N ⊗B P ) taking 〈x ⊗ y, z〉 7→ f̄z (x ⊗ y). This g is obviously
A-linear in the first variable, and is B -bilinear since for b ∈ B we have

g
�

(x ⊗ y)b , z
�

= g (x ⊗ yb , z) = x ⊗ (yb ⊗ z) = x ⊗ (y ⊗ z)b =
�

x ⊗ (y ⊗ z)
�

b = g (x ⊗ y, z)b ,

g (x ⊗ y, zb ) = x ⊗ (y ⊗ zb ) = x ⊗ (y ⊗ z)b =
�

x ⊗ (y ⊗ z)
�

b = g (x ⊗ y, z)b .

Thus, by the universal property, g gives rise to an (A, B)-linear map ḡ : (M ⊗A N )⊗B P → M ⊗A (N ⊗B P ) taking
(x ⊗ y)⊗ z 7→ x ⊗ (y ⊗ z). A symmetric argument gives the inverse map x ⊗ (y ⊗ z) 7→ (x ⊗ y)⊗ z.

Exercise 2.20. If f : A→ B is a ring homomorphism and M is a flat A-module, then MB = B ⊗A M is a flat B-module.

Let j : N1� N2 be any injective B -module homomorphism. By (2.19), to show MB is a flat B -module it suffices
to show j ⊗ idMB

: N1⊗B MB → N2⊗B MB is injective. By restricting scalars along f , we can consider all modules as
A-modules, and find canonical A-module isomorphisms

Ni ⊗B MB =Ni ⊗B (B ⊗A M )
(2.15)∼= (Ni ⊗B B)⊗A M

(2.14.i)∼=
(2.14.iv)

Ni ⊗A M.

Since j is still injective considered as an A-module homomorphism and M is flat, j ⊗ idM : N1⊗A M → N2⊗A M is
injective. Composing on both sides with the canonical isomorphisms yields

x ⊗ y 7→ (x ⊗ 1)⊗ y 7→ x ⊗ (1⊗ y) 7→ j (x)⊗ (1⊗ y) 7→
�

j (x)⊗ 1
�

⊗ y 7→ j (x)⊗ y

which then must also be injective; but this is j ⊗ idMB
.

Proposition 2.21*. The direct sum M of a family of A-modules Mi (i ∈ I ) is characterized up to isomorphism by the
following universal property: there exists a family of homomorphisms ji : Mi → M such that for any A-module N and
family of homomorphisms fi : Mi →N, there exists a unique homomorphism f : M →N such that fi = f ◦ ji for all i ∈ I .

For each x = 〈xi 〉 ∈ M , write pi (x) = xi ∈ Mi ; then the projections pi : M → Mi are surjective homomorphisms.
For each xi ∈ Mi , write ji (xi ) for the unique element y ∈ M such that pi (y) = xi and pt (y) = 0 for all t 6= i . These
insertions ji : Mi →M are injective homomorphisms. Note that pi ◦ ji = idMi

, while pi ◦ jt = 0 for t 6= i .
Since for any x ∈ M we have only finitely many pi (x) 6= 0, it follows x =

∑

i∈I ji
�

pi (x)
�

, or idM =
∑

( ji ◦ pi ).
Thus for any homomorphism f : M →N we have

f = f ◦ idM = f ◦
�

∑

( ji ◦ pi )
�

=
∑

( f ◦ ji ◦ pi ).
2

2 So f : 〈xi 〉 7→
∑

fi (xi ).
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Thus f is uniquely determined by the maps f ◦ ji ◦ pi , and since each pi : M → Mi is surjective, by the maps f ◦ ji .
On the other hand, given an arbitrary family of maps fi : Mi →N, we can define f : M →N by f =

∑

t ( ft ◦ pt ), and
precomposing with ji , we get f ◦ ji =

∑

t ( ft ◦ pt ◦ ji ) = fi ◦ pi ◦ ji = fi . Thus M satisfies the universal property.
Now suppose another module M ′ and family of homomorphisms j ′i : Mi � M ′ also have this property. Then

associated to the maps ji : Mi → M , there is a unique u : M ′ → M such that each ji = u ◦ j ′i , and associated to the
maps j ′i : Mi →M ′, there is a unique u ′ : M →M ′ such that each j ′i = u ′ ◦ ji . It follows each (u ◦ u ′) ◦ ji = u ◦ j ′i = ji .
By assumption, associated to the ji : Mi → M there is a unique map j : M → M such that ji = j ◦ ji ; since both idM
and u ◦ u ′ meet this criterion, it follows that the two are equal. Symmetrically, u ′ ◦ u = idM ′ , so M ∼=M ′.

Proposition 2.22*. Let fi : Mi → Ni (i ∈ I ) be a family A-module homomorphisms, and M and N the respective direct
sums of the Mi and the Ni . Write ji for the insertions Mi � M , ki for the insertions Ni � N, pi for the projections
M �Mi , and qi for the projections N �Ni . Then there is a unique direct sum map f =

⊕

i∈I fi : M →N such that

fi = qi ◦ f ◦ ji and qi ◦ f ◦ jt = 0 for i 6= t .

Moreover,
i) f is injective if and only if each fi is injective;
ii) f is surjective if and only if each fi is surjective.

The map 〈xi 〉 7→



fi (xi )
�

satisfies the conditions on f .3 Since any other g satisfying the equations takes ji (xi ) to
ki

�

fi (xi )
�

, it follows by additivity that g : 〈xi 〉 7→



fi (xi )
�

for all 〈xi 〉 ∈M , so g = f .4

i): Suppose all fi are injective. If f
�

〈xi 〉
�

=



fi (xi )
�

= 0, then each fi (xi ) = 0, so each xi = 0, and 〈xi 〉= 0.5

If some fi takes a nonzero xi to 0, then f takes its image j (xi ) to 0, and so is also not injective.6

ii): Let y = 〈yi 〉 ∈ N be given. By assumption, there is for each i an xi ∈ Mi with fi (xi ) = yi ; if yi = 0, we may
take xi = 0. Then x = 〈xi 〉 ∈M and f (x) = y, so f is surjective.7

If yi ∈Ni is not in im fi , then ki (yi ) cannot be in the image of f : 〈xi 〉 7→



fi (xi )
�

, so f is not surjective.8

EXERCISES
Show that (Z/mZ)⊗Z(Z/nZ) = 0 if m, n are coprime.

Since m, n are coprime, by Bézout’s lemma there are a, b ∈Z such that am+bn = 1.9 Let x⊗y ∈ (Z/mZ)⊗Z(Z/nZ).
Then x ⊗ y = (am+ bn)(x ⊗ y) = a(mx ⊗ y)+ b (x ⊗ ny) = 0.

Let A be a ring, a an ideal, M an A-module. Show that (A/a)⊗A M is isomorphic to M/aM.

Applying the right exact functor−⊗A M to the short exact sequence 0→ a→A→A/a→ 0, we see the sequence

a⊗M
j
→ A⊗M → (A/a)⊗M → 0

is exact, so
(A/a)⊗M ∼= (A⊗M )/im j.

But the absorption isomorphism A⊗M →M of (2.14.iv) sends im j → aM, so (A⊗M )/im j ∼=M/aM.

3 More formally, by (2.21), there is a unique f : M → N with f ◦ ji = ki ◦ fi : Mi → N. Now each qi ◦ f ◦ ji = qi ◦ ki ◦ fi = fi , and
qi ◦ f ◦ jt = (qi ◦ kt ) ◦ ft = 0 for t 6= i .

4 Suppose that g also satisfies the first equation. Then each ki ◦ fi = ki ◦ qi ◦ g ◦ ji = g ◦ ji , so by uniqueness in (2.21), f = g .
5 Alternately, f =

∑

i , t ki ◦ qi ◦ f ◦ jt ◦ pt =
∑

ki ◦ qi ◦ f ◦ ji ◦ pi =
∑

ki ◦ fi ◦ pi . Since (im qi ) ∩ (
∑

t 6=i im qt ) = 0, we know ker f =
⋂

ker(ki ◦ fi ◦ pi ). Since each ki ◦ fi is injective, this is
⋂

ker pi = 0.
6 If f =

∑

kt ◦ ft ◦ pt is injective, so is f ◦ ji =
∑

t kt ◦ ft ◦ pt ◦ ji = ki ◦ fi . Since ki is injective, so is fi .
7 Proceeding formally, since each fi = qi ◦ f ◦ ji is surjective, so is each qi ◦ f . Since idN =

∑

ki ◦ qi , we have f = idN ◦ f =
∑

ki ◦ qi ◦ f , so
im f =

∑

im(ki ◦ qi ◦ f ) =
∑

ki (Ni ) =N.
8 Since fi ◦ pi = qi ◦ f ◦ ji ◦ pi = qi ◦ f ◦

∑

( jt ◦ pt ) = qi ◦ f , if some yi ∈ Ni is not in im fi , it is not in the image of fi ◦ pi = qi ◦ f , and so
ki (yi ) ∈Ni is not in the image of ki ◦ qi ◦ f = f .

9 [MWBezout]; Another way of putting this is that m and n being coprime in the arithmetic sense of having no common irreducible factors
implies that (m) and (n) are coprime in the algebraic sense (p. 7) that (m)+ (n) = (1).
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Let A be a local ring, M and N finitely generated A-modules. Prove that if M ⊗N = 0, then M = 0 or N = 0.

Let m be the maximal ideal and k = A/m the residue field. The scalar extensions Mk := k ⊗A M and Nk are
k-vector spaces. That M ⊗N = 0 implies

Mk ⊗Nk = (k ⊗M )⊗ (k ⊗N )
(2.14.iii)∼=
(2.14.iv)

k ⊗ (M ⊗N ) = (M ⊗N )k = 0.

But dimension of vector spaces is multiplicative under tensor, so Mk or Nk = 0. Without loss of generality, assume
Mk = 0. By [2.2], Mk

∼= M/mM , so mM = M . By Nakayama’s Lemma (2.6), since M is finitely generated and m is
the Jacobson radical, we have M = 0.

Let Mi (i ∈ I ) be any family of A-modules, and let M be their direct sum. Prove that M is flat ⇐⇒ each Mi is flat.

Let an A-linear map j : N ′ → N be given. Using the isomorphisms of (2.14.iii*) identifies j ⊗ idM with a map
h :
⊕

i∈I (N
′⊗Mi )→

⊕

i∈I (N
′⊗Mi ), and the compositions

N ′⊗Mi �
⊕

i∈I

(N ′⊗Mi )
∼−→N ′⊗M

j⊗idM−−→N ⊗M
∼−→
⊕

i∈I

(N ⊗Mi )�N ⊗Mi

are j ⊗ idMi
, the associated maps N ′⊗Mi → N ⊗Mt for t 6= i being zero. Thus h is the direct sum of the j ⊗ idMi

,
and by (2.22.i*), j ⊗ idM is injective just if they are.

If the Mi are flat and j is injective, then by (2.19) each of the j ⊗ idMi
are as well, and so j ⊗ idM is. Hence M is

flat. If Mi is not flat, there exists a j such that j ⊗ idMi
is not injective, and so j ⊗ idM is not. Hence M is not flat.

Let A[x] be the ring of polynomials in one indeterminate over a ring A. Prove that A[x] is a flat A-algebra.

A is a flat A-module, for by (2.14.iv) the functor −⊗A A is naturally isomorphic to the identity functor. Let
Mi = Ax i ⊆ A[x] for i ∈ N. Each Mi

∼= A as an A-module, and so is flat. Then as a module, A[x] =
⊕

i∈NMi is flat
by [2.4].

For any A-module M , let M [x] denote the set of all polynomials in x with coefficients in M , that is to say expressions of the form

m0+m1x + · · ·+mr x r (mi ∈M ).

Defining the product of an element of A[x] and an element of M [x] in the obvious way, show that M [x] is an A[x]-
module.

As an A-module, we have M [x] ∼=
⊕

n∈NMxn . We define the action of A[x] on M [x] by (
∑

ai x
i )(
∑

mj x
j ) =

∑

ck xk , where ck =
∑

i+ j=k ai mj . We check the distributivity and associativity. Let f (x) =
∑

i ai x i and g (x) =
∑

j b j x j ∈A[x] and m(x) =
∑

k mk xk and n(x) =
∑

k nk xk ∈M [x]. Associativity is given by

�

f (x)g (x)
�

m(x) =
�

∑

l

�

∑

i+ j=k

ai b j

�

xk

�

�

∑

l

ml x l
�

=
∑

p

�

∑

k+l=p

�

∑

i+ j=k

ai b j

�

mk

�

x p =
∑

p

�

∑

i+ j+k=p

ai b j mk

�

x p ;

f (x)
�

g (x)m(x)
�

=
�

∑

i

ai x i
�

�

∑

l

�

∑

j+k=l

b j mk

�

x l

�

=
∑

p

�

∑

i+l=p

ai

�

∑

j+k=l

b j mk

�

�

x p =
∑

p

�

∑

i+ j+k=p

ai b j mk

�

x p .

Distributivity is given by

�

f (x)+ g (x)
�

m(x) =
�

∑

i

(ai + bi )x
i
��

∑

k

mk xk
�

=
∑

l

�

∑

i+k=l

(ai mk + bi mk )
�

x l

=
�

∑

i

ai x i
��

∑

k

mk xk
�

+
�

∑

i

bi x i
��

∑

k

mk xk
�

= f (x)m(x)+ g (x)m(x);

f (x)
�

m(x)+ n(x)
�

=
�

∑

i

ai x i
��

∑

k

(mk + nk )x
k
�

=
∑

l

�

∑

i+k=l

(ai mk + ai nk )
�

x l

=
�

∑

i

ai x i
��

∑

k

mk xk
�

+
�

∑

i

ai x i
��

∑

k

nk xk
�

= f (x)m(x)+ f (x)n(x).
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Show M [x]∼=A[x]⊗AM .

Define φ : M [x]→ A[x]⊗A M by m(x) =
∑

m j x j 7→
∑

(x j ⊗m j ). It is obviously additive, and is A[x]-linear,
for if f (x) =

∑

ai x i ∈A[x], then

φ
�

f (x)m(x)
�

=
∑

k

∑

i+ j=k

φ(ai mj xk ) =
∑

k

∑

i+ j=k

(xk ⊗ ai mj ) =
∑

i

∑

j

(x i x j ⊗ ai m j )

=
∑

j

�

�

∑

i

ai x i
�

x j ⊗mj

�

=
�

∑

i

ai x i
��

∑

j

x j ⊗mj

�

= f (x)φ
�

m(x)
�

.

Define ψ̄ : A[x]×M → M [x] by ψ̄
�
∑

ai x i , m
�

=
∑

(ai m)x
i . It is clearly bi-additive and A-bilinear, and so induces

a linear map ψ : A[x]⊗A M →M [x] sending
�
∑

ai x i
�

⊗m 7→
∑

(ai m)x
i . Now φ and ψ are inverse, for

ψ
�

φ(mi x i )
�

=ψ(x i ⊗mi ) = mi x i

and
φ
�

ψ(ai x i ⊗m)
�

=φ
�

(ai m)x
i �= x i ⊗ ai m = ai x i ⊗m.

Let p be a prime ideal in A. Show that p[x] is a prime ideal in A[x]. If m is a maximal ideal in A, is m[x] a maximal ideal in
A[x]?

p[x] is the kernel of the “reduction of coefficients” homomorphism A[x]� (A/p)[x], and (A/p)[x] is an integral
domain (see the proof of [1.2.ii]).

On the other hand, the ideal (2) Ã Z is maximal, but the ideal 2Z[x] Ã Z[x] is not maximal, as the quotient
(Z/2Z)[x] is not a field. 2Z[x] is properly contained in the maximal ideal (2, x).

i) If M and N are flat A-modules, then so is M ⊗AN.

Let j : P ′� P be an injective A-linear map. Since N is flat, the map idN ⊗ j : N ⊗ P ′→ N ⊗ P is injective. Since
M is flat, the map idM ⊗ (idN ⊗ j ) : M ⊗ (N ⊗ P ′)→M ⊗ (N ⊗ P ) is injective. But by the associativity (2.14.ii) of ⊗A,
this is up to a canonical isomorphism the map idM⊗N ⊗ j induced from j by tensoring with M ⊗N , so M ⊗N is flat.

ii) If B is a flat A-algebra and N is a flat B-module, then N is flat as an A-module.

Let j : M ′� M be an injective A-module homomorphism, and let f : A→ B be the map making B an A-algebra.
Since B is a flat A-module, the map idB ⊗A j : B ⊗A M ′ → B ⊗A M is injective, and since N is flat as a B -module, the
map

idN ⊗B (idB ⊗A j ) : N ⊗B (B ⊗A M ′)→N ⊗B (B ⊗A M )

is injective as well. Composing the associativity isomorphisms of (2.15), we see

(idN ⊗B idB )⊗A j : (N ⊗B B)⊗A M ′→ (N ⊗B B)⊗A M

is injective, so by the isomorphism N ∼=N ⊗B B of (2.14.iv), so is idN ⊗A j : N ⊗A M ′→N ⊗A M .

Let 0→M ′→M →M ′′→ 0 be an exact sequence of A-modules. If M ′ and M ′′ are finitely generated, then so is M .

Without loss of generality view M ′→ M as an inclusion and M → M ′′ as a quotient mapping. Let the finite sets
{xi}i and {ȳ j } j respectively generate M ′ and M ′′. Lift the ȳ j to elements y j of M . The submodule of M generated by
the finite set {xi}i ∪{y j } j contains M ′ and has image M ′′, so by the bijection (p. 18) between submodules of M ′′ and
submodules of M containing M ′, it is M .

Let A be a ring, a an ideal contained in the Jacobson radical of A; let M be an A-module and N a finitely generated A-module, and
let u: M →N be a homomorphism. If the induced homomorphism M/aM →N/aN is surjective, then u is surjective.

As the induced homomorphism sends M �M/aM �N/aN, we must have u(M )+aN =N. Since N is finitely
generated and a⊆R, by the corollary (2.7) of Nakayama’s Lemma, u(M ) =N.
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Let A be a ring 6= 0. Show that Am ∼=An =⇒ m = n.

Letφ : Am→An be an isomorphism andmÃAa maximal ideal. If k =A/m is the quotient field, then idk⊗φ : k⊗
AAm → k ⊗AAn is an isomorphism by (2.18), taking N = k, M ′ = 0, M = Am , and M ′′ = An . But by (2.8), we have
k⊗AAn ∼= kn an n-dimensional k-vector space. Since dimension of vector spaces is an isomorphism invariant, m = n.

If φ : Am→An is surjective, then m ≥ n.

As above, tensoring with k =A/m shows that the k-linear map idk⊗φ : k m→ kn is surjective. But if m < n, the
m elements φ(ei ) cannot span kn , so m ≥ n.

If φ : Am→An is injective, is it always the case that m ≤ n?

It is indeed the case. Some poached solutions follow.10

i)11 This solution is simplest and uses results already proven in the book by Ch. 2. Letφ : Am→An be an A-linear
map with m > n; we prove it is not injective. Compose with the inclusion i : An =An×{0}m−n ,→An×Am−n =Am

on the first n coordinates to get an A-module endomorphism ψ= i ◦φ : Am → Am . If π : Am → A is the projection
on the last coordinate, we have π ◦ψ= 0. Now by (2.4), ψ satisfies an equation

ψn + a1ψ
n−1+ · · ·+ an idAm = 0

for some a j ∈A. Assume n is minimal such this happens. Takingπ of both sides, we see an = 0. Now asψ is A-linear,
we haveψ◦(ψn−1+a1ψ

n−2+ · · ·+an−1 idAm ) = 0. Since n was minimal, the mapψn−1+a1ψ
n−2+ · · ·+an−1 idAm 6= 0,

so its image M is not 0, yet ψ(M ) = 0, so ψ (and hence φ) is not injective.

ii)12 The other proof feasibly accessible using knowledge available so far uses some linear algebra, generalized to
the context of free modules over a commutative ring A. Given a square matrix N of rank n with entries ai j ∈ A,
the determinant detA is the element of A given by

∑

σ (sgnσ)
∏n

i=1 ai ,σ(i) where σ ranges over all n! permutations
of {1, . . . , n} and sgnσ is the parity of the permutation, which is ±1 depending as σ is even or odd. From this
formula it follows that if two rows of N are identical, the determinant is 0. Note that there are n2 square matrices
Ni j of rank n − 1 given by deleting the entries in the i th row and j th column. The (i , j )-cofactor of N is given by
ci j = (−1)i+ j detNi j ∈ A. The determinant of N can be calculated recursively by the cofactor expansion detN =
∑n

i=1 ai j ci j for fixed j or
∑n

j=1 ai j ci j for fixed i . The adjugate Adj(N ) = (bi j ) of N is the n× n matrix with entries
bi j = c j i the cofactors of N . The (i , j ) entry of N ·Adj(N ) is

∑n
k=1 ai k ck j =

∑

k ai k b j k . For i = j , the cofactor
expansion of the determinant shows this number is detN . For i 6= j this expression for the entry is, up to a sign, the
cofactor expansion, along the i th row, of the determinant of the matrix





























a11 · · · a1n
...

. . .
...

a j 1 · · · a j n
...

. . .
...

a j 1 · · · a j n
...

. . .
...

an1 · · · ann





























,

whose i thand j th rows are equal; and so the entry is 0. Thus N ·Adj(N ) = det(N ) · In is the scalar product of detN
and the n× n identity matrix.

Note that it suffices to prove an A-module homomorphismφ : Am→An cannot be injective for m = n+1, since
if n ≤ m− 1 we could compose with the inclusion An ,→ Am−1 to transform an injection Am � An to an injection
Am � Am−1. If ei (i = 1, . . . , n+ 1) is the standard basis for An+1 and f j ( j = 1, . . . , n) is the standard basis for An ,

10 Several solutions are up at http://mathoverflow.net/questions/136/atiyah-macdonald-exercise-2-11/2622. I was unable to
find a solution myself, at least before giving up and searching online.

11 Balazs Strenner
12 Robin Chapman
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then φ(ei ) =
∑n

j=1 a j i f j for some a j i ∈A, and φ is represented by the matrix

M =







a11 · · · a1, n+1
...

. . .
...

an, 1 · · · an, n+1






,

so φ is injective just if there is no nonzero vector v = (b1, . . . , bn+1)
> ∈ An+1 such that Mv = 0. Now let Mi be the

n× n matrix obtained from M by deleting the i th column and let v have components bi = (−1)i det Mi . Then the
j th component of Mv is

∑n+1
i=1 (−1)i a j i det Mi . But this is (−1) j times the cofactor expansion along the j th row of the

determinant of the (n+ 1)× (n+ 1)matrix






















a11 · · · a1, n+1
...

. . .
...

a j 1 · · · a j , n+1
a j 1 · · · a j , n+1
...

. . .
...

an1 · · · an, n+1























,

which is zero because the j th row is repeated, so Mv = 0.
Now if some det Mi is nonzero, we have achieved our goal of finding a nonzero v ∈ kerφ. Otherwise, det Mn+1 =

0. If Mn+1 has a nonzero vector v ′ = (b1, . . . , bn)
> in its kernel, then v = (b1, . . . , bn , 0)> is a nonzero vector in the

kernel of M . It then falls to us to show that if a square matrix N of rank n has determinant 0, it has nontrivial kernel.
Let r < n be the rank of the largest square submatrix (obtained from N by deleting rows and columns) with nonzero
determinant; by shuffling rows, we may assume that r× r occurs in the upper left of N . Let R be the (r+1)×(r+1)
matrix on the upper left of N containing it; since det R 6= 0 by the maximality of r , taking the cofactor expansion
along the first column of R shows that the first column v ′′ of Adj(R) has some nonzero entry. Now Rv ′′ = 0, since
R ·Adj(R) = det(R) · Ir+1 = 0. If we let v ′ be v ′′ with n− r zeros added at the end, then as the determinant of N is
zero, the rest of the rows of N are linear combinations of rows of R, so N v ′ = 0.

iii)13 Abstracting from the last proof at a rather high level is the following. It requires the notion of exterior
product:

∧n
A M =

�
⊗n

A M
�

/N , where
⊗n

A M is the n-fold tensor product M ⊗A · · · ⊗AM and N is the submodule
generated by all elements (· · · ⊗ x ⊗ y ⊗ · · · ) + (· · · ⊗ y ⊗ x ⊗ · · · ). The image of x ⊗ · · · ⊗ y is denoted by x ∧ · · · ∧ y,
and we have (by fiat) the equalities x1 ∧ · · · ∧ xn = (sgnσ)xσ(1) ∧ · · · ∧ xσ(n), where σ is a permutation of {1, . . . , n}
and sgnσ its parity. We then have a theorem:14

a subset {u1, . . . , um} of M =An is linearly independent ⇐⇒ ∀a ∈A [a · (u1 ∧ · · · ∧ um) = 0 =⇒ a = 0],

where u1 ∧ · · · ∧ um ∈
∧n

A M . This proves the result because for m > n we have
∧m

A (A
n) = 0.

The remaining proofs use material developed later in the book.
iv)15 Letφ : Am�An be an injective A-module homomorphism represented by the matrix M . Let B =Z[ . . . , ai j , . . .]

be the subring of A generated by all the entries of the matrix M ; since Z is Noetherian, by (7.5) (the Hilbert Basis
Theorem) and (7.1) (quotient preserves a.c.c.), B is a Noetherian ring; and φ restricts to an injective linear map
ψ : B m � B n . Note that B n , by (6.4), is Noetherian. If we assume m > n we can derive a contradiction. Write
B m = M ⊕ N with M ∼= B n and N ∼= B m−n . Then we have isomorphic images M1 and N1 of M , N in M , and
isomorphic images M2, N2 in M1, and isomorphic images M3, N3 in M2, etc. This yields an infinite ascending chain

N1 (N1⊕N2 (N1⊕N2⊕N3 ( · · · ,
contradicting the ascending chain condition.

v)16 Continue with the Noetherian ring B of iv). By [1.8], B has a minimal prime ideal p. By p. 38 the localization
C = Bp has only one prime ideal q= pC . By (3.3) (localization is exact), the induced map ψp : C m→C n is injective

13 Pete L. Clark, via Tsit Yuen Lam’s Lectures on Rings and Modules, pp. 15–16, via Nicolas Bourbaki’s Algebra
14 Nicolas Bourbaki, Algebra, Chapter III, §7.9, Prop. 12, page 519
15 from Tsit Yuen Lam’s Lectures on Rings and Modules, p. 14, and referred by Pete L. Clark
16 Georges Elencwajg
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as well. By (7.3) (localization preserves a.c.c.), C is Noetherian, and since it has just one prime ideal, it has (Krull)
dimension (p. 90) zero. By (8.5), C is Artinian as well, so by (6.8) it has a finite composition series as a C -module. By
(6.7), the length of this composition series is independent of the series chosen, so C has a well defined finite length
l (C )≥ 1. Now let us consider the lengths of C m and C n . (6.9) says the length of a module is an additive function, so
using the natural exact sequences 0→C →C n+1→C n → 0, we have l (C n) = n · l (C ) by induction. We also have,
by assumption, an exact sequence

0→C m ψp−→C n→ coker(ψp)→ 0,

so n · l (C ) = m · l (C )+ l
�

coker(ψp)
�

, and thus m ≤ n.
vi)17 Finally, there is another matrix-theoretic proof, involving localization.φ : An+1→An is injective just if each

of its localizations is injective, by (3.9). By [1.8], A has a minimal prime ideal p, and by [1.10], q= pAp is the nilradical
in the localization B = Ap, and all other elements of B are units. We claim any finite set of elements in q is jointly
annihilated by some nonzero element of q. For the base case, if 0 6= x ∈ q and r > 0 is minimal such that x r = 0,
then x r−1 ∈ q is a nonzero element annihilating x. Let 0 6= y ∈Ann(S) for a finite set S ⊆ q, and let z ∈ q\{0}. There
is r > 0 such that z r = 0, and so there is a minimal s ∈ [1, r ] such that y z s = 0. Then 0 6= y z s−1 ∈ Ann

�

S ∪ {z}
�

.
This lemma essentially allows us to use Gaussian elimination.

Let M = [a j i ] be the matrix of the B -module homomorphism ψ= φp : B n+1→ B n . The columns represent the
imagesψ(ei ), which we are linearly independent just ifψ is injective. Now if there is some linear dependency among
the columns, then adding a multiple of one column to another preserves the existence of the dependency. Since
the operation of adding a multiple of one column to another is invertible (subtract a multiple of the column), this
column operation also reflects dependence, so the columns of the altered matrix are independent just if the columns
of the original are. Clearly the same holds for the operations of multiplying all the entries of a column by a unit,
swapping rows, and swapping columns.

If any column contains no unit, then by the claim above, there is a nonzero a annihilating that column, and the
vector (0 · · · a · · · 0)> is killed by M , contradicting injectivity of ψ. Thus if ψ is injective all columns contain some
unit. If the first column contains a unit, we may shuffle rows so that a11 is a unit, and multiplying the first column
by a−1

11 we may assume a11 = 1. Subtracting multiples of this first column from the others we may clear the rest of
the first row. If the second column contains a unit, by swapping rows we may assume it is a22. Multiplying by a unit,
we can assume a22 = 1, and subtracting multiples of the second column from the other columns, we may clear the
rest of the second row.

Carrying on in this fashion, we either come upon a column containing no unit or transform the matrix to the
form











1 0 · · · 0 0
0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0











,

contradicting injectivity.
Note there exist abelian groups G isomorphic to Gn for n = 1, 2, . . . , ℵ0. Let G =

∏

j∈NH j be the direct prod-
uct of infinitely many copies H j of some abelian group H . Since N is infinite, there are for each n ∈ N bijections
φn : {1, . . . , n} ×N↔ N, and there is a bijection φω : N×N↔ N. These yield, for n ∈ N∪ {ℵ0}, group isomor-
phisms ψn : Gn ∼−→ G by letting ψ(x)φn (i , j ) = (xi ) j , where xi ∈ G =

∏

NH , so (xi ) j ∈ H . This shows that if we
weaken the definition of a ring to that of a “rng” (“ring without identity”: 〈A, ·〉 is only required to be a semigroup,
not a monoid), the proposition doesn’t hold. For it is possible to have a nonzero rng whose product is identically
zero: any additive abelian group G gives rise to a rng with trivial multiplication. It is then legitimate to define a
G-module structure on another abelian group M by g ·m = 0.

Let M be a finitely generated A-module and φ : M →An a surjective homomorphism. Show that ker(φ) is finitely generated.

Lemma.* Let A be a ring and M and N be A-modules. If there exist homomorphisms s : N →M and r : M →N such
that r ◦ s = idN , then M ∼=N ⊕ (coker s)∼=N ⊕ (ker r).

Define the map κ : M →N ⊕ (coker s) by x 7→



r (x), x̄
�

. For injectivity, suppose x ∈ kerκ. Then x̄ = 0, so there
is y ∈ N such that x = s(y), and 0 = r (x) = rs(y) = y, so x = 0. For surjectivity, let y ∈ N and x̄ ∈ coker s be

17 Karl Dahlke, http://mathreference.com/mod-pit,basec.html#embed
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arbitrary, and let x ∈M be some lift of x̄. If z = x + s
�

y − r (x)
�

, then z̄ = x̄, while r (z) = r (x)+ rs(y)− rsr (x) =
r (x)+ y − r (x) = y.

An isomorphism M →N ⊕ker r is given by λ= 〈r, idM −sr 〉. Indeed, r (idM −sr ) = r − rsr = 0; and x ∈ kerλ
implies r (x) = 0 and x = x − sr (x) = 0; and for any y ∈ N and z ∈ ker r , if we let w = s(y) + z, then λ(w) =



rs(y)+ r (z), s(y)+ z − sr s (y)− sr (z)
�

= 〈y, s(y)+ z − s(y)〉= 〈y, z〉.

Now we will show kerφ is a quotient (actually a summand) of M ; hence the images of a finite set of generators
for M will generate kerφ. Let e1, . . . , en be a basis for An and pick any elements χ (ei ) ∈ φ−1(ei ); this extends to a
homomorphism χ : An → M such that φχ = idAn . Define ψ = idM −χφ: it takes M → kerφ since φχφ = φ. For
x ∈ kerφ we have ψ(x) = x, so ψ is surjective. In fact, writing ι : kerφ ,→ M for the inclusion, φ ◦ ι = idkerφ, so
kerφ is a summand, with coker ι=M/kerφ∼= imφ=An as the other summand.

Let f : A→ B be a ring homomorphism, and let N be a B-module. Regarding N as an A-module by restriction of scalars, form
the B-module NB = B⊗AN. Show that the homomorphism g : N →NB which maps y to 1⊗ y is injective and that g (N )
is a direct summand of NB .

The quotient map NB = B ⊗AN � B ⊗B N is also a B -module homomorphism, since b (b ′ ⊗ y) = bb ′ ⊗ y 7→
bb ′⊗ y = b (b ′⊗ y), and composing with the isomorphism (2.14.iv*) gives a B -module homomorphism h : NB →N
taking b ⊗ y 7→ by. Now hg = idN , so by the lemma in (2.12*), g injects N as a summand of NB .

Direct limits
A partially ordered set I is said to be a directed set if for each pair i , j in I there exists k ∈ I such that i ≤ k and j ≤ k.

Let A be a ring, let I be a directed set and let (Mi )i∈I be a family of A-modules indexed by I . For each pair i , j in I
such that i ≤ j , let µi j : Mi →M j be an A-homomorphism, and suppose that the following axioms are satisfied:

(1) µi i is the identity mapping of Mi , for all i ∈ I ;
(2) µi k =µ j k ◦µi j whenever i ≤ j ≤ k.

Then the modules Mi and homomorphisms µi j are said to form a direct system M= (Mi , µi j ) over the directed set I .
We shall construct an A-module M called the direct limit of the direct system M. Let C be the direct sum of the Mi ,

and identify each module Mi with its canonical image in C . Let D be the submodule of C generated by all elements of the
form xi −µi j (xi ) where i ≤ j and xi ∈Mi . Let M =C/D, let µ : C →M be the projection, and let µi be the restriction
of µ to Mi .

The module M , or more correctly the pair consisting of M and the family of homomorphismsµi : Mi →M , is called the
direct limit of the direct system M, and is written lim−→Mi . From the construction it is clear that µi =µ j ◦µi j whenever
i ≤ j .

In case it wasn’t clear, let i ≤ j and xi ∈ Mi : then xi −µi j (xi ) ∈ D = ker(µ), so µi (xi ) = µ(xi ) = µ
�

µi j (xi )
�

=
µ j (µi j (xi )).

In the situation of Exercise 14, show that every element of M can be written in the form µi (xi ) for some i ∈ I and some xi ∈Mi .
[FIX]
If (I , ≤) is directed and S ⊆ I is finite, then by induction there is a j ∈ I such that for each i ∈ S we have i ≤ j .

Surely this is the case if j = i ∈ {i} = S, and if it is the case for a given S and we add a new element in+1 to S, then
there is an element k ≥ in+1, j , and so k ≥ every element of S ∪{in+1}.

Let x ∈ M ; then it is the image under the quotient map C → C/D = M of some sum
∑

i∈S xi ∈ C =
⊕

i∈I Mi ,
where S ⊆ I is finite by definition. Pick a j ∈ I such that for all i ∈ S we have j ≥ i . The elements µi j (xi )− xi ∈D ,
so ex j =

∑

i∈S µi j (xi )≡
∑

i∈S xi (mod D) and µ j (ex j ) =µ(ex j ) = x.

Show also that if µi (xi ) = 0 then there exists j ≥ i such that µi j (xi ) = 0 in M j .
We first assemble some auxiliary information about the module D . First, given any generator (id−µi j )(xi ) of

D , multiplying by a ∈ A we get (id−µi j )(axi ), since the µi j are A-module homomorphisms. Similarly, given gen-
erators (id−µi j )(xi ) and (id−µi j )(yi ), their sum is a generator (id−µi j )(xi + yi ). Thus, in considering expressions
∑n

k=1 ak

�

xik
−µik jk

(xik
)
�

it suffices to assume each ak = 1 and each pair (ik , jk ) only occurs once.
Now suppose that xi ∈Mi is such that µi (xi ) =µ(xi ) = 0. Then xi ∈Mi ∩D , so xi can be written as a finite sum

xi =
∑

( j ,k)∈T

�

y j −µ j k (yk )
�

=
∑

j∈S

z j (2.5)
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for some finite set S ⊆ I , some set T ⊆ S2 of pairs ( j , k)with j ≤ k, and some elements y j , z j ∈M j . Here the middle
sum expresses xi ∈ D in terms of generators for D , and the right sum breaks the middle sum into components in
M j . Since Eq. 2.5 takes place in the direct sum, we must have cancellation in all components but the i th, so zi = xi ,
and for j 6= i we have z j = 0. Let ` ∈ I be an element such that ` ≥ k for each k ∈ S. Then using the equations
µ j` =µk` ◦µ j k ,

µi`(xi ) =
∑

j∈S

µ j`(z j ) =
∑

( j , k)∈T

�

µ j`(y j )−µk`

�

µ j k (y j )
�

�

= 0.

Show that the direct limit is characterized (up to isomorphism) by the following property. Let N be an A-module and for each
i ∈ I let αi : Mi →N be an A-module homomorphism such that αi = α j ◦µi j whenever i ≤ j . Then there exists a unique
homomorphism α : M →N such that αi = α ◦µi for all i ∈ I .

I think we should add the requirement on (M , µi , µi j ) that we have µi =µ j ◦µi j for all i ≤ j ∈ I .
First we show that M = lim−→Mi satisfies this property. We showed µi = µ j ◦ µi j in [2.14]. Given arbitrary

A-module homomorphisms αi : Mi → N , we have by the universal property of direct sums a unique induced ho-
momorphism eα : C =

⊕

i∈I Mi → N . For any xi ∈ Mi and j ≥ i , consider the generator xi −µi j (xi ) of D . By the
definition of eα and the compatibility condition on the αi we have

eα
�

xi −µi j (xi )
�

= αi (xi )−α j

�

µi j (xi )
�

= αi (xi )−αi (xi ) = 0,

so D ⊆ ker(eα) and eα induces an A-module homomorphism α : M =C/D→N . Moreover, by definition α
�

µi (xi )
�

=
eα(xi ) = αi (xi ).

Mi

µi j

��

µi=βi

  

µ′i=αi

##
M

γ
�� α // M ′

β
oo

M j

µ j=β j

??

µ′j=α j

<<

Now suppose that (M , µi : Mi →M ) and (M ′, µ′i : Mi →M ′) both satisfy the univer-
sal mapping property. Since (M ′, µ′i ) is a direct limit of (Mi , µi j ) we have by definition
that µ′i = µ

′
j ◦µi j . But then setting αi = µ

′
i in the universal property of (M , µi ) as a

direct limit, we get a unique homomorphism α : M → M ′ such that µ′i = αi = α ◦µi .
Symmetrically, we get a unique homomorphism β : M ′ → M such that µi = β ◦µ′i .
Now µi = β ◦µ′i = β ◦ α ◦µi : Mi → M for each i . Since µi = µ j ◦µi j , there exists a
unique homomorphism γ : M → M such that µi = γ ◦µi ; as both idM and β ◦α meet
the requirements for γ , by uniqueness, β ◦ α = idM . Symmetrically, α ◦β = idM ′ , so
α : M ↔M ′ : β are inverse isomorphisms.

Let (Mi )i∈I be a family of submodules of an A-module, such that for each pair of indices i , j in I there exists k ∈ I such that
Mi +M j ⊆Mk . Define i ≤ j to mean Mi ⊆M j and let µi j : Mi →M j be the embedding of Mi in M j . Show that

lim−→Mi =
∑

Mi =
⋃

Mi .

In particular, any A-module is the direct limit of its finitely generated submodules.
For each i we have Mi ⊆

∑

Mi , so
⋃

Mi ⊆
∑

Mi . On the other hand, if y =
∑

i∈I xi ∈
∑

Mi is any finite sum,
let S = {i ∈ I : xi 6= 0}, and let j ∈ I be ≥ each element of S; then

∑

i∈S Mi ⊆ M j , so y ∈ M j ⊆
⋃

i∈I Mi . Thus
∑

Mi =
⋃

Mi .
We show lim−→Mi

∼=
⋃

Mi by showing
⋃

Mi has the expected universal property ([2.16]). Let µi : Mi ,→
⋃

Mi be
the inclusion, and suppose we have αi : Mi → N such that αi = α j ◦µi j for i ≤ j . This is just the same as saying
that if Mi ⊆ M j we have α j |Mi

= αi , so that the αi are consistent on all intersections and thus their union defines a
unique function α =

⋃

αi :
⋃

Mi → N restricting to αi on each Mi ; that is αi = α ◦µi . Now α is A-linear because
its restriction to each Mi is, so

⋃

Mi satisfies the universal mapping property required of lim−→Mi .
It follows that an A-module M is the direct limit of its finitely generated submodules, for any x ∈ M is in the

finitely generated submodule Ax (so M is the union of its finitely generated submodules) and if N1, N2 ⊆ M are
finitely generated submodules, then both are contained in the finitely generated module N1+N2 ⊆M (so the finitely
generated submodules and inclusions form a direct system).
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Let M = (Mi , µi j ), N = (Ni , νi j ) be direct systems of A-modules over the same directed set. Let M , N be the direct limits and
µi : Mi →M , νi : Ni →N the associated homomorphisms.

M

φ

��

Mi

αi 44

µi j

//

φi

��

µi

77

M j

α j

��

φ j

��

µ j

>>

Ni

νi j //

νi
''

N j
ν j

  
N

A homomorphism Φ : M→ N is by definition a family of A-module homomorphisms
φi : Mi → Ni such that φ j ◦µi j = νi j ◦φi whenever i ≤ j . Show that Φ defines a unique
homomorphism φ= lim−→φi : M →N such that φ ◦µi = νi ◦φi for all i ∈ I .

Define αi : Mi →N by αi = νi ◦φi . Then if i ≤ j we have

α j ◦µi j = ν j ◦φ j ◦µi j = ν j ◦ νi j ◦φi = νi ◦φi = αi ,

so by the universal property of [2.16] there is a unique mapφ : M →N such thatφ◦µi =
αi = νi ◦φi for all i ∈ I .

A sequence of direct systems and homomorphisms

M→N→ P

is exact if the corresponding sequence of modules and module homomorphisms is exact for each i ∈ I . Show that the
sequence M →N → P of direct limits is then exact.

Let the components of Φ : M→N and Ψ : N→ P be φi : Mi →Ni and ψi : Ni → Pi ,
inducing φ : M → N and ψ : N → P , and let the maps in the direct systems M, N, P
be respectively µi j , νi j , πi j . To show ψ ◦ φ = 0, recall ([2.15]) that any element x ∈
M is of the form µi (xi ) for some xi ∈ Mi and some i ∈ I . By the assumed exactness,
(ψi ◦φi )(xi ) = 0. Then using the defining properties of x j and of φ and ψ ([2.18]),

(ψ ◦φ)(x) = (ψ ◦φ ◦µi )(xi ) = (ψ ◦ νi ◦φi )(xi ) = (πi ◦ψi ◦φi )(xi ) =πi (0) = 0.

xi
� φi //

_
µi

��

� ψi //
_

νi

��

0_

πi

��
x � φ // � ψ // φ

�

ψ(x)
�

Mi
φi //

µi

��

Ni
ψi //

νi
��

Pi

πi

��
M

φ // N � ψ // P

yi
� ψi //

_
νi j��

_
πi j
��

x j
� φ j //

_
µ j

��

νi j (yi )
� ψ j //

_
ν j

��

0_
π j
��

x � φ // y � ψ // 0

Ni
ψi //

νi j
��

Pi
πi j
��

M j

φ j //

µ j
��

N j

ψ j //

ν j
��

P j
π j
��

M
φ // N

ψ // P

On the other hand, suppose y ∈ ker(ψ). By [2.15], there are i ∈ I and yi ∈ Ni such
that y = νi (yi ), and by the defining property ([2.18]) of ψ we have 0 = ψ(y) = ψ

�

νi (yi )
�

=
πi

�

ψi (yi )
�

. By [2.15] there is j ≥ i such that 0=πi j

�

ψi (yi )
�

=ψ j

�

νi j (yi )
�

, where we use the
definition of Ψ being a homomorphism. Since we assumed the sequence of direct systems
is exact, it follows that there is x j ∈M j such thatφ j (x j ) = νi j (yi ). But then if x =µ j (x j )we
have

φ(x) =φ
�

µ j (x j )
�

= ν j

�

φ j (x j )
�

= ν j

�

νi j (yi )
�

= νi (yi ) = y,

using the definitions of x and φ, the assumed property of x j , the result of [2.14] for the
direct system N, and the assumed property of yi . Thus ker(ψ) ⊆ imφ and the sequence
M →N → P is exact.

Tensor products commute with direct limits
Keeping the same notation as in Exercise 14 let N be any A-module. Then (Mi⊗N , µi j⊗1) is a direct system; let P = lim−→(Mi⊗N )

be its direct limit. For each i ∈ I we have a homomorphismµi⊗1: Mi⊗N →M⊗N, hence by Exercise 16 homomorphism
ψ : P →M ⊗N. Show that ψ is an isomorphism so that

lim−→(Mi ⊗N )∼=
�

lim−→Mi

�

⊗N .

First we show the direct limit of (Mi ×N , µi j × idN ) is M ×N . Indeed, let αi : Mi ×N → Q be a collection of
A-linear maps such that for all i ≤ j we have αi = α j ◦ (µi j × idN ). For M ×N to satisfy the universal property
characterizing lim−→(Mi ×N ) ([2.16]), we want to define a unique α : M ×N →Q such that αi = α ◦ (µi × idN ). This
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forces us to attempt the definition α(µi (xi ), y) := αi (xi , y). Now α is defined on all of M ×N since by [2.15] each
element x ∈ M is µi (xi ) for some i ∈ I and xi ∈ Mi . To show it is well defined, suppose x = µi (xi ) = µ j (x j ). Then
there is some k ≥ i , j , and x =µk (µi k (xi )) =µk (µ j k (x j )) since µi =µk ◦µi k . Now as αi = α j ◦ (µi j × idN )we have

α(µi (xi ), y) = αi (xi , y) = αk (µi k (xi ), y) = αk (µ j k (x j ), y) = α j (x j , y) = α(µ j (x j ), y),

so α is well defined. The existence of a unique such α shows that
�

lim−→Mi

�

×N ∼= lim−→
�

Mi ×N
�

.
Letπi : Mi⊗N → P be the canonical map making P the direct limit, and for each i ∈ I let gi : Mi×N →Mi⊗N be

the canonical bilinear mapping. These gi form a homomorphism between the direct systems (Mi×N ) and (Mi⊗N ),
so by [2.18] they induce a unique homomorphism

g : M ×N ∼= lim−→
�

Mi ×N
�

→ lim−→
�

Mi ⊗N
�

= P

such that g ◦ (µi × idN ) = πi ◦ gi . We have g (x, y) = gi (xi , y), and each gi is A-bilinear, so since any element of
M ×N has a representative in some Mi ×N , g is A-bilinear as well. Thus g induces an A-module homomorphism
φ : M ⊗N → P such that

φ ◦ (µi ⊗ idN ) =πi (2.6)

for each i . Note on the other hand that
ψ ◦πi =µi ⊗ idN (2.7)

by the definition of ψ.
Now by [2.15], each element p ∈ P can be written asπi (pi ) for some pi ∈Mi⊗N . Since this module is generated

by elements xi ⊗ y, for xi ∈ Mi and y ∈ N , by linearity of ψ and φ we may assume pi = xi ⊗ y. We then have, by
[2.16], that

φ(ψ(p)) =φ(ψ(πi (pi )))
Eq. 2.7
= (φ ◦ (µi ⊗ idN ))(pi )

Eq. 2.6
= πi (pi ) = p.

Similarly, let x⊗ y be a generator of M ⊗N . Then by [2.15] there are i ∈ I and xi ∈Mi such that x⊗ y =µi (xi )⊗ y,
and

ψ(φ(x ⊗ y)) =ψ(φ[(µi ⊗ idN )(xi ⊗ y)])
Eq. 2.6
= ψ(πi (xi ⊗ y))

Eq. 2.7
= (µi ⊗ idN )(xi ⊗ y) = x ⊗ y.

Thus ψ and φ are inverse isomorphisms.

Let (Ai )i∈I be a family of rings indexed by a directed set I , and for each pair i ≤ j in I let αi j : Ai →Aj be a ring homomorphism,
satisfying conditions (1) and (2) of Exercise 14 Regarding each Ai as a Z-module we can then form the direct limit A=
lim−→Ai . Show that A inherits a ring structure from the Ai so that the mappings Ai →A are ring homomorphisms. The ring
A is the direct limit of the system (Ai , αi j ).

If A= 0 prove that Ai = 0 for some i ∈ I .
Let a, b ∈ A. By [2.15] there are i , j ∈ I and ai ∈ Ai , b j ∈ B j such that αi (ai ) = a and α j (b j ) = b . Now there is

k ∈ I such that k ≥ i , j , andαk (αi k (ai )) = αi (ai ) = a andαk (α j k (b j )) = α j (b j ) = b . Define ab = αk (αi k (ai )·α j k (b j )).
We have made three choices in this definition, i , j , and k. Fixing i , j , suppose we picked k ′ instead of k. There is
some l ∈ I with l ≥ k , k ′, and we have αk (αi k (ai ) · α j k (b j )) = (αl ◦ αk l )(αi k (ai ) · α j k (b j )) = αl (αi l (ai ) · α j l (b j )),
and symmetrically for k ′, so the definition is independent of the choice of k. Now suppose instead we choose a
representative b = α j ′(b j ′)with b j ′ ∈Aj ′ . Let k ≥ i , j , j ′. Consider c = α j k (b j )−α j ′k (b j ′). We chose these elements
so that αk (c) = 0, so by [2.15] there is l ≥ k such that αk l (c) = α j l (b j )−α j ′ l (b j ′) = 0, or α j l (b j ) = α j ′ l (b j ′). Taking
k = l in the definition of ab , we see that the definition is independent of j . Symmetrically, it is independent of i .
Thus we have a well defined multiplication on A.

Now by definition, if ai , bi ∈ Ai we have αi (ai )αi (bi ) = αi (αi i (ai )αi i (bi )) = αi (ai bi ), so the αi preserve multi-
plication. To show they are ring homomorphisms, we just need to show αi (1) = 1 in A. But for any b ∈ A, we can
write it as α j (b j ) for some b j ∈Aj , and pick k ≥ i , j , and then

αi (1)b = αk (αi k (1)α j k (b j )) = αk (α j k (b j )) = α j (b j ) = b

since αi k (1) = 1, each αi k being a ring homomorphism. Thus each αi is a ring homomorphism.
To verify the ring axioms for A, we just need to note that for any three elements a, b , c ∈ A the elements

ab , ba, a(b c), (ab )c , ab +ac , a(b + c) are calculated via representatives in some ring Ak , then sent into A via αk ;
since they hold in each Ak , they hold in A.
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We can in fact prove A = 0 ⇐⇒ ∃i ∈ I (Ai = 0). Assume A = 0; then 1 = 0 in A. Now since αi : Ai → A is
a ring homomorphism, αi (1) = 1. By [2.15], there is j ≥ i such that αi j (1) = 0. But the αi j are defined to be ring
homomorphisms, in particular sending 1 to 1. Thus 1= 0 in Aj , so Aj = 0.

On the other hand, if some Ai = 0, then for all j ≥ i we have 1= αi j (1) = αi j (0) = 0, so Aj = 0 for j ≥ i . Now
any element a ∈ A can be written as αk (ak ) for some k and ak ∈ Ak , by [2.15]. Find j ≥ i , k; then a = αk (ak ) =
α j (αk j (ak )) = α j (0) = 0, so A= 0.

Let (Ai , αi j ) be a direct system of rings and let Ni be the nilradical of Ai . Show that lim−→Ni is the nilradical of lim−→Ai .
If each Ai is an integral domain, then lim−→Ai is an integral domain.
Let A= lim−→Ai and suppose a is in its nilradical. Then there is n > 0 such that an = 0. Let i ∈ I and ai ∈ Ai be

such that αi (ai ) = a. Then 0 = an = αi (ai )
n = αi (a

n
i ), so by [2.15] there is j ≥ i such that αi j (a

n
i ) = αi j (ai )

n = 0.
Write a′ = αi j (ai ) ∈ Aj . Then a′ ∈ N j and α j (a

′) = α j (αi j (ai )) = αi (ai ) = a, so a ∈ lim−→Ni . On the other hand, if
an

j = 0, then surely α j (a j )
n = 0, so lim−→N j is contained in the nilradical of A.

Similarly, suppose A is not an integral domain. Then there exist nonzero a, b ∈ A such that ab = 0. Since
a, b 6= 0, by [2.15], no representative of a or b can be zero. Let αi (ai ) = a and α j (b j ) = b , and find k ≥ i , j . Then
ab = µk (αi k (ai )α j k (b j )) = 0, so by [2.15] there is l ≥ k such that αl k (αi k (ai )α j k (b j )) = αi l (ai )α j l (b j ) = 0. But
a = αl (αi l (ai )) and b = αl (α j l (b j )) are nonzero, so αi l (ai ) and α j l (b j ) are nonzero, hence zero-divisors in Al .

Let (Bλ)λ∈Λ be a family of A-algebras. For each finite subset of Λ let BJ denote the tensor product (over A) of the Bλ for λ ∈ J . If J ′

is another finite subset of Λ and J ⊆ J ′, there is a canonical A-algebra homomorphism BJ → BJ ′ . Let B denote the direct
limit of the rings BJ as J runs through all finite subsets of Λ. The ring B has a natural A-algebra structure for which the
homomorphisms BJ → B are A-algebra homomorphisms. The A-algebra B is the tensor product of the family (Bλ)λ∈Λ.

We should first note that the map given on p. 31 making the tensor product of A-algebras an A-algebra is a
misprint. If we have ring homomorphisms f : A→ B and g : A→C , and define h ′ : A→ B⊗AC by h ′(a) = f (a)⊗g (a),
then h ′(1) = 1⊗ 1 but

h ′(a) = f (a)⊗ g (a) = a2(1⊗ 1) 6= a(1⊗ 1) = ah ′(1)

in general. The proper definition is instead h : a 7→ f (a)⊗ 1= 1⊗ g (a) = a(1⊗ 1).
If J = {λ1, . . . , λm} and J ′ = J ∪ {λm+1, . . . , λn}, the canonical homomorphism BJ → BJ ′ is given by bλ1

⊗ · · · ⊗
bλm
7→ bλ1

⊗· · ·⊗bλm
⊗1⊗· · ·⊗1. It is obviously an A-algebra homomorphism. LetβJ : BJ → B denote the canonical

map associated to the direct limit. The A-algebra structure on B can be given as follows: let b ∈ B and a ∈ A. There
are a finite J ⊆ Λ and an element bJ ∈ BJ such that b = βJ (bJ ); define ab = βJ (abJ ). Since the maps BJ → BJ ′

are A-algebra homomorphisms, this definition is independent of the choice of J . We saw in [2.21] that βJ is a ring
homomorphism, and by the definition of scalar multiplication in B it is also an A-algebra homomorphism.

Flatness and Tor
In these Exercises it will be assumed that the reader is familiar with the definition and basic properties of the Tor functor.

If M is an A-module, the following are equivalent:
i) M is flat;
ii) TorA

n (M , N ) = 0 for all n > 0 and all A-modules N ;
iii) TorA

1 (M , N ) = 0 for all A-modules N .
i) =⇒ ii): Recall that TorA

n (M , −) are the derived functors of −⊗AM . This means that if we let

P : · · · → P2→ P1→ P0→N → 0

be a projective resolution of N , and tensor with M to get

P ⊗AM : · · · → P2⊗AM → P1⊗AM → P0⊗AM → 0

(lopping off the M ⊗N term so that we get H0 =M ⊗N ), then the homology groups Hn(P ⊗AM ) = ker(Pn ⊗M →
Pn−1⊗M )/ im(Pn+1⊗M → Pn ⊗M ) are by definition the groups TorA

n (M , N ). Since M is flat, the sequence P ⊗AM
is exact except at P0⊗AM , so the homology groups TorA

n (M , N ) = 0 for n > 0.
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ii) =⇒ iii): 1> 0.
iii) =⇒ i): Let 0 → N ′ → N → N ′′ → 0 be a short exact sequence of A-module homomorphisms. Since the

TorA
n (M , −) are derived functors, they fit into a Tor exact sequence including TorA

1 (M , N ′′)→ M ⊗AN ′→ M ⊗AN .
As by assumption TorA

1 (M , −) = 0, we get a short exact sequence 0→M ⊗AN ′→M ⊗AN ; as the injection N ′�N
was arbitrary, M is flat by (2.19).

Let 0→N ′→N →N ′′→ 0 be an exact sequence, with N ′′ flat. Then N ′ is flat ⇐⇒ N is flat.
The book suggests we use the Tor exact sequence. It seems that this requires us to use the additional fact (not a

priori obvious) that TorA
n (M , N ) ∼= TorA

n (N , M ) for all n ≥ 0 and A-modules M , N . Making this assumption, let M
be an arbitrary A-module; we have an exact sequence

0 0

· · · // TorA
2 (M ,N ′′) // TorA

1 (M ,N ′) // TorA
1 (M ,N ) // TorA

1 (M ,N ′′) // M ⊗AN ′ // · · · .
The criterion [2.24.iii] and the isomorphism TorA

1 (N
′, M )∼=TorA

1 (N , M )mean N is flat just if N ′ is.
We now prove that TorA

n (M , N )∼=TorA
n (N , M ).18

First, a lemma: if F is a free A-module, then TorA
1 (F , −) = 0 and TorA

1 (−, F ) = 0. Since F is flat by [2.4], by [2.24]
we have TorA

1 (F , −) = 0. As for TorA
1 (−, F ),19 consider the free resolution P2 = 0→ P1 = 0→ P0 = F → F → 0 of

F ; tensoring with any A-module M we get a sequence 0→ P1⊗M = 0→ F ⊗M → 0, whose homology TorA
1 (M , F )

at P1⊗M = 0 is 0.
Now let M and N be arbitrary A-modules. We can write

them as quotients of free A-modules F , G, so that we have exact
sequences D : 0→ M ′ → F → M → 0 and E : 0→ N ′ → G →
N → 0. By [2.4], F and G are flat, so the sequences 0→ M ′ ⊗
G → F ⊗ G → M ⊗ G → 0 and 0 → F ⊗ N ′ → F ⊗ G →
F ⊗N → 0 are exact. The Tor exact sequence for M ⊗ E is 0 =
TorA

1 (M , G)→TorA
1 (M , N )→M⊗N ′→M⊗G→M⊗N → 0.

Tensoring E with D , adding in the Tor exact sequence, and using
(2.18), we have the commutative diagram on the right with exact
rows and columns. The Snake Lemma, applied to the middle two
rows, gives an exact sequence 0 → TorA

1 (M , N ) → M ′ ⊗N →
F ⊗N . On the other hand, the Tor exact sequence for N ⊗ D
and commutativity of the tensor product (2.14.i) give an exact
sequence

TorA
1 (M , G)

��

0

0 //

��

TorA
1 (M , N )

��

//

M ′⊗N ′ //

��

F ⊗N ′ //

��

M ⊗N ′ //

��

0

0 // M ′⊗G //

��

F ⊗G //

��

M ⊗G //

��

0

M ′⊗N //

��

F ⊗N //

��

M ⊗N //

��

0

0 0 0

0=TorA
1 (N , F )→TorA

1 (N , M )�M ′⊗N → F ⊗N .

Since TorA
1 (M , N ) and TorA

1 (N , M ) both embed as the kernel of M ′⊗N → F⊗N , we see TorA
1 (M , N )∼=TorA

1 (N , M ).

Let N be an A-module. Then N is flat ⇐⇒ Tor1(A/a, N ) = 0 for all finitely generated ideals a in A.
The implication =⇒ follows from [2.24].
For⇐=, assume Tor1(A/a, N ) = 0 for all finitely generated ideals a in A. Then given E : 0→ a→A→A/a→ 0,

the Tor sequence of E ⊗N shows that a⊗N →A⊗N is injective. Now let b be an arbitrary ideal of A; we want to
show b⊗N → A⊗N injective. Inclusions ai ,→ a j of finitely generated A-submodules (ideals) in b induce maps of
exact sequences

0 // ai ⊗N �
� //

� _

��

A⊗N // // A/ai ⊗N //

����

0

0 // a j ⊗N �
� // A⊗N // // A/a j ⊗N // 0,

which piece together to give homomorphisms between the exact systems (ai⊗N ), (A⊗N ), and (A/ai⊗N ) for finitely
generated ideals ai ⊆ b of A. By [2.17], the direct limit lim−→ai = b. Obviously lim−→A= A, and similarly, lim−→A/ai

∼=
A/b.20 By [2.20]we have lim−→(ai⊗N )∼= b⊗N and lim−→(A⊗N ) =A⊗N ∼=N , and lim−→(A/ai⊗N )∼=A/b⊗N ∼=N/bN

18 http://uni.edu/ajur/v3n3/Banerjee%20pp%207-14.pdf
19 http://math.uchicago.edu/~may/MISC/TorExt.pdf
20 To see this we show that A/b has the universal property ([2.16]) of the direct system (A/ai , πi j ), writingπi j : A/ai �A/a j andπi : A/ai �

A/b. Set π0i : A� A/ai . Evidently π j ◦πi j = πi : A/ai � A/a j � A/b. Let αi : A/ai → P be such that α j ◦πi j = αi . If we want to define
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by [2.2]. Then [2.19] states that direct limit is an exact functor, so the direct limit 0→ b⊗N →A⊗N →N/bN → 0
is also exact, and thus b⊗N → A⊗N is injective. Writing E ′ : 0 → b → A→ A/b → 0 and looking at the Tor
sequence of E ′⊗N , the injectivity of this map shows Tor1(A/b, N ) = 0.

Now let M be a finitely generated module, generated by say x1, . . . , xn , and for i = 0, . . . , n let Mi =
∑i

j=0 Ax j .
Then each Mi/Mi−1, i = 1, . . . n is generated by one element x̄i , so the map fi : A→ Mi/Mi+1 given by a 7→ ax̄i is a
surjective A-module homomorphism, and by the second display of p. 19 (the first isomorphism theorem), if we write
ai = ker( fi ) we have A/ai

∼= Mi/Mi−1. Consider the short exact sequences Ei : 0→ Mi−1 → Mi → A/ai → 0 given
by these isomorphisms. Suppose inductively that Tor1(Mi−1, N ) = 0; this is trivial for i = 1 and M0 = 0 = A/(1).
The Tor sequence of Ei ⊗N gives, in part, 0=Tor1(Mi−1, N )→Tor1(Mi , N )→Tor1(A/ai , N ) = 0, so by exactness
Tor1(Mi , N ) = 0. By induction, Tor1(M , N ) = 0 for all finitely generated modules.

Now let 0→ K → P be any injection of finitely generated A-modules. Complete this to a short exact sequence
E ′′ : 0 → K → P → K/P → 0, where K/P is finitely generated as well. The Tor sequence of E ′′ ⊗N gives 0 =
Tor(K/P, N )→K ⊗N → P ⊗N , so K ⊗N → P ⊗N is injective. Since K� P was an arbitrary injection of finitely
generated A-modules, by criterion iv) of (2.19), N is flat.

A ring A is absolutely flat if every A-module is flat. Prove that the following are equivalent:
i) A is absolutely flat;
ii) every principal ideal is idempotent;
iii) every finitely generated ideal is a direct summand of A.

i) =⇒ ii): Let a Ã A. The inclusion a ,→ A is of course injective; by assumption, the module A/a is flat, so the
induced map a⊗AA/a→ A⊗AA/a

∼−→ A/a is injective, where the isomorphism is by the absorption law (2.14.iv).
But this composition is the zero map, for it takes a⊗ 1̄ 7→ a⊗ 1̄ 7→ ā = 0̄, and thus the module a⊗AA/a = 0. Since
we have a short exact sequence 0 → a → A→ A/a → 0, tensoring with a, assumed flat, gives by (2.19), an exact
sequence 0= a⊗Aa→A⊗Aa→ 0= a⊗AA/a, showing the composition a⊗Aa→A⊗Aa→ a, using (2.14.iv), is an
isomorphism. But this sends a⊗ a′ 7→ a⊗ a′ 7→ aa′, so since this map is surjective, every element of a is a finite sum
of elements aa′ with a, a′ ∈ a and thus a= a2. In particular, for any x ∈A we have (x) = (x)2 idempotent.

ii) =⇒ iii): If every finitely generated ideal a is generated by some idempotent e , then by the proof of iii) =⇒
ii) in [1.22], we have a decomposition A∼= (e)⊕ (1− e). Obviously this decomposition is only interesting if e 6= 0, 1.

It remains to show each finitely generated ideal is generated by a single idempotent. For a principal ideal (x),
by assumption x ∈ (x2), so we may write x = ax2 for some a ∈ A. Multiplying both sides by a, we have ax =
a2x2 = (ax)2, so e = ax is idempotent. Since e = ax ∈ (x) and x = ax2 = (ax)x = e x ∈ (e), we have (x) =
(e). Now any finitely generated ideal a = (x1, . . . , xn) = (e1, . . . , en) is generated by idempotents, where ei is an
idempotent generating (xi ). As in [1.11.iii], we show every ideal finitely generated by idempotents is generated by
a single element. This is trivial for n = 1, so inductively suppose it holds for all ideals with n generators, and let
a= (x1, . . . , xn , y) be an ideal generated by n+ 1 elements. Let e be an idempotent generating (x1, . . . , xn) and f an
idempotent generating (y), so that a = (e , f ). If we let z = e + f − e f , then we have e z = e2 + e f − e2 f = e and
f z = f e + f 2 − f e f = f , so a = (e , f ) = (z) is principal, and there is thus an associated idempotent g such that
(g ) = (z) = a.

iii) =⇒ i): Let N be an arbitrary A-module. To show it is flat, by [2.26] it suffices to show that TorA
1 (A/a, N ) = 0

for all finitely generated ideals a ∈ A. By assumption, each of these is a direct summand, so A ∼= a⊕A/a, and by
(2.14.iv,iii) we have isomorphisms N ∼= A⊗N ∼= (a⊗N )⊕ (A/a⊗N ), so the inclusion a ,→ A induces an injection
a⊗N � A⊗N . Now the Tor exact sequence for 0→ a→ A→ A/a→ 0 includes the fragment 0= TorA

1 (A, N )→
TorA

1 (A/a, N )→ a⊗N →A⊗N , so TorA
1 (A/a, N ) is isomorphic to the kernel of a⊗N �A⊗N , which is zero.

A Boolean ring is absolutely flat.
In a Boolean ring each element is idempotent, so each principal ideal is idempotent, so by [2.27] the ring is

absolutely flat.

The ring of Chapter 1, Exercise 7 is absolutely flat.
Recall that this is a ring A in which for every element a there is a number n = n(a)> 1 such that an = a. Then

a = a2an−2 ∈ (a2) so every principal ideal is idempotent, and by [2.27] A is absolutely flat.

α : A/b→ P such that α◦πi = αi , taking i = 0, we are forced to try α(π0(a)) = α(a+b) = α0(a) for a ∈A. Indeed, for any i and any a+ai ∈A/ai
we have

αi (a+ ai ) = αi (π0i (a)) = α0(a) = α(π0(a)) = α(πi (a+ ai ))
so this homomorphism meets the requirement and A/b has the universal property.
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CITE [1.12]?

Every homomorphic image of an absolutely flat ring is absolutely flat.
Let A be absolutely flat and let (x̄) be a principal ideal in A/a. Then for the lift x ∈ A we have, by [2.27], that

(x)2 = (x), so there is a ∈ A such that ax2 = x. Downstairs in A/a we have ā x̄2 = x̄, so (x̄)2 = (x̄) and A/a is
absolutely flat by [2.27] again.

If a local ring is absolutely flat, then it is a field.
Let m be the maximal ideal of a local, absolutely flat ring A. We want to show m = 0. Suppose x ∈m. Then by

[2.27]we have an idempotent e ∈ (x)with (e) = (x), and e = 0 ⇐⇒ x = 0. Then f = 1− e is an idempotent as well,
but also f is a unit by (1.9) since e is in the Jacobson radical R=m. Then we have 1= f −1 f = f −1 f 2 = ( f −1 f ) f = f ,
so e = 0. Thus m= 0, so A∼=A/(0) =A/m is a field.

If A is absolutely flat, every non-unit in A is a zero-divisor.
Let x ∈A be a non-unit; then (x) 6= (1) is a finitely generated ideal, and so by [2.27] there is another ideal b 6= (0)

such that A∼= (x)⊕ b. Then bx ∈ (x)∩ b= (0), so x is a zero-divisor.
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Exercise. Verify that these definitions [repeated below] are independent of the choices of representatives (a, s) and (b , t ),
and that S−1A satisfies the axioms of a commutative ring with identity.

We recall that S is a multiplicative submonoid of A, meaning a subset closed under multiplication and containing
1. An element of S−1A is defined to be an equivalence class a/s of pairs (a, s) ∈A× S under the relation ≡ given by

(a, s)≡ (b , t ) ⇐⇒ ∃u ∈ S [(at − b s)u = 0].

The book shows that ≡ indeed is an equivalence relation, and then defines

a
s
+

b
t

:=
at + b s

st
,

a
s
· b

t
:=

as
b s

.

It falls to us to verify these operations are well defined. To show a
s +

b
t is independent of the representatives of a/s

and b/t chosen, suppose we calculated with two pairs of representatives (a, s) ≡ (a′, s ′) and (b , t ) ≡ (b ′, t ′). Then
by definition there are u, v ∈ S such that (as ′− a′s)u = 0= (bt ′− b ′t )v in A. We need to verify that (at + bs , st )≡
(a′t ′+ b ′s ′, s ′ t ′), meaning that there exists w ∈ S such that ([at + b s]s ′t ′− [a′t ′+ b ′s ′]s t )w = 0 in A. But w = uv
works, for

w([at+b s]s ′t ′−[a′t ′+b ′s ′]s t ) = uv(as ′tt ′+b ss ′t ′−a′stt ′−b ′ss ′t ) = u(as ′−a′s)tt ′v+v(bt ′−b ′t )ss ′u = 0+0= 0.

Similarly, · is well defined: (ab , st )≡ (a′b ′, s ′t ′), for setting w = uv we have

w(ab s ′t ′− a′b ′st ) = uv(ab s ′t ′− a′bst ′+ a′b st ′− a′b ′st ) = u(as ′− a′s)b t ′v + v(b t ′− b ′t )a′su = 0+ 0= 0.

Note as a preliminary that for any a/s ∈A and t ∈ S we have at/st = a/s , for (at )s−a(st ) = 0 by commutativity
and associativity of · in A.

Now we verify that (S−1A, +, 0/1) is an abelian group. + is associative, since given a/s , b/t , c/u ∈ S−1A we
have

�

a
s
+

b
t

�

+
c
u
=

at + b s
st

+
c
u
=

atu + b su + cst
stu

=
a
s
+

bu + ct
tu

=
a
s
+
�

b
t
+

c
u

�

,

using distributivity and commutativity of · in A. We see + is commutative, for

a
s
+

b
t
=

at + b s
st

=
b s + at

ts
=

b
t
+

a
s

,

using commutativity of + and · in A. For any element v ∈ S, we have 0/v = 0v/1v = 0/1 a neutral element for +,
since

0
1
+

a
s
=

0s + a1
1s

=
a
s

,

using the properties of 0 and 1 in A. The additive inverse of a/s is (−a)/s , because

a
s
+
−a
s
=

as +(−a)s
s2

=
0
s2
=

0
1

.

Now we want to prove that (S−1A, +, ·, 0/1, 1/1) is a commutative ring. The new · is associative since
�

a
s

b
t

�

c
u
=

ab
st

c
u
=

abc
stu
=

a
s

bc
tu
=

a
s

�

b
t

c
u

�

,
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implicitly using associativity of · in A. The new · is commutative because

a
s

b
t
=

ab
st
=

ba
ts
=

b
t

a
s

,

using commutativity of · in A. The element 1/1 is neutral for · because

1
1

a
s
=

1a
1s
=

a
s

,

1 being neutral for · in A. Finally, · distributes over + because

a
s

�

b
t
+

c
u

�

=
a
s

bu + ct
tu

=
abu + act

stu
=

absu + acst
stsu

=
absu
stsu

+
acst
stsu

=
ab
st
+

ac
su
=

a
s

b
t
+

a
s

c
u

.

Let M be an A-module. If we redefine a, b , c to be elements of an M , then (but for our tendency to write as rather
than sa, which strictly speaking doesn’t matter for modules over commutative rings) the proofs of well-definedness,
associativity, commutativity, 0/1, and −a/s = −(a/s) for (S−1A, +, 0/1) go through to define an abelian group
structure on (S−1M , +, 0/1). Now we show S−1M carries a natural S−1A-module structure. If we let b = m ∈M , the
well-definedness proof for · in S−1A shows that a

s
m
t =

am
st gives a well-defined scalar product S−1A× S−1M → S−1M .

We have the four axioms of p. 17 to verify. If we let a ∈M , the proof 1
1

a
s =

a
s shows 1/1 acts as the identity on S−1M ,

the fourth axiom. Letting b , c ∈ M , the associativity of ·, and the distributivity of · over + for S−1A provide the
third and first axioms. Letting a, b ∈A, s , t , u ∈ S and m ∈M , the second (and last) axiom is

�

a
s
+

b
t

�

m
u
=

at + bs
st

m
u
=

atm+ bsm
stu

=
atm
stu
+

bsm
stu
=

am
su
+

bm
tu

.

Proposition 3.11. v) The operation S−1 commutes with formation of finite sums, products, intersections and radicals.
(3.4.i,ii) show S−1 distributes over finite sums and intersections. (1.18) shows S−1(ab) = (S−1a)(S−1b), and

S−1 r (a) ⊆ r (S−1a). It remains to show r (S−1a) ⊆ S−1 r (a), so suppose x/s ∈ S−1A is in r (S−1a). Then for some
n > 0 its nth power is some a/t ∈ S−1a, meaning xn/s n = (x/s)n = a/t in S−1A. By the definition of equality
in S−1A, there is some u ∈ S so that utxn = us na ∈ a. Multiplying both sides by (ut )n−1 we see (utx)n ∈ a, and
utx ∈ r (a). Thus utx/uts = x/s ∈ S−1 r (a) as claimed.

EXERCISES
Let S be a multiplicatively closed subset of a ring A, and let M be a finitely generated A-module. Prove that S−1M = 0 if and only

if there exists s ∈ S such that s M = 0.
Assume s M = 0 for some s ∈ S, and let m/t ∈ S−1M . Then s(1m− t0) = 0 in M , so m/t = 0/1 in S−1M .
Conversely, let M be an A-module finitely generated by m1, . . . , mn , and suppose that S−1M = 0. Then in par-

ticular we have for each i that m/1 = 0/1 in S−1M , so there is si ∈ S such that 0 = si (1mi − 1 · 0) = si mi in M .
Let s = s1 · · · sn , which is in S since S is multiplicatively closed. Then for any element m =

∑

ai mi ∈ M we have
0= s m = s(1m− 1 · 0), and m/1= 0/1 in S−1M .

Let a be an ideal of a ring A, and let S = 1+ a. Show that S−1a is contained in the Jacobson radical of S−1A.
Since 0 ∈ a we have 1 ∈ S = 1+ a, and if a, b ∈ a, then (1+ a)(1+ b ) = 1+ a + b + ab ∈ S = 1+ a, so

S is multiplicatively closed. Now to show S−1a ⊆ R(S−1A), it is enough, by (1.9), to show the set 1 − S−1a =
1− (S−1A)(S−1a) is made up of units. But if a

1+b ∈ S−1a, then 1
1 −

a
1+b =

1+b−a
1+b ∈ S−1S ⊆ (S−1A)×.

Use this result and Nakayama’s lemma to give a proof of (2.5) which does not depend on determinants.
(2.5) states that for all finitely generated A-modules M and aÃ A such that aM = M there is x ∈ 1+ a such that

xM = 0.
So suppose M is finitely generated by some m1, . . . , mn with aM =M . Then localizing by S = 1+ a, by (3.11.v)

we have (S−1a)(S−1M ) = S−1M . The last paragraph shows that S−1a⊆R(S−1A), the Jacobson radical, and S−1M is
finitely generated over S−1A by m1/1, . . . , mn/1, so the conditions of Nakayama’s Lemma are met, and we conclude
S−1M = 0. But then by [3.1] there is x ∈ S = 1+ a such that xM = 0.
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Let A be a ring, let S and T be two multiplicatively closed subsets of A, and let U be the image of T in S−1A. Show that the rings
(ST )−1A and U−1(S−1A) are isomorphic.

As a preliminary, we prove the canonical map φS : A→ S−1A is a epimorphism, meaning not that is surjective,
but that it is right-cancellable. Suppose we have a ring homomorphisms µ : S−1A→ B , and let λ = µ ◦φS . Since
for all s ∈ S we have φS (s) ∈ S−1A a unit, we then have λ(s) = µ(φS (s)) a unit of B . By (3.1) there is a unique ring
homomorphism ν : S−1A→ B such that ν ◦φS = λ. Thus

µ ◦φS = ν ◦φS =⇒ µ= ν . (3.1)

Now U is a multiplicative submonoid of S−1A since it is the image of a multiplicative submonoid under a ring
homomorphism, which preserves multiplication and unity. ST is also multiplicative submonoid of A, since 1 ∈ S, T
implies 1 = 1 · 1 ∈ ST , and if s t , s ′ t ′ ∈ ST , where s , s ′ ∈ S and t , t ′ ∈ T , then (s t )(s ′ t ′) = (s s ′)(t t ′) ∈ ST since S
and T are multiplicatively closed. Note S = S · 1⊆ ST and T = 1T ⊆ ST .

Consider the canonical map φST : A→ (ST )−1A. Each element of S is taken to a unit, since S ⊆ ST , so by (3.1)
there is a unique homomorphism ρST

S : S−1A→ (ST )−1A such that

ρST
S ◦φS =φST . (3.2)

A
φS //

φST ((

S−1A
φU //

ρST
S

##

U−1(S−1A)

ψ
��

(ST )−1A

ψ′

OO
By the proof of that proposition we have ρST

S (a/s) = φST (a)φST (s)
−1 = a/s ∈

(ST )−1A. Now each element t/1 ∈ U ⊆ S−1T ⊆ S−1A is taken by ρST
S to t/1 ∈

(ST )−1A, which is a unit since T ⊆ ST . Then (3.1) again induces a unique homo-
morphism ψ : U−1(S−1A) → (ST )−1A such that, if φU : S−1A → U−1(S−1A) is the
canonical map, then

ψ ◦φU = ρ
ST
S . (3.3)

Composing with φS : A→ S−1A on the right we get

ψ ◦φU ◦φS
Eq. 3.3
= ρST

S ◦φS
Eq. 3.2
= φST . (3.4)

If ψ is a bijection, we are done. However it’ s more natural to use universal properties to construct an inverse.
Now the composition φU ◦φS : A→ S−1A→ U−1(S−1A) taking a 7→ a/1 7→ a/1

1/1 takes each element of S to a unit

(inverse 1/s
1/1 ) and each element of T to a unit (inverse 1/1

t/1 ), and so takes each element of ST to a unit. By (3.1), there
is a unique homomorphism ψ′ : (ST )−1A→U−1(S−1A) such that

ψ′ ◦φST =φU ◦φS . (3.5)

Composing with ψ on the left gives ψ ◦ψ′ ◦φST
Eq. 3.5
= ψ ◦φU ◦φS

Eq. 3.4
= φST . Since φST is an epimorphism (Eq.

3.1), ψ ◦ψ′ = id(ST )−1A. On the other hand, since ψ ◦φU
Eq. 3.3
= ρST

S , composing with ψ′ on the left and φS on the

right gives ψ′ ◦ψ ◦φU ◦φS
Eq. 3.4
= ψ′ ◦φST

Eq. 3.5
= φU ◦φS . Since φU and φS are epimorphisms (Eq. 3.1), we have

ψ′ ◦ψ= idU−1(S−1A).
1

1 A proof avoiding universal properties is as follows. Define a ring isomorphism ψ : (ST )−1A→ U−1(S−1A). Set ψ(a/s t ) = a/s
t/1 . To see it is

well-defined, suppose a/s t = a′/s ′ t ′ in (ST )−1A; we claim that a/s
t/1 =

a′/s ′

t ′/1 . This will follow if there is u = t0/1 ∈ U such that at ′ t0
s = u a

s
t ′
1 =

u a′

s ′
t
1 =

a′ t t0
s ′ in S−1A. This will in turn be the case if there is s0 ∈ S such that s0at ′ t0 s ′ = s0a′ t t0 s in A. But since we assumed a/s t = a′/s ′ t ′, by

definition there is s ′′ t ′′ ∈ ST such that s ′′ t ′′as ′ t ′ = s ′′ t ′′a′s t , and we may take s0 = s ′′ and t0 = t ′′.
Now we show it is a bijection. Any element of U−1(S−1A) can be written as a/s

t/1 for some a ∈ A, s ∈ S, t ∈ T , and then is mapped onto by

a/s t , so φ is surjective. Now suppose a/s
t/1 =φ(a/s t ) = 0= 0

1 =
0/1
1/1 . By the definition of equality in U−1(S−1A), there is u = t ′/1 ∈U such that

at ′
s =

t ′
1

a
s

1
1 =

t ′
1

0
1

t
1 =

0
1 in S−1A. But then by the definition of equality in S−1A there is s ′ ∈ S such that s ′ t ′a = s ′0s = 0. Then a/1 = 0/1 in

(ST )−1A, so a
s t is zero and φ is injective.

It remains to show ψ is a ring homomorphism. Now ψ(1/(1 · 1)) = 1/1
1/1 is the unity of U−1(S−1A), and if we let a/s t and a′/s ′ t ′ ∈ (ST )−1A,
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Let f : A→ B be a homomorphism of rings and let S be a multiplicatively closed subset of A. Let T = f (S). Show that S−1B and
T −1B are isomorphic as S−1A-modules.

As a homomorphic image of a multiplicative submonoid, T is a multiplicative submonoid of B . Now g = idB × f
is a surjection B×S� B×T , and we will show it induces a bijection of equivalence classes S−1B↔ T −1B . The action
of S ⊆A on B , by definition is s · b = f (s)b , so the equivalence relation ≡S on B × S is defined by (b , s)≡S (b

′, s ′) :
⇐⇒ ∃s ′′ ∈ S ( f (s ′′s)′b = f (s ′′s)b ′) this is the same equation that holds just if (b , f (s))≡T (b

′, f (s ′)) in B×T . Thus
two elements of B× S define the same element of S−1B just if their g -images define the same element of T −1B , so g
induces a bijection φ : S−1B→ T −1B . Since f is a homomorphism, it follows easily that φ is also a homomorphism

of rings. Finally, if a/s ∈ S−1A and b/s ′ ∈ S−1B , we have φ
�

a
s

b
s ′

�

=φ
�

f (a)b
ss ′

�

= f (a)b
f (s) f (s ′) =

a
s

b
f (s ′) =

a
sφ
�

b
s ′

�

, so φ is a

S−1A-module isomorphism.

Let A be a ring. Suppose that, for each prime ideal p, the local ring Ap has no nilpotent element 6= 0. Show that A has no nilpotent
element 6= 0. If each Ap is an integral domain, is A necessarily an integral domain?

By (3.12), we have N(Ap) = N(A)p for each prime p, where N(A) is the nilradical of A. By (3.8), this means
N(A) = 0.

It is possible for a ring with zero-divisors to have all localizations at primes integral domains, for suppose A=
∏n

j=1 k j is a product of n ≥ 2 fields; it is not an integral domain, but we shall show its localizations at primes are.
By [1.22], the only prime ideals of A are p j = 0k j ×

∏

i 6= j ki ; their complements are S j = k×j ×
∏

i 6= j ki Now each
inserted k j is naturally an A-module, and A is a direct sum of these modules. By (3.4.i), localization distributes over
finite direct sums of A-modules. Now S−1

j k j
∼= k j , while for i 6= j we have 0 ∈ S j · ki , so by [3.1], S−1

j ki = 0. Thus
all localizations Ap j

∼= k j at primes are fields, and a fortiori integral domains.

Let A be a ring 6= 0 and let Σ be the set of all multiplicatively closed subsets S of A such that 0 /∈ S. Show that Σ has maximal
elements and that S ∈Σ is maximal if and only if A\S is a minimal prime ideal of A.

Certainly {1} ∈ Σ, so Σ is non-empty. To find maximal elements of Σ, we apply Zorn’ s Lemma. Let (Sa)a∈I
be a totally ordered chain in Σ; we claim its union S is an upper bound. Surely 0 /∈ S since 0 is in no Sa, and if
two elements s , t ∈ S are given, they belong to some Sα and Sβ, respectively. If γ =max{α, β}, then we have both
s , t ∈ Sγ , so s t ∈ Sγ ⊆ S, and thus S ∈Σ is an upper bound for the chain.

Assume p is a prime ideal, and let S =A\p. Then by the definition of being prime, a, b ∈ S =A\p implies ab ∈ S,
so S is multiplicatively closed. Conversely, if the complement of a multiplicative submonoid is an ideal, it is prime.
Since 0 ∈ p, we don’t have 0 in S, so S ∈Σ.

Let S ∈Σ be maximal, and p=A\S. Note that the smallest multiplicative submonoid containing a ∈A and S is
{san : s ∈ S, n > 0}. If a ∈ p, this monoid is strictly larger than S, and so by maximality of S ∈ Σ, contains zero.
Thus a ∈ p just if there are n > 0 and s ∈ S with san = 0. Suppose a, b ∈ p, and let m, n > 0 and s , t ∈ S such that
sam = t b n = 0. If p = m + n − 1, then am or b n divides each term of (a − b )p so s t (a − b )p = 0, and a − b ∈ p.
Thus p is an additive subgroup of A. If x ∈A is any other element, then s(ax)m = (sam)x m = 0x m = 0, so ax ∈ p as
well. Thus p is an ideal. If q( p was a smaller prime ideal, then A\q would be an element of Σ strictly containing S,
which we assumed is impossible, so p is minimal.

If, on the other hand p is a minimal prime ideal, then S = A\p is an element of Σ. If T ⊇ S is maximal, then
A\T ⊂ p is a minimal prime ideal, hence equal to p=A\S, and so S = T is maximal.

A multiplicatively closed subset S of a ring A is said to be saturated if

xy ∈ S ⇐⇒ x ∈ S and y ∈ S.

we have the equations
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Prove that
i) S is saturated ⇐⇒ A\S is a union of prime ideals.

Suppose a subset S ⊆A is such that A\S =
⋃

pα is a union of prime ideals. Then 1 /∈ pα for all α, so 1 ∈ S. Suppose
x, y ∈ S =A\

⋃

pα. Then for all pα we have x, y /∈ pα, so xy /∈ pα, and thus xy ∈
⋂

(A\pα) =A\
⋃

pα = S. Thus S is
a multiplicative submonoid. On the other hand, if we have x /∈ S, then there is some pα 3 x, and that being an ideal
we have xy ∈ pα ⊆A\S, and symmetrically for y. Thus S is saturated.

Now suppose S ⊆A is saturated. To show the complement is a union of prime ideals, it suffices to manufacture,
for any element a ∈ A\S, a prime ideal p 3 a disjoint from S. Note that if a ∈ A\S, by saturation for all b ∈ A we
have ab /∈ S, so that (a) is an ideal disjoint from S. The set Υ of ideals of A containing a and disjoint from S is then
non-empty, and it is closed under increasing unions, so by Zorn’s Lemma it contains a maximal element p. We will
be done if we can show p is prime, so suppose x, y /∈ p. Then (x) + p and (y) + p are not in Υ , and so intersect S. If
s , t ∈ S are such that s ∈ (x)+p and t ∈ (y)+p, then s t ∈

�

(x)+p
��

(y)+p
�

⊆ (xy)+p, so xy /∈ p. Thus p is prime.

ii) If S is any multiplicatively closed subset of A, there is a unique smallest saturated multiplicatively closed subset S
containing S, and that S is the complement in A of the union of the prime ideals which do not meet S. (S is called the
saturation of S.)

Let S be the complement of the union of primes p not meeting S: S :=A\
⋃

{p ∈ Spec(A) : S ∩p=∅}. Then S is
saturated, by i), and contains S, since A\S ⊆ A\S. Moreover, any saturated set containing S is the complement of a
union of primes not meeting S, and since S is the complement of the largest such union, it is the smallest saturated
set containing S.

If S = 1+ a, find S.
A prime p meets S just if we have a ∈ a and x ∈ p such that x = 1+ a, or 1 = a − x, so that (1) = a+ p. Thus

the union in A\S is over all prime ideals not coprime to a. In particular, for every such p, there is a maximal ideal
m ⊇ a+ p. Since every maximal ideal is prime and every prime ideal is contained in a maximal ideal, it suffices to
take the union of maximal ideals containing a. Thus S =A\

⋃

{m ∈Max(A) : a⊆m}.

Let S, T be multiplicatively closed subsets of A, such that S ⊆ T . Let φ : S−1A→ T −1A be the homomorphism which maps each
a/s ∈ S−1A to a/s considered as an element of T −1A. Show that the following statements are equivalent:
i) φ is bijective.
ii) For each t ∈ T , t/1 is a unit in S−1A.
iii) For each t ∈ T there exists x ∈A such that x t ∈ S.
iv) T is contained in the saturation of S (Exercise 7).
v) Every prime ideal which meets T also meets S.

Note that S ⊆ T =⇒ ST = T since T is multiplicatively closed. Now use the unique homomorphism
ρT

S : S−1A→ T −1A, defined in the proof of [3.3], such that ρT
S ◦φS = φT . (3.1) shows ρT

S (a/s) = φT (a)φT (s)
−1 =

a/s ∈ T −1A.
i) =⇒ ii): If ρT

S is bijective, it is an isomorphism, so since ρT
S (t/1) = t/1 ∈ T −1A is a unit (inverse 1/t ),

t/1 ∈ S−1A is also a unit.
ii) =⇒ iii): If t/1 is a unit in S−1A, then there is x/s ∈ S−1A such that t x/1s = 1/1, which by definition means

there is s ′ ∈ S such that s ′tx1= s ′s1 in A. Then (s ′x)t ∈ S.
iii) =⇒ i): Suppose ρT

S (a/s) = 0/1 in T −1A. Then there is t ∈ T such that t a = 0. If x ∈ A is such that x t ∈ S,
then (xt)a = 0 shows that a/s = 0/1 in S−1A. Now let a/t ∈ T −1A be arbitrary, and let x ∈ A be such that x t ∈ S.
Then a/t = xa/xt = ρT

S (xa/xt ) is the image of an element of S−1A.

iii) =⇒ iv): S is saturated, so if for each t ∈ T there is x ∈ A such that xt ∈ S ⊆ S, then by definition we have
xt ∈ S, so in particular T ⊆ S.

iv) =⇒ iii): Write S ′ = {a ∈ A : ∃x ∈ A (ax ∈ S)}, so that by definition We claim S ′ = S is the saturation of
S. Surely S ⊆ S ′ ⊆ S, since if s ∈ S then s · 1 ∈ S, and since if ax ∈ S then ax ∈ S. To show the other inclusion
it suffices to show S ′ is also saturated. Clearly, if ab ∈ S ′, then there exist xy ∈ A such that ax, by ∈ S, and then
ab · xy = ax · by ∈ S, so ab ∈ S ′. Supposing on the other hand that a /∈ S ′, then there is no x ∈ A such that ax ∈ S,
and certainly for all b , y ∈A we have aby /∈ S, so ab /∈ S ′; and symmetrically if b /∈ S ′. Thus S ′ = S is saturated.

By definition t ∈ S ′ ⇐⇒ ∃x ∈A (x t ∈ S).
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iv) ⇐⇒ v):

T ⊆ S ⇐⇒ T ⊆ S = S ⇐⇒
⋃

{primes not meeting S}=A\S ⊆A\T =
⋃

{primes not meeting T }

⇐⇒ {primes not meeting S} ⊆ {primes not meeting T }
⇐⇒ {primes meeting T } ⊆ {primes meeting S}.

The set S0 of all non-zero-divisors in A is a saturated multiplicatively closed subset of A. Hence the set D of zero-divisors in A is a
union of prime ideals (see Chapter 1, Exercise 14). Show that every minimal prime ideal of A is contained in D.

If 1= 0, then S0 should probably be considered empty, so henceforward let’s assume not. Then 1 ∈ S0. If x, y ∈ S0,
then xy 6= 0, and for all a ∈ A we have a(xy) = (ax)y 6= 0, so xy ∈ S0. Thus S0 is a multiplicative submonoid. Now
suppose x ∈D , say with ax = 0. For any y ∈A we then have axy = 0, so xy ∈D ; thus S0 is saturated.

Recall from [3.6] that Σ is the collection of multiplicative submonoids S of A not containing 0. We claim that S0
is contained in every maximal element S ∈Σ. Indeed, if we did not have S0 ⊆ S, then the product S0S would strictly
contain S, and thus contain s0 s = 0, for some s0 ∈ S0 and s ∈ S, contradicting the defining assumption S0 ∩D =∅.
Now by [3.6] the maximal elements of Σ are of the form A\p for p a minimal prime of A, so we have A\D ⊆ A\p,
or p⊆D , for all minimal primes p.

The ring S−1
0 A is called the total ring of fractions of A. Prove that

i) S0 is the largest multiplicatively closed subset of A for which the homomorphism A→ S−1
0 A is injective.

a 7→ a/1= 0/1 in S−1A implies there is some s ∈ S such that sa · 1= 0 · 1= 0 in A. This cannot happen if S ⊆ S0,
but can happen for any S strictly larger than S, since such will contain a zero-divisor s .

ii) Every element in S−1
0 A is either a zero-divisor or a unit.

Let a/s ∈ S−1
0 A. If a/s is a zero-divisor, there is b/t ∈ S−1

0 A such that ab/st = 0/1, so there exists u ∈ S0 such that
uab = 0st = 0 in A, and ab = 0, then, since u is not a zero-divisor; thus a is a zero-divisor in A. Thus if a/s ∈ S−1

0 A
is not a zero-divisor, then a ∈ S0, so s/a ∈ S−1

0 A is an inverse to a/s , which is then a unit.

iii) Every ring in which every non-unit is a zero-divisor is equal to its total ring of fractions (i.e., A→ S−1
0 A is bijective).

If S = {1} we obviously have A∼= S−1A, and the inclusion {1} ,→ S0 induces the homomorphism φ : A→ S−1
0 A

as in [3.8]. This map is bijective just if, by condition ii), for each s ∈ S0, s/1 is a unit in S−1
0 A. But each s ∈ S0 has an

inverse s−1 in A by assumption, and then s−1/1 is an inverse of s/1 in S−1
0 A.

Let A be a ring.
i) If A is absolutely flat (Chapter 2, Exercise 27) and S is any multiplicatively closed subset of A, then S−1A is absolutely
flat.

Let M be an S−1A-module, and write M |A for M viewed as an A-module by restriction of scalars along the canon-
ical map A→ S−1A. We can then take S−1(M |A), allowing division by elements of S again, and we want to show the
composition of natural mapsψ : M →M |A→ S−1(M |A) taking m 7→ m 7→ m/1 gives an S−1A-module isomorphism.
For surjectivity, let m/s be any element of S−1(M |A). In M , the scalar product m′ = 1

s m is defined, and we have
sm′ = m in the module M . Since s ∈A, we also have sm′ = m in M |A. But then, by definition m′/1= m/s in S−1M ,
so ψ is surjective. For injectivity, suppose ψ(m) = m/1= 0/1 in S−1(M |A). Then there is s ∈ S such that sm = 0 in
M |A. But then sm = 0 in M , so 0 = 1

s sm = m. Thus ψ is injective. That ψ preserves the S−1A-module structure is
seen as follows. All homomorphisms are A-linear. If we take m ∈ M and apply 1/s to get m′ = 1

s m, then we have
s m′ = m in M |A, since s ∈A, and thus s(m′/1) = sψ(m′) = m in S−1(M |A). But we also have s m

s = m in S−1(M |A),
so s

�

m′

1 −
m
s

�

= 0 ∈ S−1(M |A), and multiplying on the left by 1/s we see m′/1= m/s . Thus ψ
�

1
s m
�

= 1
sψ(m), so ψ

is S−1A-linear.
To show S−1A is absolutely flat, now, let M be an S−1A module and φ : N ′ � N an injective S−1A-module

homomorphism. We want idM ⊗φ : M⊗S−1AN ′�M⊗S−1AN to be injective. Note that M |A⊗AN ′|A→M |A⊗AN |A is
injective since all A-modules are flat. Since localization is exact, we also have S−1(M |A⊗AN ′|A)→ S−1(M |A⊗AN ′|A)
injective. But by (3.7), this is equivalent to an injective S−1A-module homomorphism S−1(M |A)⊗S−1AS−1(N ′|A)�
S−1(M |A)⊗S−1AS−1(N |A), and we have shown that this is the same as idM ⊗φ : M ⊗S−1AN ′�M ⊗S−1AN .
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ii) A is absolutely flat ⇐⇒ Am is a field for each maximal ideal m.
If A is absolutely flat, then by i) each Am is absolutely flat. But then by [2.28], Am, being local, is a field.
Now assume each localization Am is a field, and let M be an A-module. The localization Mm is an Am-module,

and since Am is a field, it is a free Am-module. But free modules are flat, by [2.4] (sums of flat modules are flat, and
vice versa), and the absorption law (2.14.iv). Thus Mm is a flat Am-module for each m. By (3.10), M is a flat A-module.

Let A be a ring. Prove that the following are equivalent:
i) A/N is absolutely flat (N being the nilradical of A).
ii) Every prime ideal of A is maximal.
iii) Spec(A) is a T1-space (i.e., every subset consisting of a single point is closed).
iv) Spec(A) is Hausdorff.

i) =⇒ iv): Let A/N be absolutely flat and X = Spec(A/N). Let x 6= y ∈ X be two distinct points. We find
them disjoint basic open neighborhoods (defined in [1.17]) Xe , Xf . Since px , py are distinct maximal ideals, we have
px + py = (1), so there are elements a ∈ px and b ∈ py with (a) + (b ) = (1). By [2.27.ii], there are idempotents e
generating (a) and g generating (b ), so that (e , g ) = (1). Let f = g (1− e). Then e f = 0, while g = e g + f ∈ (e , f ),
so (e , f ) = (1). Since e ∈ px and px 6= (1), we have x ∈Xf , and similarly y ∈Xe . But by [1.17.i,ii] we have Xe ∩Xf =
Xe f = X0 = ∅. Also Xe ∪Xf = V (e)∩V ( f ) = V

�

(e) + ( f )
�

= V (1) = ∅. Now Spec(A) is homeomorphic to X by
[1.21.iv], and so also Hausdorff.

iv) =⇒ iii): Fix x ∈X. For each y 6= x we have a Uy containing y but not x. Then {x}=X \
⋃

y 6=x Uy is closed.
iii) ⇐⇒ ii): By [1.18.i], {x} is closed just if px is maximal. Thus all singletons are closed just if all primes are

maximal.
ii) ⇐⇒ i): All primes of A are maximal

(1.7)
⇐⇒∀m ∈Max(A), no prime ideal of A is strictly between m and N
(1.1)
⇐⇒∀m ∈Max(A), the only prime of A/N contained in m/N is (0)

(3.11.iv)
⇐⇒∀m ∈Max(A), the only prime ideal of (A/N)m is (0)
⇐⇒∀m ∈Max(A), (A/N)m is a field
[3.10]
⇐⇒ A/N is absolutely flat.

If these conditions are satisfied, show that Spec(A) is compact and totally disconnected (i.e., the only connected subsets
of Spec(A) are those consisting of a single point).

We already showed Spec(A) was compact in [1.17]. In the proof that i) =⇒ iv) above, we found, for any two
distinct points x, y, disjoint open neighborhoods Xf , Xe whose union is the entire space. Any subset S ⊆ Spec(A)
containing x, y is then disconnected by S ∩Xf and S ∩Xe , so Spec(A) is totally disconnected.

Let A be an integral domain and M an A-module. An element x ∈ M is a torsion element of M if Ann(x) 6= 0, that is if x is
killed by some non-zero element of A. Show that the torsion elements of M form a submodule of M . This submodule is
called the torsion submodule and is denoted by T (M ).

Let x, y ∈ T (M ) and c ∈ A. Then there are a, b 6= 0 in A such that ax = b y = 0. Since A is an integral domain,
ab 6= 0 and we have ab (x + y) = b0+ a0= 0, so x + y ∈ T (M ). Also a(c x) = c0= 0, so c x ∈ T (M ).

If T (M ) = 0, the module M is said to be torsion-free. Show that
i) If M is any A-module, then M/T (M ) is torsion-free.

Let x̄ ∈ M/T (M ) and suppose a ∈ A\{0} is such that ax̄ = 0̄. Then any representative x of x̄ in M is such that
ax ∈ T (M ). But then there is b 6= 0 such that bax = 0 in M . Since ba 6= 0, we see x ∈ T (M ), so x̄ = 0̄.

ii) If f : M →N is a module homomorphism, then f
�

T (M )
�

⊆ T (N ).
Let x ∈ T (M ) and 0 6= a ∈A such that ax = 0. Then 0= f (ax) = a f (x), so f (x) ∈ T (N ).

iii) If 0→M ′→M →M ′′ is an exact sequence, then the sequence 0→ T (M ′)→ T (M )→ T (M ′′) is exact.
Write M ′ f−→ M ′ g−→ M ′′. T ( f ) is injective because it is a restriction of the injective map f . T (g ) ◦ T ( f ) is zero

because it is a restriction of the zero map g ◦ f . If x ∈ T (M )∩ker(g ), then it is in im( f ), so there is y ∈M ′ such that
x = f (y). If 0 6= a ∈A is such that ax = 0, then f (ay) = 0; as f is injective, ay = 0, so y ∈ T (M ′).

iv) If M is any A-module, then T (M ) is the kernel of the mapping x 7→ 1⊗ x of M into K ⊗AM , where K is the field of
fractions of A.
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Take S = A\{0} and use (3.5), which gives an isomorphism K ⊗AM
∼−→ S−1M taking (a/x)⊗m 7→ am/x. We

then have 1⊗m 7→ m/1= 0 in S−1M just if ([3.1]) there is x ∈ S such that x m = 0.2

Let S be a multiplicatively closed subset of an integral domain A. In the notation of Exercise 12, show that T (S−1M ) = S−1(T M ).

Let x ∈ T (M ) and 0 6= a ∈ Ann(x). Then for all s ∈ S we have a(x/s) = ax/s = 0 in S−1M , so S−1(T (M )) ⊆
T (S−1M ). Conversely, suppose x/s ∈ T (S−1M ). Then there is a nonzero a/t ∈ S−1A such that ax/st = 0/1, so there
is u ∈ S such that uax = 0. But ua 6= 0 since A is an integral domain, so x ∈ T (M ) and x/s ∈ S−1(T (M )). Thus
T (S−1M ) = S−1(T (M ))

Deduce that the following are equivalent:
i) M is torsion-free.
ii) Mp is torsion-free for all prime ideals p.
iii) Mm is torsion-free for all maximal ideals m.

For each a ∈ A, the map la : x 7→ ax is an A-module homomorphism M → M ; it induces x/s 7→ ax/s in each
Mp for p a prime. By (3.9), la is injective just if each localization (la)m for m maximal (or just prime) is injective. By
the above, this is the same as demanding la/s is injective for all s ∈ S. But a module is torsion-free just if all la (and
friends) are injective, for a 6= 0.

Let M be an A-module and a an ideal of A. Suppose that Mm = 0 for all maximal ideals m⊇ a. Prove that M = aM .
By (1.1), there is a bijective correspondence between maximal ideals m⊇ a and maximal ideals m′ of A/a. Now

if Mm = 0, then

0=Mm/(aM )m
(3.4.iii)∼= (M/aM )m

(3.5)∼= Am⊗AM/aM

as Am-modules. For any x ∈ a, any s ∈A\m, and any m̄ ∈M/aM we then have (x/s)⊗ m̄ = (1/s)⊗ x m̄ = 0 in Am⊗
AM/aM , so this A/a-module is naturally isomorphic to (A/a)m ⊗A/aM/aM = 0. Now (M/aM )m/a ∼= (A/a)m/a ⊗
A/aM/aM by (3.5), and [3.4] shows (A/a)m and (A/a)m/a are isomorphic, so we finally see each localization of M/aM
at a maximal ideal of A/a is zero. Then (3.8) says that M/aM = 0. Thus M = aM .

Let A be a ring, and let F be the A-module An . Show that every set of n generators of F is a basis of F.
Let ei be the standard basis of An and xi our generators; φ : ei 7→ xi is then a surjective homomorphism, and

〈xi 〉 will be a basis just if φ is also injective. By (3.9), φ is injective just if each φm is injective for m Ã A maximal.
Thus without loss of generality we may assume A is local. Let N = ker(φ), so we have an exact sequence 0→N →
F → F → 0. Tensoring with the residue field k = A/m gives an exact sequence k ⊗N → k ⊗ F → k ⊗ F → 0. Now
(2.14.iii,iv) give k ⊗ F = k ⊗A⊕n ∼= (k ⊗A)⊕n ∼= kn . The map kn → kn is a surjection of vector spaces of the same
dimension, hence an isomorphism, and thus k ⊗N = 0. Now [2.12] shows that N is finitely generated, and [2.2]
gives k ⊗N = (A/m)⊗N ∼= N/mN = 0. Thus N = mN , and Nakayama’s Lemma (2.6) gives N = 0 (m being the
Jacobson radical of the local ring A). Thus φ is injective.

Deduce that every set of generators of F has at least n elements.
Supposing m < n elements x1, . . . , xm generate F , then expanding this set at random by nonzero elements

y1, . . . , yn−m , we would have a set of n generators. By what we’ve proven above, this would be a basis. But since
the xi are generators, we could write y1 =

∑m
i=1 ai xi with not all ai = 0, contradicting this set being a basis.

We also showed this in [2.11]. (Surjections Am�An only occur for m ≥ n.)

2 Alternately, we may follow the book’s hint. Suppose x ∈ T (M ), and 0 6= a ∈ A is such that ax = 0. Then in K ⊗AM we have the equalities
1⊗ x = a

a ⊗ x = 1
a ⊗ ax = 1

a ⊗ 0= 0.
For the other inclusion, we write K⊗AM as a direct limit. For each x ∈ S =A\{0}, we have a cyclic A-module Ax :=Ax ⊆K , and given x, y ∈ S,

we have natural inclusions Ax ,→Ax, y and Ay ,→Axy , given by a/x 7→ ay/xy and a/y 7→ ax/xy, so these modules Ax form a direct system, with
an inclusion Ax ,→Ay just when x | y. Since every element ξ ∈K can be written as a/x for some a ∈A and x ∈ S, by [2.17], K = lim−→ Ax.

By [2.20], K⊗AM ∼= lim−→ (Ax⊗AM ). Now by [2.15], every element 1⊗m representing 0 is already equal to zero at some finite stage; that is, there
is some x ∈ S such that 1⊗m = 0 in Ax ⊗AM . But as an A-module Ax is isomorphic to A under a/x 7→ a, so we have a composite isomorphism
Ax ⊗AM →A⊗AM →M taking (a/x)⊗m 7→ a⊗m 7→ am. Since 0= 1⊗m = (x/x)⊗m 7→ xm we then have xm = 0, so x ∈ T (M ).
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Let B be a flat A-algebra. Then the following conditions are equivalent:
i) aec = a for all ideals a of A.
ii) Spec(B)→ Spec(A) is surjective.
iii) For every maximal ideal m of A we have me 6= (1).
iv) If M is any non-zero A-module, then MB 6= 0.
v) For every A-module M , the mapping x 7→ 1⊗ x of M into MB is injective.

B is said to be faithfully flat over A.
Write f : A→ B for the map making B a flat A-algebra.
i) =⇒ ii) : Recall that f ∗ : Spec(B)→ Spec(A) is given by q 7→ qc . Thus f ∗(pe ) = p for all p ∈ Spec(A), so f ∗ is

surjective.
ii) =⇒ iii): Let m ∈ Max(A). If f ∗(n) = m, then we have f (m) ⊆ n, so me = B f (m) ⊆ n. If me = (1), then

f ∗(n) = f ∗
�

(1)
�

= (1) 6=m, so me 6= (1).
iii) =⇒ iv): We use contraposition. Supposing iv) false, let M 6= 0 be an A-module such that MB = B ⊗AM = 0.

Since B is flat, inclusions M ′ ,→M induce injections M ′B �MB , so M ′B = 0 for all submodules M ′ ⊆M . In particular
this is the case for all cyclic submodules Ax. Ax is isomorphic, as an A-module, to a quotient of A, say A/a. Now
0= (Ax)B ∼= B⊗AA/a∼= B/aB = B/ f (a)B , using [2.2] and the definition a · b = f (a)b of the A-module structure on
B , so ae = f (a)B = B . If m⊇ a is a maximal ideal of A, then also B =me , so iii) doesn’t hold.

iv) =⇒ v): We again use contraposition. Suppose v) is false, and let M be an A-module such that the canonical
map to MB isn’t injective. Then there is a non-zero element x ∈M such that 1⊗x = 0 in MB . By flatness, the inclusion
Ax ,→ M induces an injection (Ax)B � MB , but the image of this map is B ⊗ x = 0, so (Ax)B = 0 and iv) does not
hold.

v) =⇒ i): We once again use contraposition. We always have a⊆ aec , by (1.17.i), so suppose aÃ A is such that
a ( aec . Then the submodule aec/a of M := A/a is nonzero. By [2.2], MB = B ⊗A(A/a) ∼= B/aB = B/ae , so the
natural map M → MB is essentially the map A/a→ B/ae induced by f , whose kernel is f −1(ae )/a = aec/a, which
we have noted is not zero.

Let A f−→ B g−→C be ring homomorphisms. If g ◦ f is flat and g is faithfully flat, then f is flat.
Let j : N ,→ M be an inclusion of A-modules. g ◦ f is flat, so jC : NC � MC is injective. Now

MC = C ⊗AM ∼= C ⊗B B ⊗AM ∼= (MB )C by (2.14.iv) and (2.15), and similarly for N . Since g is
faithfully flat, the canonical maps iN : NB → (NB )C and iM : MB → (MB )C are injective, and we have
the commutative diagram at right. fC is injective since g ◦ f is flat. If fB wasn’t an injection, iM ◦ fB
would not be injective. But iM ◦ fB = fC ◦ iN is a composition of injections.

NB
fB //

��
iN

��

MB
��
iM

��
(NB )C // fC

// (MB )C

Let f : A→ B be a flat homomorphism of rings, let q be a prime ideal of B and let p = qc . Then f ∗ : Spec(Bq)→ Spec(Ap) is
surjective.

Since for all s ∈ S := A\p we have f (s) /∈ q, f induces a map ef : Ap→ Bq taking a/s 7→ f (a)/ f (s). We also have
an A-algebra Bp = f (S)−1B , and since f (S)⊆ B\q=: T , [3.3] gives an isomorphism Bq = T −1B = U−1( f (S)−1B) =

U−1Bp, where U = {t/1 ∈ Bp : t ∈ T }. Now ef evidently factors through this ring: Ap → Bp → Bq. Since f is
flat, (3.10) says the map Ap → Bp is flat. Since Bq is a localization of Bp, by (3.6) the map Bp → Bq is flat. Then
[2.8.ii] shows that Bq is flat as an Ap-module. Now if p/s is an element of the maximal ideal pAp of Ap, we have
ef (p/s) = f (p)/ f (s) ∈ f (p)Bq ⊆ qBq, so it is not the case that (pAp)

e = (1). Then by [3.16.iii], Bq is faithfully flat
over Ap and the map f ∗ : Spec(Bq)→ Spec(Ap) is surjective

Let A be a ring, M an A-module. The support of M is defined to be the set Supp(M ) of prime ideals p of A such that Mp 6= 0.
Prove the following results:
i) M 6= 0 ⇐⇒ Supp(M ) 6=∅.

This follows from (3.8): M = 0 ⇐⇒ ∀p ∈ Spec(A) (Mp = 0).

ii) V (a) = Supp(A/a).
Let p ∈ Spec(A) and S = A\p. By [3.8] and (3.4.iii), we have (A/a)p ∼= S−1A/S−1a. This is non-zero just if

(1/1) = S−1A 6= S−1a, so that 1/1 6= a/s for any a ∈ a and s ∈ S. By definition, this means there is no t ∈ S such that
s t = at ∈ a∩ S. Redefining s ′ = st and a′ = at , without loss of generality t ′ = 1, so (A/a)p 6= 0 ⇐⇒ a∩ S =∅ But
since S =A\p, we have a∩ S 6=∅ ⇐⇒ a⊆ p ⇐⇒ p ∈V (a).
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iii) If 0→M ′→M →M ′′→ 0 is an exact sequence, then Supp(M ) = Supp(M ′)∪ Supp(M ′′).
Let p ∈ Spec(A). By (3.3), localization gives an exact sequence 0 → M ′p → Mp → M ′′p → 0. If p ∈ Supp(M ′),

then M ′p 6= 0 injects into Mp, so p ∈ Supp(M ). If p ∈ Supp(M ′′), then Mp surjects onto M ′′p 6= 0, so p ∈ Supp(M ). If
p /∈ Supp(M ′)∪ Supp(M ′′), then our exact sequence reduces to 0→ 0→Mp→ 0→ 0, so Mp = 0 and p /∈ Supp(M ).

iv) If M =
∑

Mi , then Supp(M ) =
⋃

Supp(Mi ).
The inclusions Mi ,→ M give rise to injections (Mi )p � Mp by (3.3). Thus if any (Mi )p 6= 0 we have Mp 6= 0,

so
⋃

Supp(Mi ) ⊆ Supp(M ). On the other hand, we have a natural surjection
⊕

Mi �
∑

Mi = M , and (see next
paragraph) localization distributes over direct sums, so by exactness again we have a surjection

⊕

(Mi )p�Mp. Thus
if all (Mi )p = 0, then Mp = 0.

To see localization distributes over direct sums, note

S−1
�

⊕

Mi

� (3.5)∼= S−1A⊗A

�

⊕

Mi

� [2.20]∼=
⊕

(S−1A⊗Mi )
(3.5)∼=

⊕

S−1Mi . (3.6)

Note that if we forgot tensor isn’t left exact (which I did, for a while), we would think we had counterexamples
to this. Consider Fp = Z/pZ and Q as Z-modules. Now Q is generated over Z by the elements 1

n , so it is a sum of

the submodules 1
nZ. Thus the elements zn = 1⊗ 1

n generate Fp⊗ZQ over Fp . In fact all are zero, since the generator

zn = p⊗ 1
pn = 0. We can view Fp ⊗ZQ as the direct limit of Mn = Fp ⊗Z

1
nZ along the maps Mn→Mmn induced by

1
mnZ ,→

1
nZ, and this shows that the map Mn→M pn is zero. Thus Fp ⊗ZQ= 0 has empty support. Now the cyclic

Fp -modules Mn are all isomorphic to Fp , for we have isomorphisms Mn
∼= 1

nZ/
p
nZ ∼= Z/pZ, which has support

{(0)}. If tensor were left exact, the inclusion 1
nZ ,→Q would induce an injection Mn�Fp ⊗ZQ= 0, and we would

have {(0)} ⊆∅, which is obviously false. In fact the induced map is 1⊗ 1
n 7→ zn = 0.

v) If M is finitely generated, then Supp(M ) =V (Ann(M )) (and is therefore a closed subset of Spec(A)).
Let x1, . . . , xn be generators for M . Then Axi are cyclic modules, so there are ai ÃA such that the maps a 7→ axi

induce isomorphisms A/ai
∼−→Axi . Since M =

∑

i Axi , by iv) and i) of this exercise, and [1.15.iv],

Supp(M ) =
⋃

Supp(Axi ) =
⋃

Supp(A/ai ) =
⋃

V (ai ) =V
�

⋂

ai

�

.

Now a ∈A annihilates M just if for each i we have axi = 0, and this happens exactly when a ∈ ai , so
⋂

ai =Ann(M )
and Supp(M ) =V (Ann(M )).

vi) If M , N are finitely generated, then Supp(M ⊗AN ) = Supp(M )∩ Supp(N ).
For any p ∈ Spec(A), (3.7) gives (M ⊗AN )p = Mp ⊗Ap

Np. Now the localizations Mp and Np are again finitely
generated modules over the local ring Ap, so [2.3] shows the tensor product is non-zero if and only if both factors
are nonzero. So p ∈ Supp(M ⊗AN ) just if p is in both Supp(M ) and Supp(N ).

vii) If M is finitely generated and a is an ideal of A, then Supp(M/aM ) =V (a+Ann(M ));
M/aM ∼= A/a⊗AM by (3.5), so by iv) we have Supp(M/aM ) = Supp(A/a)∩ Supp(M ). By ii) and v) above, and

[1.15.iii], this is V (a)∩V (Ann(M )) =V (a∪Ann(M )) =V (a+Ann(M )).

viii) If f : A→ B is a ring homomorphism and M is a finitely generated A-module, then Supp(B⊗AM ) = f ∗−1(Supp(M )).
Let q ∈ Spec(B), and p= qc . We show q ∈ Supp(MB ) ⇐⇒ p ∈ Supp(M ).

(B ⊗AM )q
(3.5)∼= Bq⊗AM

(2.14.iv)∼= (Bq⊗Ap
Ap)⊗AM

(2.15)∼=
(3.5)

Bq⊗Ap
Mp.

Now if Mp = 0, clearly (MB )q = 0. Thus we have the containment Supp(B ⊗AM )⊆ ( f ∗)−11(Supp(M )).
On the other hand, suppose 0 = (MB )q ∼= Bq ⊗Ap

Mp, and let x1, . . . , xn be generators of M over A. Then the
equations (1/1)⊗ (xi/1) = 0 hold in Bq⊗Ap

Mp By (2.13) there is a finitely generated Ap-submodule Ni ⊆ B where
already (1/1)⊗ (xi/1) = 0. Let N =

∑n
i=1 Ni ⊆ B ; then N is finitely generated, and (1/1)⊗ (x/1) = 0 in N⊗Ap

Mp for
all x ∈Mp, so N ⊗Ap

Mp = 0. But then by [2.3] we have either N = 0 or Mp = 0, and we have 1/1 ∈N , so Mp = 0.
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The⊆ containment holds for any module M , but the⊇ doesn’t necessarily hold for non-finitely generated mod-
ules. Here is an obvious counterexample, thanks to Angelo Vistoli3: Take f : A=Z�Z/pZ= B , for p > 0 a prime
number, and M =Q. Then B⊗AM = 0 since 1̄⊗1/1= 1̄⊗ p̄/p = p̄ ⊗ 1

p = 0̄⊗ 1
p = 0, and so Supp(MB ) = Supp(0) =∅

by i). On the other hand, Supp(M ) = Spec(Z) since no nonzero element of Z annihilates an element ofQ.4 Now the
only nontrivial ideal of B =Z/pZ is (0), and (0)c = f −1

�

(0)
�

= (p), so ( f ∗)−1(Spec(Z)) = {(0)} 6=∅.

To see the delicacy of the assumption of finite generation, it is illuminating to look at a failed proof and see what
goes wrong. First, suppose M =Ax ∼=A/a is cyclic. Then MB = B ⊗AM ∼= B/aB = B/ae by [2.2] and the definition
of the A-module structure on B . Thus Supp(MB ) =V (Ann(B/ae )) =V (ae ) by v), while Supp(M ) =V (Ann(A/a)) =
V (a). By (1.17.i) ae ⊆ q =⇒ a⊆ aec ⊆ qc = p, while a⊆ p= qc =⇒ ae ⊆ qc e ⊆ q, so Supp(MB ) = ( f

∗)−1(Supp(M ))
for M cyclic. Now suppose M is generated over A by some xi , so MB is generated over B by the 1 ⊗ xi . Write
ai =AnnA(xi ). Now, using the cyclic case at the line break,

Supp(MB ) = Supp
�

∑

B(1⊗ xi )
�

iv)
=
⋃

Supp(B(1⊗ xi ))
?=
⋃

Supp(B ⊗AAxi )

=
⋃

( f ∗)−1(Supp(Axi )) = ( f
∗)−1

�

⋃

Supp(Axi )
�

iv)
= ( f ∗)−1(Supp(M )).

What goes wrong is the step labeled with a question mark, for tensor is not left exact! The map B ⊗AAxi → B ⊗AM
induced by the inclusion Axi ,→M need not be injective, so the support of the submodule of MB generated by 1⊗ xi
can easily be smaller than Supp(B⊗AAxi ). This happens, for example, in our “counterexample” in iv), where M =Q,
A=Z, and B = Fp , using that 0= Fp · (1⊗

1
nZ) is not Fp ⊗Z

1
nZ∼= Fp ⊗ZZ∼= Fp :

∅= SuppFp

�

∑

Fp · (1⊗ 1/n)
�

iv)
=
⋃

SuppFp
(Fp · (1⊗ 1/n))⊆

⋃

SuppFp
(Fp ⊗Z(1/n)Z) =

⋃

SuppFp
(Fp ⊗ZZ)

=
⋃

( f ∗)−1(SuppZ(Z)) = ( f
∗)−1({Spec(Z)}) = ( f ∗)−1({(p)}) = {(0)}.

This point may not be that subtle, but it eluded me for longer than I care to admit.

Let f : A→ B be a ring homomorphism, f ∗ : Spec(B)→ Spec(A) the associated mapping. Show that
i) Every prime ideal of A is a contracted ideal ⇐⇒ f ∗ is surjective.

By definition, f ∗ is surjective if and only if for every p ∈ Spec(A) there is q ∈ Spec(B) such that p= f ∗(q) = qc ,
meaning every prime ideal of A is a contracted ideal.

ii) Every prime ideal of B is an extended ideal =⇒ f ∗ is injective.
Suppose q1 = ae

1 and q2 = ae
2 are prime ideals of B whose images under f ∗ are equal. That means, by the definition

of f ∗, that aec
1 = qc

1 = qc
2 = aec

2 . But then extending again, and using (1.17.ii), we get q1 = ae
1 = aec e

1 = aec e
2 = ae

2 = q2.

Is the converse of ii) true?
No. Note that we always have qc e ⊆ q, so the trick will be to sabotage all extensions of primes so that they are

not themselves prime, and the containment is proper. Let A be a ring and consider the ring5 A[ε] := A[x]/(x2).
Since there is a quotient map π : A[ε]� A with kernel (ε), each prime p Ã A gives rise to a distinct prime π−1(p)
of A[ε] containing (ε). Since ε2 = 0, all primes of A[ε] contain (ε), so these are all the primes of A[ε]. We can
write them as p+ = π−1(p) = pA+ (ε). Now consider the inclusion j : A → A[ε]. Then for a prime p Ã A we
have pe = pA[ε] = pA+ pε. This ideal is not prime, since A[ε]/pe ∼= (A/p)[ε] is not a domain. The prime ideals
p+ properly contain pe . Thus no extended ideal pe is prime, and no prime ideal p+ is extended. On the other hand
j ∗ : p+ 7→ p is a bijective function Spec(A[ε])↔ Spec(A).

3 http://mathoverflow.net/questions/50406/extension-of-scalars-and-support-of-a-non-finitely-generated-module
4 In fact S−1Q∼=Q for any S =Z\q, by the map φ : S−1Z⊗ZQ∼= S−1Q→Q taking n

s ⊗
a
b 7→

na
b s . To see injectivity, note that in S−1Z⊗ZQ

we have n
s ⊗

a
b =

1
s ⊗

na
b =

1
s ⊗

s na
sb =

1
1 ⊗

na
sb , so any sum of decomposable elements ni

si
⊗ ai

bi
can be written as 1⊗ z, where z =

∑

i
ni ai
si bi

, and

then φ(1⊗ z) = z = 0 ⇐⇒ 1⊗ z = 0. φ is surjective since 1/1 ∈ S−1Z.
5 of “dual numbers”: cf. http://en.wikipedia.org/wiki/Dual_numbers
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i) Let Abe a ring, S a multiplicatively closed subset of A, andφ : A→ S−1Athe canonical homomorphism. Show thatφ∗ : Spec(S−1A)→
Spec(A) is a homeomorphism of Spec(S−1A) onto its image in X = Spec(A). Let this image be denoted by S−1X.
In particular, if f ∈A, the image of Spec(Af ) in X is the basic open set Xf (Chapter 1, Exercise 17).

The one-to-one correspondence given by (3.11.iv) is a bijection between Y = Spec(S−1A) and S−1X = {p ∈X : p∩
S =∅}, given by contractionφ∗ and extension of prime ideals. In particular, pec = p for primes p⊆A\S.6 By [1.21.i],
φ∗ is continuous. Since all ideals of S−1A are extended ideals by (3.11.i), to prove φ∗|S−1X is a homeomorphism onto
its image, it is enough to show φ∗ sends a non-empty closed set V (ae ) ⊆ Y to the closed subset V (a)∩ S−1X ⊆ X.
Indeed, if a⊆ p⊆A\S, then ae ⊆ pe 6= (1), and if ae ⊆ pe 6= (1), then a⊆ aec ⊆ pec = p.

Now let S = {1, f , f 2, . . .} for some f ∈ A. Then S−1p ∈ Spec(Af ) just if p∩ S = ∅, and since p is prime, this
happens just if f /∈ p, so that p ∈Xf .

ii) Let f : A→ B be a ring homomorphism. Let X = Spec(A) and Y = Spec(B), and let f ∗ : Y → X be the mapping
associated with f . Identifying Spec(S−1A) with its canonical image S−1X in X, and Spec(S−1B) (= Spec( f (S)−1B)) with
its canonical image S−1Y in Y , show that S−1 f ∗ : Spec(S−1B)→ Spec(S−1A) is the restriction of f ∗ to S−1Y , and that
S−1Y = f ∗−1(S−1X ).

Let q ∈ Y . Then f (S) ∩ q 6= ∅ ⇐⇒ ∃s ∈ S
�

f (s) ∈ q
�

⇐⇒ ∃s ∈ S
�

s ∈ f −1(q)
�

⇐⇒ S ∩ f −1(q) 6= ∅, so
q ∈ S−1Y ⇐⇒ f ∗(q) ∈ S−1X ⇐⇒ q ∈ ( f ∗)−1(S−1X ), showing S−1Y = ( f ∗)−1(S−1X ).

S−1q � //
_

(S−1 f )∗

��

q_

f ∗

��
S−1

�

f −1(q)
� � // f −1(q)

Spec(S−1B) ≈

(φ∗f (S))
−1

//

(S−1 f )∗

��

S−1Y �
� //

f ∗

��

Spec(B)

f ∗

��
Spec(S−1A) ≈

(φ∗S )
−1

// S−1X �
� // Spec(A)

Now S−1 f : S−1A→ S−1B is given by a
s 7→

f (a)
f (s) . Let q ∈ S−1Y and a/s ∈

S−1A. We have

a
s
∈ (S−1 f )−1(S−1q) ⇐⇒ ∃q ∈ q ∃t ∈ S

�

f (a)
f (s)

=
q

f (t )

�

⇐⇒ ∃u, t ∈ S ∃q ∈ q [ f (u t a) = f (u s)q ∈ q].

This certainly is the case if f (a) = q ∈ q (take t = s and u = 1), and if
f (a) /∈ q, then since f (S)∩ q = ∅ we have f (Sa)∩ q = ∅ (q being prime), so
a/s /∈ (S−1 f )−1(S−1q). Thus (S−1 f )−1(S−1q) = S−1

�

f −1(q)
�

, giving the com-
mutative diagrams at left.

iii) Let a be an ideal of A and let b= ae be its extension in B. Let f̄ : A/a→ B/b be the homomorphism induced by f . If
Spec(A/a) is identified with its canonical image V (a) in X, and Spec(B/b) with its image V (b) in Y , show that f̄ ∗ is
the restriction of f ∗ to V (b).

Let q ∈ V (b). Then a ⊆ aec = bc ⊆ qc = f ∗(q), so f ∗(V (b)) ⊆ V (a). Now
write π : A� A/a and $ : B � B/b. Then by definition, f̄

�

π(a)
�

= f (a) + b =
$
�

f (a)
�

, so f̄ ◦π=$◦ f . Taking ∗’s and using [1.21.vi],π∗◦ f̄ ∗ = f ∗◦$∗, giving
the commutative diagram at right.

Spec(B/b) $
∗

≈
//

f̄ ∗

��

V (b) �
� //

f ∗

��

Spec(B)

f ∗

��
Spec(A/a) π∗

≈
// V (a) �

� // Spec(A)

iv) Let p be a prime ideal of A. Take S =A\p in ii) and then reduce mod S−1p as in iii). Deduce that the subspace f ∗−1(p)
of Y is naturally homeomorphic to Spec(Bp/pBp) = Spec(k(p)⊗AB), where k(p) is the residue field of the local ring Ap.
Spec(k(p)⊗A B) is called the fiber of f ∗ over p.

Making the identifications of ii) and iii), we have the commutative diagram at right.
Now k(p) = Ap/pAp is a field, so its prime spectrum is {(0)}. Following the definitions
of the inclusions, we see Spec(k(p)) corresponds to the set of primes in Spec(Ap) that
contain pAp, which in turn corresponds to the set of primes in Spec(A) that are contained
in p and contain p, or in other words the singleton {p}. Thus Spec(Bp/pBp) is identified
with the preimage ( f ∗)−1(p) of p. Now writing T = (A/p)\{0} for the image

Spec(Ap/pAp)� _

��

Spec(Bp/pBp)� _

��

( fp)
∗
oo

Spec(Ap)� _

��

Spec(Bp)� _

��

( fp)
∗

oo

Spec(A) Spec(B)
f ∗

oo
of S =A\p in A/p, we have

k(p)⊗AB = (Ap/pAp)⊗AB
(3.4.iii)∼= (A/p)p⊗AB

[3.4]∼= T −1(A/p)⊗AB
(3.5)∼= T −1(A/p)⊗A/pA/p⊗AB

[2.2]∼= T −1(A/p)⊗A/pB/pB
(3.5)∼= T −1(B/pB)

[3.4]∼= S−1(B/pB)
(3.4.iii)∼= Bp/pBp.

6 by (3.11.ii), pec =
⋃

s∈S (p : s), and since S ∩ p=∅, we have sa ∈ p ⇐⇒ a ∈ p, and pec = p. This is closely related to (3.16).
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Let A be a ring and p a prime ideal of A. Then the canonical image of Spec(Ap) in Spec(A) is equal to the intersection of all the
open neighborhoods of p in Spec(A).

Write S = A\p. The canonical image S−1X of Spec(Ap) in Spec(A) is the set of primes q Ã A that don’t meet
A\p, or in other words are contained in p. By [1.17], the basic open sets Xf form a basis of Spec(A), so every open
neighborhood of p contains some Xf , and the intersection of all open neighborhoods of p is Z :=

⋂

{Xf : p ∈Xf }.

Now if p ∈Xf , we have f /∈ p, so for any prime q⊆ p we a fortiori have f /∈ q; so every open set Xf 3 p we have
S−1X ⊆Xf . Thus S−1X ⊆ Z . On the other hand, suppose q /∈ S−1X. Then q meets S =A\p, so there exists f ∈ q\p.
Then p ∈Xf but q /∈Xf , and therefore q /∈ Z . Thus Z ⊆ S−1X.

Let A be a ring, let X = Spec(A) and let U be a basic open set in X (i.e., U =Xf for some f ∈A: Chapter 1, Exercise 17).
i) If U =Xf , show that the ring A(U ) =Af depends only on U and not on f .

Write S f = {1, f , f 2, . . .}, and note that p ∈ Xf ⇐⇒ f /∈ p ⇐⇒ S f ∩ p = ∅, since p is prime. Recall ([3.7.ii])
that the saturation S f is defined to be the complement of the union of all prime ideals which do not meet S f , so that

T := S f = Sg . Recall the natural homomorphisms ρT
f : Af → T −1A and ρT

g : Ag → T −1A of [3.2], and that, by [3.8],

since T is the saturation of S f and of Sg , these maps are isomorphisms. Then ρg
f

:= (ρT
g )
−1 ◦ρT

f is an isomorphism

Af
∼−→Ag , and we have the following commutative diagram:

A
φ f

""

φg

}}
φT
��

Af
∼

ρT
f

// T −1A Ag .∼

ρT
g

oo

Since φ f is an epimorphism (Eq. 3.1 in [3.3]) it follows from the commutativity of the two small triangles that
ρg

f : Af → Ag is the unique isomorphism of the two rings making the big triangle commute: φg = ρ
g
f ◦φ f . Thus
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A(U ) is unique up to a unique isomorphism.7

ii) Let U ′ = Xg be another basic open set such that U ′ ⊆ U . Show that there is an equation of the form g n = u f for
some integer n > 0 and some u ∈ A, and use this to define a homomorphism ρ : A(U ) → A(U ′) (i.e., Af → Ag ) by
mapping a/ f m to au m/g mn . Show that ρ depends only on U and U ′. This homomorphism is called the restriction
homomorphism.

If Xg ⊆ Xf , then by definition every prime p not containing g doesn’t contain f .8 By de Morgan’s laws, every
prime containing f contains g . Intersecting these sets of primes, by (1.14) we have g ∈ r

�

(g )
�

⊆ r
�

( f )
�

. Thus there

7 An alternate, more direct proof not using saturation is as follows.
If Xf = Xg , by [1.17.iv], r

�

( f )
�

= r
�

(g )
�

. In particular, f ∈ r
�

(g )
�

and g ∈ r
�

( f )
�

, so there are u, v ∈ A and n, m > 0 such that g n = u f and
f m = vg .

By (3.2), φg will induce a unique isomorphism ρ : Af →Ag such that φg = ρ ◦φ f : A→Af →Ag just if

• For all n ≥ 0, we have
f n

1
a unit of Ag ;

• φg (c) =
c
1
= 0 =⇒ ∃n ≥ 0 [ f n c = 0];

• Every element of Ag is of the form
c
1

�

f k

1

�

.

To prove the first item it will suffice to show f /1 is a unit in Ag . But u f = g n in A, so (u/g n)( f /1) = 1/1 in Ag , so that f /1 has inverse u/g n .
Note that also (u/1)( f /g n), so u/1 is a unit of Ag as well.

For the second item, suppose a/1 = 0 in Ag . Then by definition there is k ≥ 0 such that g k a = 0 in A. Multiplying by vn g n−k we get
f mnc = vnu f a = vn g na = 0.

For the third item, note that since f m = v g in A, we have ( f m/1)(1/g ) = v/1 in Ag . Multiplying by ( f /1)−m , we see 1/g = (v/1)( f /1)−m in

Ag . Thus an arbitrary element a/g l of Ag can be written as (av l /1)( f /1)−l m .

Yet another proof, this time not using universal properties or saturations, follows. I include it because I took the time to work it out, but the
reader is advised to skip it.

Define ρ
g
f : Af →Ag by c/ f k 7→ c( f ′)k and ρ f

g : Ag →Af by c/g k 7→ c(g ′)k , where f ′ = u/g n and g ′ = v/ f m Then

(ρ f
g ◦ρ

g
f )
�

c
f k

�

= ρ f
g

�

cuk

g kn

�

=
cukvkn

f k mn
.

But cukvkn/ f k mn = c/ f k in Af , for

f kcukb kn = c(u f )k vkn = c g kn vkn = c(v g )kn = c f k mn

in A. Symmetrically ρ
g
f ◦ρ f

g = idAg
. It remains to show these maps are well-defined homomorphisms. By symmetry, it will suffice to do so for

ρ
g
f . Suppose c/ f k = d/ f l in Af . Then by definition there is p ≥ 0 such that f p f lc = f p f kd . For ρ

g
f to be well-defined we require that

cuk

g kn
= ρg

f

�

c
f k

�

= ρg
f

�

d
f l

�

=
du l

g ln

in Ag . But this means, by definition, there is q ≥ 0 such that

c f l g q uk+l = g q (u f )lcuk = g q g lncuk = g q g kndu l = g q (u f )kdu l = d f k g q uk+l

in A. Take q = pn. Then, as hoped,

cf l g pn uk+l = c f l(u f )p uk+l = (c f l f p )uk+l+p = (d f k f p )uk+l+p = d f k(u f )p uk+l = d f k g pn uk+l .

By definition, ρ
g
f is multiplicative, for we have

ρ
g
f

�

c
f k

�

ρ
g
f

�

d
f l

�

= c( f ′)k d ( f ′)l = (cd )( f ′)k+l = ρg
f

�

c
f k
· d

f l

�

.

Finally, for additivity, note that

ρ
g
f

�

c
f k
+

d
f l

�

= ρg
f

�

c f l + d f k

f k+l

�

= (c f l + d f k )( f ′)k+l =
(c f l + d f k )uk+l

g n(k+l )
;

ρ
g
f

�

c
f k

�

+ρg
f

�

d
f l

�

= c( f ′)k + d ( f ′)l =
cuk

g nk
+

du l

g nl
=

cuk g nl + du l g nk

g n(k+l )
=

cuk (u f )l + du l (uf )k

g n(k+l )
.

8 From this, we see that the union of primes not meeting Sg = {1, g , g 2, . . .} is a subset of the union of primes not meeting S f , so by the

definition of saturation in [3.7.ii], we have S f ⊆ Sg , so [3.3] and [3.8] give us a unique homomorphism S f
−1A → Sg

−1A commuting with
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is n > 0 so that g n ∈ ( f ). Then for some u ∈A, g n = u f . To define a unique homomorphism ρ : Af →Ag such that
φg = ρ ◦φ f : A→ Af → Ag , by (3.1) it suffices to show that φg ( f ) = f /1 (and hence φg ( f

n)) is a unit. But since
g n = u f in A we have ( f /1)(u/g n) = 1 in Ag . Thus a unique ρg

f : Af →Ag exists such that φg = ρ
g
f ◦φ f and it must

take 1/ f 7→ u/g n so that ( f /1)ρ(1/ f ) = 1/1.
To show uniqueness, suppose ρ f

f ′ : Af ′
∼−→Af and ρg ′

g : Ag
∼−→Ag ′ are canonical isomor-

phisms, commuting with the canonical maps φ from A, and let ρg
f and ρg ′

f ′ be the unique
maps given in the preceding paragraph. Canonicity means that all the triangles in the dia-
gram at right commute. That “ρ depends only on U and U ′” can mean nothing stronger
than that the outer square commutes. Now

ρg ′

f ′ ◦φ f ′ =φg ′ = ρ
g ′
g ◦φg = ρ

g ′
g ◦ρ

g
f ◦φ f = ρ

g ′
g ◦ρ

g
f ◦ρ

f
f ′ ◦φ f ′ .

Af

ρg
f // Ag

ρg ′
g∼

��

A
φ f

__
φg

??

φ f ′��

φg ′

��
Af ′

ρ f
f ′
∼

OO

ρg ′

f ′

// Ag ′

As φ f ′ is an epimorphism (Eq. 3.1 in [3.3] again), ρg ′

f ′ = ρ
g ′
g ◦ρ

g
f ◦ρ

f
f ′.

iii) If U =U ′, then ρ is the identity map.
ρU

U = idA(U ) satisfies the equation φU = ρU
U ◦φU , and is unique since φU is an epimorphism by Eq. 3.1 of [3.3].

iv) If U ⊇U ′ ⊇U ′′ are basic open sets in X, show that the diagram

A(U ) //

$$

A(U ′′)

A(U ′)

99

(in which the arrows are restriction homomorphisms) is commutative.

S−1A

ρT
S !!

ρV
S

��

T −1A

ρV
T !!

A

φS

OO

φT

==

φV

// V −1A

Recall that [3.3] and [3.8] give us, for multiplicatively submonoids S ⊆ T ⊆ A
unique homomorphisms ρT

S : S−1A→ T −1A such that φT = ρ
T
S ◦φS , where φS : A→

S−1A is the epimorphic (Eq. 3.1) canonical map. If S ⊆ T ⊆ V ⊆ A are multiplicative
submonoids, we have

φV = ρ
V
T ◦φT = ρ

V
T ◦ρ

T
S ◦φS ,

but ρV
S ◦φS =φV as well, so sinceφS is epimorphic, ρV

T ◦ρ
T
S = ρ

V
S . Now let U =X f ⊇

U ′ =X f ′ ⊇U ′′ =X f ′′ and S = S f ⊆ T = S f ′ ⊆V = S f ′′ , and use ii).

v) Let x (= p) be a point of X. Show that
lim−→
U3x

A(U )∼=Ap.

Let, again, S =A\p. For f , g ∈ S, write f ≤ g if r
�

(g )
�

⊆ r
�

( f )
�

, or equivalently if Xg ⊆Xf . This makes S into
a directed pre-order, for

• r
�

( f )
�

⊆ r
�

( f )
�

=⇒ f ≤ f ,

• f ≤ g ≤ h implies r
�

(h)
�

⊆ r
�

(g )
�

⊆ r
�

( f )
�

, which implies f ≤ h, and

• if f , g ∈ S we have f g ∈ S, and r
�

( f g )
�

⊆ r
�

( f )
�

∩ r (
�

g )
�

.

Now one can take direct limits over directed pre-orders, but the result is the same if we collapse the pre-order to its
skeleton, or arbitrarily take one element in each equivalence class, where f ≡ g ⇐⇒ f ≤ g ≤ f , and then take the
direct limit. Since we defined direct limits over partial orders, let’s do that. For each basic open set U , take just one
representative f such that U = Xf . The uniqueness from part ii) makes our choice, up to a unique isomorphism,
irrelevant. Then the restricted pre-order (S ′, ≤) is a directed set. Consider the system B= (Af , ρg

f ) f , g∈S ′ , where the
restriction map ρg

f of ii) is defined if f ≤ g . Now S ′ is a directed set and parts iii) and iv) of this exercise give axioms

the maps φ from A. Recall that [3.8] gives us unique isomorphisms Af
∼−→ S f

−1A and Sg
−1A

∼−→ Ag commuting with the φ; letting ρg
f

be the

composition Af
∼−→ S f

−1A→ Sg
−1A

∼−→Ag , we have a unique ring homomorphism Af →Ag such that φg = ρ
g
f
◦φ f . But this doesn’t give us an

explicit expression for the homomorphism.
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(1) and (2) of [2.14] defining compatibility conditions for maps in a direct system. Thus B is a direct system. Write
B = lim−→B for the limit, and ρ f : Af → B for the canonical map.

Now for each f ∈ S ′ we have S f = {1, f , f 2, . . .} ⊆ S, so by [3.3] and [3.8] there is a unique map σ f := ρS
f : Af =

S−1
f A→ S−1A=Ap such that σ f ◦φ f =φS . If f ≤ g ∈ S ′, then

σg ◦ρ
g
f ◦φ f = ρ

S
g ◦ρ

g
f ◦φ f = ρ

S
f ◦φ f = σ f ◦φ f ,

where the middle equality comes from the slightly generalized version of part iv), and then since φ f is an epimor-
phism (Eq. 3.1 of [3.3]), σg ◦ρ

g
f = σ f . Since the σ f meet this compatibility condition, by [2.16], there then exists a

unique ring map σ : B→Ap such that σ ◦ρ f = σ f for all f ∈ S ′. It remains to show σ is a bijection.
Let b ∈ B be such that σ(b ) = 0 in Ap. By [2.15] there is some f ∈ S ′ such that b has a representative in Af , so let

a ∈ A and n ≥ 0 be such that ρ f (a/ f n) = b . Then we have 0= σ(b ) = σ(ρ f (a/ f n)) = σ f (a/ f n) = ρS
f (a/ f n). That

means that considered as an element of Ap we have a/ f n = 0, so by [3.1] there is s ∈A\p= S such that sa = 0 in A.

But then in As f we have ρs f
f (a/ f n) = as n/(s f )n = 0, so

b = ρ f (a/ f n) = ρs f (ρ
s f
f (a/ f n)) = ρs f (0) = 0,

showing σ is injective.
Let any element a/s ∈ S−1A= Ap be given. Then a/s ∈ As is of course such that ρS

s (a/s) = a/s , and if we let
b = ρs (a/s), then

σ(b ) = σ(ρs (a/s)) = σs (a/s) = ρS
s (a/s) = a/s .

Therefore σ is surjective, completing the proof.

The assignment of the ring A(U ) to each basic open set U of X, and the restriction homomorphisms ρ, satisfying the
conditions iii) and iv) above, constitutes a presheaf of rings on the basis of open sets (Xf ) f∈A. v) and iv) says that the stalk
of this presheaf at x ∈X is the corresponding local ring Ap.

Complete the description of a presheaf structure on X = Spec(A), by defining A(U ) for all open subsets U ⊆X, not just basic ones.

Let V ⊆ X be an arbitrary open set, and let {X fi
}i∈I be all the basic open sets contained in V . Let Si be the

saturation of {1, fi , f 2
i , . . .}, so that Si = A \

⋃

Ui by [3.7.ii]. By [3.8] we have a canonical isomorphism A(Ui ) ∼=
S−1

i A. Then SV =
⋂

i∈I S j is a saturated set since it contains 1, and

xy ∈ SV ⇐⇒ ∀i ∈ I (xy ∈ Si ) ⇐⇒ ∀i ∈ I (x ∈ Si & y ∈ Si ) ⇐⇒ x ∈ SV & y ∈ SV .

Now
SV =

⋂

i∈I

�

A\
⋃

p∈Ui

p
�

=A\
⋃

i∈I

⋃

p∈Ui

p=A\
⋃

n

p : p ∈
⋃

i∈I

Ui

o

=A\
⋃

p∈V

p. (3.7)

Define A(V ) := S−1
V A. If W ⊆ V is a smaller open set, Eq. 3.7 shows that SV ⊆ SW , so [3.3] and [3.8] give us a

natural restriction map ρW
V : A(V )→ A(W ). [23.iii,iv] show that these maps define a presheaf, and [3.8] shows this

definition agrees with the other one if V is a basic open set. Since every open set contains a basic open set, the rings
A(Uf ) are cofinal in the A(V ), so the direct limits Ap

∼= lim−→V3p
A(V )∼= lim−→Uf 3p

A(Uf ) are isomorphic and stalks are
unchanged.

Show that the presheaf of Exercise 23 has the following property. Let (Ui )i∈I be a covering of X by basic open sets. For each i ∈ I
let si ∈ A(Ui ) be such that, for each pair of indices i , j , the images of si and s j in A(Ui ∩Uj ) are equal. Then there exists
a unique s ∈A (=A(X )) whose image in A(Ui ) is si , for all i ∈ I . (This essentially implies that the presheaf is a sheaf.)

Let Ui =X fi
. By [1.17.v], X is compact , so there are finitely many U1, . . . , Un covering X. Thus

X \
n
⋂

i=1

V ( fi ) =
n
⋃

i=1

�

X \V ( fi )
�

=
n
⋃

i=1

X fi
=X .
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By [1.15.iii,i], ∅ =
⋂n

i=1 V ( fi ) =
�

∑n
i=1( fi )

�

, so no maximal ideal contains
∑n

i=1( fi ), which then must be (1). Fix

m ≥ 1. (1.16) shows that for any ideals a, b Ã A, if a+ b = (1), then am + b = (1), since a ⊆ r (am). Applying this
repeatedly to the sum

∑n
i=1( fi ) = (1), taking a= ( f1), then ( f2), etc., we see

∑n
i=1( f

m
i ) = 1, so there are ai ∈ A such

that
n
∑

i=1

ai f m
i = 1. (3.8)

We first show uniqueness of s ∈A, assuming it exists. If s and s ′ both meet the conditions, then ρUi
X (s) = ρ

Ui
X (s

′)
for each canonical restriction map ρUi

X = φi : A→ A(Ui ), so ρUi
X (s − s ′) = 0. We want to show t = s − s ′ is zero.

Now t ∈ ker(ρUi
X ) if and only if, by [3.1], for some number mi ≥ 0 we have f mi

i t = 0. Let m = maxn
i=1 mi , so for

i = 1, . . . , n we have f m
i t = 0. Multiplying t by the expression Eq. 3.8 for 1, we get

t = 1t =
n
∑

i=1

ai f m t =
n
∑

i=1

ai · 0= 0.

Now we must show existence. We initially restrict attention to the open cover {U1, . . . , Un}. Suppose si ∈ Afi

is given by b ′i / f mi
i . Let m = maxn

i=1 mi . Then setting bi = b ′i f m−mi
i , we have si = (b

′
i / f mi

i )( fi/ fi )
m−mi = bi/ f m

i .
Write gi = f m

i .9 Now X fi
∩X f j

=X fi f j
by [1.17.i], and the images bi/gi = b j/g j in Afi f j

just if there is mi j ≥ 0 such
that (gi g j )

mi j g j bi = (gi g j )
mi j g m

i b j . (If X fi f j
= ∅, then fi f j is nilpotent, by [1.17.ii], and then 1/1 = ( fi f j/ fi f j ) is

nilpotent, so 1= 0 ∈Afi gi
and the restrictions agree trivially.) Take p =maxi , j mi j ; then

g p
i g p+1

j bi = g p+1
i g p

j b j . (3.9)

We want to find an s such that s/1= bi/gi in each Afi
, meaning there exists k such that g k+1

i s = g k
i (s gi ) = g k

i bi in
A. In an attempt to make this work and find s , fix j , take Eq. 3.8, with m to be determined later, and multiply both
sides by g k

j b j . Then

g k
j b j =

n
∑

i=1

ai b j g k
j g m

i .

We want to use Eq. 3.9 to get one more g j on the right-hand side, so we should require m ≥ p+ 1 and k ≥ p. Then

g k
j b j =

n
∑

i=1

ai (b j g p
j g p+1

i )g k−p
j g m−p−1

i
Eq. 3.9
=

n
∑

i=1

ai (bi g p+1
j g p

i )g
k−p
j g m−p−1

i = g k+1
j

n
∑

i=1

ai bi g m−1
i .

In particular, k = p and m = p+1 work. Then if we take s =
∑n

i=1 ai bi g p
i , we have g p

j b j = g p+1
j s for all j = 1, . . . , n,

so this s satisfies ρ
Uj

X (s) = s j , as hoped.
Now let Ui =V =Xh be an arbitrary element of the initial cover (hence not necessarily one of U1, . . . , Un). We

must show ρV
X = si =: t . Now W j =Uj ∩V , for j = 1, . . . , n, are by [1.17.i] also basic open sets, and by assumption

ρ
W j

V (t ) = ρ
W j

Uj
(s j ) = ρ

W j

X (s)
[3.23.iv]
= (ρ

W j

V ◦ρ
V
X )(s).

Thus ρ
W j

V (t −ρ
V
X (s)) = 0 for j = 1, . . . , n. But the W j cover Xh = Spec(Ah ). Now by the uniqueness clause above,

applied to Ah instead of Aand the open cover W j instead of Uj , and implicitly using the isomorphisms (Ah ) f j /1
∼=Ah f j

,

we have t = ρV
X (s).

9 Though a posteriori it seems natural, the substitution of gi for fi and the conditions on k , m later I learned from looking over Jinhyun
Park’s solution: http://mathsci.kaist.ac.kr/~jinhyun/sol2/comm.html.
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Let f : A→ B, g : A→C be ring homomorphisms and let h : A→ B ⊗AC be defined by h(x) = f (x)⊗ g (x). Let X, Y , Z, T be
the prime spectra of A, B, C , B ⊗AC respectively. Then h∗(T ) = f ∗(Y )∩ g ∗(Z).

The first thing is to note that, as on p. 31, the suggested map h is not an A-algebra homomorphism. See [2.23].
Instead define h : a 7→ f (a)⊗ 1= 1⊗ g (a).

That out of the way, let p ∈X and write k =Ap/pAp. We have

p ∈ h∗(T ) ⇐⇒ ∅ 6= (h∗)−1(p)
[3.21.iv]
≈ Spec(k ⊗AB ⊗AC )

(2.14.i,ii)
≈ Spec(B ⊗Ak ⊗AC )

(2.14.i)
≈ Spec(B ⊗A(k ⊗k k)⊗AC )

(2.15)
≈ Spec

�

(B ⊗Ak)⊗k (k ⊗AC )
�

Now the only ring with empty spectrum is the zero ring, and a tensor product of vector spaces is nonzero just if
each factor is nonzero. Thus p ∈ h∗(T ) just if k⊗AB and k⊗AC are nonzero. By [3.21.iv] again, this happens just if
p ∈ f ∗(Y ) and p ∈ g ∗(Z).

Let (Bα, gαβ) be a direct system of rings and B the direct limit. For each α, let fα : A→ Bα be a ring homomorphism such that
gαβ ◦ fα = fβ whenever α≤β (i.e. the Bα form a direct system of A-algebras). The fα induce f : A→ B. Show that

f ∗
�

Spec(B)
�

=
⋂

α

f ∗α
�

Spec(Bα)
�

.

To see the map f is well defined, choose any α and define f (a) = gα( fα(a)), where gα : Bα → B is the canonical
map in the definition of the direct limit. Suppose γ ≥ α. Then

gα ◦ fα
[2.14]
= gγ ◦ gαγ ◦ fα = gγ ◦ fγ

Thus, for any α, β, find γ ≥ α, β; then gα ◦ fα = gγ ◦ fγ = gβ ◦ fβ, so the definition is independent of α.
Let p ∈ Spec(A) be given, and set k = Ap/pAp. Recall from [2.20] that lim−→(Bα ⊗Ak) ∼= B ⊗Ak, so the two have

homeomorphic spectra. Now by [3.21.iv], p ∈ f ∗
�

Spec(B)
�

just if Spec(B⊗Ak) 6=∅ just if k⊗AB 6= 0. On the other
hand p ∈ f ∗α

�

Spec(Bα)
�

just if k ⊗ABα 6= 0. Now by [2.21], k ⊗AB = 0 just if for some α, k ⊗ABα = 0.

i) Let fα : A→ Bα be any family of A-algebras and let f : A→ B be their tensor product over A (Chapter 2, Exercise 23). Then

f ∗
�

Spec(B)
�

=
⋂

α

f ∗α
�

Spec(Bα)
�

.

Recall from [2.23] that B = lim−→BJ , where each J is a finite set of α’s, BJ =
⊗A

α∈J Bα, and if J = {α1, . . . , αm} and
I = J ∪{αm+1, . . . , αn}we define gJ I (b1⊗· · ·⊗bn) = b1⊗· · ·⊗bn⊗1⊗· · ·⊗1. For each J , fJ : a 7→ fα1

(a)⊗1⊗· · ·⊗1=
a(1⊗· · ·⊗1) defines an A-algebra homomorphism A→ BJ independent of the apparent choice of non-1 coordinate by
the definition of the tensor product. Now we are in the situation of [3.26], and f ∗

�

Spec(B)
�

=
⋂

J f ∗J
�

Spec(BJ )
�

. But
by iterated application of [3.25], we have f ∗J

�

Spec(BJ )
�

=
⋂

α∈J f ∗α
�

Spec(Bα)
�

, so f ∗
�

Spec(B)
�

=
⋂

J f ∗J
�

Spec(BJ )
�

.
(To consider only singletons J = {α} is strictly speaking insufficient since without [3.25], we don’t know for I 3 α
what relation exists between f ∗I

�

Spec(BI )
�

and f ∗α
�

Spec(Bα)
�

.)

ii) Let fα : A→ Bα be any finite family of A-algebras and let B =
∏

α Bα. Define f : A→ B by f (x) = ( fα(x)). Then
f ∗
�

Spec(B)
�

=
⋃

α f ∗α
�

Spec(Bα)
�

.
Recall [1.22]: if eα has α-coordinate 1 and other coordinates 0, and bÃ B , then b=

∑

beα, and, writing πα : B�
Bα for the canonical projection, B/b∼=

∏

Bα/πα(b), so pÃ B is prime just if it is of the form p+α = pαeα+
∑

β 6=α(eβ)
for some α and some prime pα Ã Bα. Recall that this gives a homeomorphism between Spec(B) and the disjoint
union of the Spec(Bα). Now

f −1(p+α) = f −1�{b = (bα) ∈ B : ∃a ∈A∀β ( fβ(a) = bβ & fα(a) = bα ∈ pα)}
�

= {a ∈A : fα(a) ∈ pα}= f −1
α (pα), so

f ∗
�

Spec(B)
�

=
⋃

α

{ f −1(p+α) : pα ∈ Spec(Bα)}=
⋃

α

{ f −1
α (pα) : pα ∈ Spec(Bα)}=

⋃

α

f ∗α
�

Spec(Bα)
�

.
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Ex. 3.28 Chapter 3: Rings and Modules of Fractions

iii) Hence the subsets of X = Spec(A) of the form f ∗
�

Spec(B)
�

, where f : A→ B is a ring homomorphism, satisfy the
axioms for closed sets in a topological space. The associated topology is the constructible topology on X. It is finer than the
Zariski topology (i.e., there are more open sets, or equivalently more closed sets).

For a homomorphism f : A→ B , write C f = f ∗
�

Spec(B)
�

for the closed set of the constructible topology defined
by f . To finish checking the C f define a topology, we should ensure that∅ and X are among them. But X =CidA

, and
∅= Cz for z : A→ 0, which has no prime ideals. Every V (a) closed in the Zariski topology is C f for the canonical
map f : A� A/a, so the constructible topology is at least as fine as the Zariski topology. It is not always strictly
finer, as witness the zero ring or a ring with only one prime ideal.

iv) Let XC denote the set X endowed with the constructible topology. Show that XC is compact.
To show every finite open cover of X has a finite subcover is the same as showing that for every collection of

closed sets of X with empty intersection, some finite subset has empty intersection.
So let {C f : f : A→ B f } have empty intersection. Write g : A→ B =

⊗

f B f for the canonical map given by [2.23]
making B an A-algebra. Then by [3.27.i],

∅=
⋂

C f =
⋂

f ∗
�

Spec(B f )
�

= g ∗
�

Spec(B)
�

,

so Spec(B) is empty. Since by (1.4) every ring where 0 6= 1 has a maximal ideal, B = lim−→J
BJ = 0. But then by [2.21],

we have some BJ =
⊗A

f∈J B f = 0 for some finite subset J of the f . Write h : A→ BJ . Applying [3.27.i] again, we have

∅= h∗
�

Spec(BJ )
�

=
⋂

f∈J

f ∗
�

Spec(B f )
�

=
⋂

f∈J

C f .

(Continuation of Exercise 27.)
i) For each g ∈A, the set Xg (Chapter 1, Exercise 17) is both open and closed in the constructible topology.

If f : A→Ag is the canonical map, then C f is by (3.11.iv) the set of primes not meeting {1, g , g 2, . . .}, so C f =Xg
is closed in the constructible topology. On the other hand since the constructible topology is at least as fine as the
Zariski topology, Xg is open. More explicitly, let a= r

�

(g )
�

be the intersection of all primes containing g . Then for
all primes p ∈ Spec(A)we have p ∈V (a) ⇐⇒ g ∈ p ⇐⇒ p /∈Xg , so Xg =X\V (a). But V (a) is C f for the canonical
map f : A→A/a.

ii) Let C ′ denote the smallest topology on X for which the sets Xg are both open and closed, and let XC ′ denote the set X
endowed with this topology. Show that XC ′ is Hausdorff.

Let x, y ∈ XC ′ be distinct points. Then the corresponding primes px , py ∈ Spec(A) are not equal, so one is not
strictly contained in the other. Suppose without loss of generality that px 6⊆ py . Then there is f ∈ px \py , meaning
y ∈Xf , but x ∈XC ′\Xf . But these are disjoint open sets by the definition of C ′.

iii) Deduce that the identity mapping XC →XC ′ is a homeomorphism. Hence a subset E of X is of the form f ∗
�

Spec(B)
�

for some f : A→ B if and only if it is closed in the topology C ′.
First, the identity mapping XC →XC ′ is of course a bijection.
Second, the topology C ′ is the topology generated by subbasic closed sets Xg and X \Xg for each g ∈A. (Thus a

closed set K of XC ′ is one that can be written as finite a union of arbitrary intersections of these.) But these subbasic
sets are also closed in XC , so every closed set of XC ′ is closed in XC and the identity map is continuous.

Third, a continuous bijection ψ : Y ↔ Z between a compact space Y and a Hausdorff space Z is well known to
be a homeomorphism.10

iv) The topological space XC is compact, Hausdorff and totally disconnected.
Since XC is compact, XC ′ is Hausdorff, and we have just shown XC ≈ XC ′ , it remains to see XC is totally dis-

connected. But this follows from our proof it is Hausdorff, for given any distinct x, y ∈ S ⊆ XC we have found
disjoint closed open sets U = Xf and V = XC \Xf separating them, whose union is the whole space XC , and so
S = (U ∩ S)q (V ∩ S) is a disjoint union of closed open sets (in the relative topology) separating x from y.

10 It suffices to prove it takes open sets to open sets. Let U ⊆ Y be open; then its complement K = Y \U is closed. As a closed subset
of a compact space, K is compact. Since ψ is continuous, ψ(K) is compact. As a compact subset of a Hausdorff space, ψ(K) is closed. Thus
Z\ψ(K) =ψ(Y \K) =ψ(U ) is open.
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Let f : A→ B be a ring homomorphism. Show that f ∗ : Spec(B)→ Spec(A) is a continuous closed mapping (i.e., maps closed
sets to closed sets) for the constructible topology.

Let any constructible closed set K ⊆ Spec(B) be given, and let g : B→C be such that K = g ∗
�

Spec(C )
�

. Then

f ∗(K) = f ∗
�

g ∗
�

Spec(C )
�

�

[1.21.vi]
= (g ◦ f )∗

�

Spec(C )
�

is by definition a closed set of Spec(A) in the constructible topology.

Show that the Zariski topology and the constructible topology on Spec(A) are the same if and only if A/N is absolutely flat (where
N is the nilradical of A).

First suppose A/N is absolutely flat. Then by [3.11], X = Spec(A) in the Zariski topology is Hausdorff. Since the
constructible topology is at least as fine as the Zariski topology, the identity map XC →X is a continuous bijection
from a compact space to a Hausdorff space, hence a homeomorphism; see the footnote to [3.28.iii].

Now suppose X =XC . Then X is Hausdorff, so by [3.11], A/N is absolutely flat.

61



Primary Decomposition

Proposition 4.8. Let S be a multiplicatively closed subset of A, and let q be a p-primary ideal.
ii) If S ∩ p=∅, then S−1q is S−1p-primary, and its contraction in A is q.

The book states that “The verification that S−1q is primary is straightforward.” We complete the this verification.
Suppose x/s , y/t ∈ S−1A are such that xy/s t ∈ S−1q. Then there are some z ∈ q and u ∈ S such that xy/s t = z/u
in S−1A. That means there is v ∈ S such that v u xy = v s t z ∈ q ⊆ A. Since q is primary, either v u x ∈ q or yn ∈ q
for some n > 0. If v u x ∈ q, then v u x/s v u = x/s ∈ S−1q. If yn ∈ q, then (y/t )n = (1/t n)(yn/1) ∈ S−1q. Thus
x/s ∈ S−1q or (y/t )n ∈ S−1q, showing S−1q is primary.

Proposition 4.12*.1 Let A be a ring, S a multiplicatively closed subset of A. WriteφS : A→ S−1A for the canonical map.
For any ideal a, let S(a) denote the contraction along φS of S−1a in A (bottom of p. 53, [4.11]). The ideal S(a) is called
the saturation of a with respect to S.
i)
⋃

s∈S (a : s) = {x ∈A : ∃s ∈ S (s x ∈ a)}= S(a) = aec ⊇ a.
ii) S(0) = ker(φS ).
iii) Let Sp =A\p for p a prime ideal of A. If q is p-primary, then Sp(q) = q.
iv) Sp(0) is contained in every p-primary ideal of A.
v) If S1 ⊆ S2 ⊆A are multiplicative submonoids, then S1(a)⊆ S2(a).
vi) If bÃA is an ideal containing a, then S(a)⊆ S(b).

i): a ⊆ aec is part of (1.17.i). Since S−1a = S−1A · a = ae , by definition we have S(a) =
�

S−1a
�c = aec . Now

x ∈ S(a) ⇐⇒ x/1 ∈ S−1a ⇐⇒ ∃a ∈ A ∃s ∈ S (x/1 = a/s). By the definition of S−1A, this happens if and only if
there exist t , s ∈ S and a ∈ a such that t s x = t a ∈ S · a= a. Thus x ∈ S(a) ⇐⇒ S x ∩ a 6=∅ ⇐⇒ ∃s ∈ S (s x ∈ a).
This happens just if x ∈

⋃

s∈S (a : s).
ii): (0)e = S−1(0) = (0), so S

�

(0)
�

= (0)ec = (0)c =φ−1
S

�

(0)
�

= ker(φS ).
iii): x ∈ Sp(q) ⇐⇒ ∃s ∈ Sp (s x ∈ q). Since s /∈ p= r (q) and q is primary, x ∈ q, so q⊆ qec = Sp(q)⊆ q.
iv): Let q be p-primary. If x ∈ Sp(0), there is s ∈ Sp such that s x = 0 ∈ q. Since by definition s /∈ p = r (q), no

power of s is in q, so since q is primary, x ∈ q.
v): If ∃s ∈ S1 (s x ∈ a), then s ∈ S2, so ∃s ∈ S2 (s x ∈ a). By i), we have S1(a)⊆ S2(a).
vi): Apply (1.17.iv*) twice: a⊆ b =⇒ ae ⊆ be =⇒ S(a) = aec ⊆ bec = S(b).

EXERCISES
If an ideal a has a primary decomposition, then Spec(A/a) has only finitely many irreducible components.

Let a =
⋂n

i=1 qi be the primary decomposition. Recall from [1.20.iv] that the irreducible components of X =
Spec(A/a) are the closed sets V (p̄), where p̄ is a minimal prime ideal of A/a. These are of the form p̄= p/a for primes
pÃ A minimal over a, hence in bijection with the set of primes minimal over a. By (4.6), this is the set of minimal
elements of the finite set of r (qi ), hence finite.

If a= r (a), then a has no embedded prime ideals.
a= r (a) =

⋂

{p ∈ Spec(A) : a⊆ p} gives a “primary decomposition” of a since prime ideals are primary (clearly,
p. 50). The scare quotes are because there may be infinitely many primes. Now if we take the intersection over only
the minimal primes over a, the intersection is clearly still a, and by construction there are no embedded primes. The
intersection still needn’t be finite however. Take for example an infinite direct product A=

∏

i∈I ki of fields, and for
each i ∈ I let pi = {0}×

∏

j 6=i k j . Then A/pi
∼= ki , is a field, so pi is prime, and the zero ideal (0) is the intersection

of the pi , but if any of these is omitted, the intersection contains non-zero elements.

1 This is not a proposition from the book. It is original, and designed to be used in and generalize some parts of [4.10–13].
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Chapter 4: Primary Decomposition Ex. 4.3

If A is absolutely flat, every primary ideal is maximal.
Let qÃA be primary, and p= r (q). By [2.28], A/q is absolutely flat, and every zero-divisor is nilpotent. But by

[2.28] again, every non-unit is a zero-divisor, so every non-unit is nilpotent. By [1.10], it follows that A/q has exactly
one prime ideal; hence is a local, absolutely flat ring. But then by [2.28] yet again, A/q is a field, and it follows that
q was maximal.

In the polynomial ring Z[t ], the ideal m= (2, t ) is maximal and the ideal q= (4, t ) is m-primary, but is not a power of m.
Z[t ]/m∼=Z/(2) is a field, while Z[t ]/q∼=Z/(4) has all zero-divisors (0̄ and 2̄) nilpotent, and so is primary. The

radical r (q) = r
�

(4)+(t )
�

= r
�

r (4)+ r (t )
�

= r (2, t ) =m by (1.13.v,vi). The powers of m are (2, t ), m2 = (4, 2t , t 2),
etc. q is contained in m, properly since 2 /∈ q, and contains m2, again properly since t /∈ m2. For n ≥ 2 we have
mn ⊆m2 ( q(m, so q is not a power of m.

In the polynomial ring K[x, y, z] where K is a field and x, y, z are independent indeterminates, let p1 = (x, y), p2 = (x, z),
m = (x, y, z); p1 and p2 are prime, and m is maximal. Let a = p1p2. Show that a = p1 ∩ p2 ∩m2 is a reduced primary
decomposition of a. Which components are isolated and which are embedded?

Write A=K[x, y, z]. Now A/p1
∼=K[z] and A/p2

∼=K[y] are integral domains, and A/m∼=K is a field. We have
the following five equations:

a= p1p2 = (x, y)(x, z) = (x2, xy, x z, y z);

m2 = (x, y, z)(x, y, z) = (x2, y2, z2, y z, x z, xy);

p1 ∩m
2 = (x, y)∩ (x2, y2, z2, y z, x z, xy) = (x2, y2, x z, y z, xy);

p2 ∩m
2 = (x, z)∩ (x2, y2, z2, y z, x z, xy) = (x2, z2, y z, x z, xy);

p1 ∩ p2 = (x, y)∩ (x, z) = (x, y z);

so none of the last three pairwise intersections is a. On the other hand,

p1 ∩ (p2 ∩m
2) = (x, y)∩ (x2, z2, y z, x z, xy) = (x2, xy, y z, x z) = a,

and r (p1) = p1, r (p2) = p2, and r (m2) =m (by (1.13.vi)) are distinct prime ideals, so this is an irredundant primary
decomposition of a. We have p1 (m) p2, and p1 6⊆ p2 6⊆ p1, so p1 and p2 are isolated and m is embedded.

Let X be an infinite compact Hausdorff space, C (X ) the ring of real-valued continuous functions on X (Chapter 1, Exercise 26).
Is the zero ideal decomposable in this ring?

No. First recall from [1.16.i] that every maximal ideal m of C (X ) is of the form mx = { f ∈C (X ) : f (x) = 0} for
some x ∈X.

Next note that every primary ideal is contained in a unique maximal ideal. Indeed suppose a ⊆ mx ∩my with
x 6= y ∈X. Since X is Hausdorff, there are disjoint open neighborhoods U 3 x and V 3 y. Since a compact Hausdorff
space is normal, Urysohn’s lemma can be applied. Thus there are an f ∈C (X ) such that f (x) = 1 and f (X\U ) = {0}
and a g ∈C (X ) such that f (y) = 1 while f (X\V ) = {0}. Since U∩V =∅, we see (X\U )∪(X\V ) =X, so f g = 0 ∈ a,
while f ∈my\mx and g n ∈mx\my , so neither is in a, and thus a is not primary.

Now let qi ⊆ mxi
be a finite collection of primary ideals and their containing maximal ideals. What follows is

due to Hao Guo [GuoEmail]; the earlier version made an unjustified assumption. Since X is infinite, there is a point
x0 not among the xi , meaning particularly that qi is not contained in mx0

. Each qi , then, contains some fi vanishing
at xi but not at x0. It follows that the product of the fi does not vanish at x0, so this product is a nonzero element of
∏

qi ⊆
⋂

qi . As the finitely many primary ideals qi were arbitrary, there can be no primary decomposition of (0)
in C (X ).
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Ex. 4.7 Chapter 4: Primary Decomposition

Let A be a ring and let A[x] denote the ring of polynomials in one indeterminate over A. For each ideal a of A, let a[x] denote
the set of all polynomials in A[x] with coefficients in a.
i) a[x] is the extension of a to A[x].

Identify a Ã A with its image in A[x]; then ae := aA[x] = a[x]. Very explicitly, a ·A[x] = {
∑

ai · pi (x) : ai ∈
a, pi (x) ∈A[x]}, but each ai · pi (x) has all coefficients in a, and so is in a[x]; conversely, each element

∑

ai x i ∈ a[x]
can be written as

∑

ai · pi (x) for ai ∈ a and pi (x) = x i ∈A[x].

ii) If p is a prime ideal in A, then p[x] is a prime ideal in A[x].
This is [2.7]. To reiterate, note that p[x] is the kernel of the canonical surjection of A[x] onto (A/p)[x], an

integral domain.

iii) If q is a p-primary ideal in A, then q[x] is a p[x]-primary ideal in A[x].
q[x] = q+ q · (x), while p[x] = p+ p · (x), and r

�

(x)
�

= (x). p and q can be identified with their images in A[x],
and in the bigger ring we still have r (q) = p= r (p). Then (1.13.v,iii) give

r
�

q[x]
�

= r
�

r (q)+ r
�

q · (x)
�

�

= r
�

p+ r (q)∩ r
�

(x)
�

�

= r
�

p+ p∩ (x)
�

= r
�

p+ p · (x)
�

= r
�

p[x]
�

= p[x].

Now to see q[x] is primary, note that the quotient A[x]/q[x]∼= (A/q)[x]. Every zero-divisor in A/q is nilpotent (p.
50). Suppose

∑

b̄i x i = p̄(x) ∈ (A/q)[x] is a zero-divisor. Then by [1.2.iii], there is ā ∈A/q such that ā p̄(x) = 0. This
means ā · b̄i = 0 for each i , so each b̄i ∈ A/q is a zero-divisor, hence nilpotent. Then by [1.2.ii], p̄(x) is nilpotent.
This shows (p. 50) that q[x] is primary.

iv) If a=
⋂n

i=1 qi is a minimal primary decomposition in A, then a[x] =
⋂n

i=1 qi [x] is a minimal primary decomposition
in A[x].

∑

b j x j ∈ a[x] ⇐⇒ ∀ j
�

b j ∈ a=
⋂

i

qi

�

⇐⇒ ∀i ∀ j (b j ∈ qi ) ⇐⇒ ∀i
�
∑

b j x j ∈ qi [x]
�

⇐⇒
∑

b j x j ∈
⋂

i

qi [x],

so a[x] =
⋂n

i=1 qi [x] as hoped. By iii), each qi is primary, so this is a primary decomposition. If we leave out some
q j , then the above shows

⋂

i 6= j qi [x] =
�⋂

i 6= j qi

�

[x], which by assumption is not a[x], using irredundancy of the
given primary decomposition of a.

v) If p is a minimal prime ideal of a, then p[x] is a minimal prime ideal of a[x].
From ii), p[x] is a prime ideal containing a[x]. If q ∈ Spec(A[x]) is such that a[x] ⊆ q ⊆ p[x], then taking

contractions we have a⊆ A∩ q⊆ p, with A∩ q prime. Since p was minimal over a, we have A∩ q= p. Now p⊆ q,
so p[x] = p+ p · (x)⊆ q, and thus q= p[x]. Thus p[x] was minimal over a[x].

Let k be a field. Show that in the polynomial ring k[x1, . . . , xn] the ideals pi = (x1, . . . , xi ) (1≤ i ≤ n) are prime and all their
powers are primary.

Write A= k[x1, . . . , xn]. Then A/pi
∼= k[xi+1, . . . , xn] is an integral domain, so pi is prime. Now consider some

power pm
i . Write qm

i for its intersection with the subring Bi =A[x1, . . . , xi ]. Then pm
i = qm

i [xi+1, . . . , xn]. By [4.7.iii],
if qm

i is primary, then pm
i will also be.

So consider the quotient ring C = Bi/q
m
i . Write this as C = k[y1, . . . , yi ], where the only relations yi = x̄i are

(commutativity and) that any monomial in them of total degree greater than m is zero. Consider a product pq in
C . If both p and q have nonzero constant term, then so does pq 6= 0. Any term divisible by some y j is annihilated
by q =

∏i
j=1 y m−1

j , so p ∈ C is zero-divisor if and only if its constant term is zero. If that is the case, then p m = 0
since each term will have total degree ≥ m. Thus every zero-divisor in C is nilpotent and qm

i is primary.

In a ring A, let D(A) denote the set of prime ideals p which satisfy the following condition: there exists a ∈A such that p is minimal
in the set of prime ideals containing (0 : a). Show that x ∈A is a zero divisor ⇐⇒ x ∈ p for some p ∈D(A).

If a 6= 0 but xa = 0, then x ∈ (0 : a) 6= (1), so there exists a prime p ⊇ (0 : a) 3 x. By an application of Zorn’s
Lemma, or by [1.8] applied to A/(0 : a) and (1.1), there is a minimal prime p over (0 : a), which then contains x.

Now suppose x ∈ p ∈ D(A), with a ∈ A such that p ⊇ (0 : a) is minimal. Apparently a 6= 0, since otherwise
(1) = (0 : 0) is contained in no prime. By (1.1) and p. 9, p̄ = p/(0 : a) is a minimal prime of Ā = A/(0 : a), and
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Chapter 4: Primary Decomposition Ex. 4.10

x̄ = x + (0 : a) ∈ p̄. Write S = Ā\p̄. Since p̄ is minimal, by [3.6], S is maximal in the collection Σ of multiplicative
submonoids of Ā not containing 0̄. Let S ′ be the smallest submonoid of Ā containing S ∪{x̄}; explicitly, S ′ = {s x̄n :
s ∈ S, n ≥ 0}. Since x̄ ∈ p̄ = Ā\S, by the maximality of S we have S ( S ′ /∈ Σ, so 0̄ ∈ S ′\S, and there are s ∈ S
and n > 0 with 0 = s x̄n = x̄(s x̄n−1), showing x̄ is a zero-divisor in Ā. Write ȳ = s x̄n−1 6= 0; then xy ∈ (0 : a) in A.
Now by assumption ȳ 6= 0̄, so y /∈ (0 : a), and thus ay 6= 0. But since xy ∈ (0 : a) we have 0= xya = x(ay), so x is a
zero-divisor in A.

Let S be a multiplicatively closed subset of A, and identify Spec(S−1A) with its image in Spec(A) (Chapter 3, Exercise
21). Show that

D(S−1A) =D(A)∩ Spec(S−1A).

Write ae = S−1a for the extension of a Ã A along the canonical φS : A → S−1A and X = Spec(A), S−1X =
{x ∈ Spec(A) : px ∩ S = ∅}. If x ∈ X \S−1X, then pe

x = (1), so not a prime and not in D(S−1A). So evidently
D(S−1A)⊆ S−1X. From now on suppose p ∈ S−1X.

Let x ∈A. Then (x) is finitely generated, so by (3.15) we have

Ann(x)e = S−1 Ann(x) = S−1�(0) : (x)
�

=
�

S−1(0) : S−1(x)
�

=Ann
�

S−1(x)
�

=Ann(x/1).

Now for any x ∈ A and s ∈ S we have Ann(x/s) = Ann(x/1) since ax/t s = 0 ⇐⇒ ∃u ∈ S (uax = 0 ∈ A) ⇐⇒
ax/s = 0.

Now every ideal of S−1A is extended by (3.11.i), so S−1p ∈D(S−1A) ⇐⇒ ∃x ∈A such that S−1p is minimal over
Ann(x/1) = S−1 Ann(x) =. Contracting both sides p = pec ⊇ Ann(x)ec ⊇ Ann(x). If there were an intermediate
prime q such that a⊆ q⊆ p, then extending, ae ⊆ qe ⊆ pe , so qe = pe , and by (3.11.iv), q= p. Thus p ∈D(A).

On the other hand, suppose p ∈ D(A)∩ S−1X is minimal over a = Ann(x). Then Ann(x/1) = S−1a ⊆ S−1p. If
S−1q is such that S−1a⊆ S−1q⊆ S−1p, then by (3.11.iv), a⊆ q⊆ p, so by assumption q= p and S−1q= S−1p. Thus
S−1p is minimal over S−1a, so S−1p ∈D(S−1A).

If the zero ideal has a primary decomposition, show that D(A) is the set of associated prime ideals of 0.
Let the primary decomposition be (0) =

⋂

qi . Then (4.5) and (4.7) say that pi = r (qi ) are the ideals r (0 : x) for
x ∈A, so the (finite) set of ideals r (0 : x) are those primes associated to (0). But each r (0 : x) is minimal over (0 : x),
so in D(A).

For any prime ideal p in a ring A, let Sp(0) denote the kernel of the homomorphism A→Ap. Prove that
i) Sp(0)⊆ p.

Since (0)⊆ p, (4.12*.i), (4.12*.vi) twice, and (3.13) give Sp(0) = (0)
ec ⊆ pec = p.2

ii) r
�

Sp(0)
�

= p ⇐⇒ p is a minimal prime ideal of A.
Taking r of i), we see r

�

Sp(0)
�

⊆ p regardless of minimality.
Now write S =A\p. By (4.12*.i) or [3.1], Sp(0) = {x ∈A : ∃s ∈ S (s x = 0)}=

⋃

s∈S Ann(s). Thus

p⊆ r
�

Sp(0)
�

= r
�⋃

s∈S Ann(s)
� p. 9
=
⋃

s∈S r
�

Ann(s)
�

⇐⇒ for each x ∈ p there are n > 0 and s ∈ S such that s xn = 0
⇐⇒∀x ∈ p, 0 ∈ (smallest submonoid containing S ∪{x})
⇐⇒ S is maximal among multiplicative submonoids T 6 3 0 of A
⇐⇒
[3.6]

p is minimal.

iii) If p⊇ p′, then Sp(0)⊆ Sp′(0).
Since p⊇ p′ ⇐⇒ Sp ⊆ Sp′ , this follows from (4.12*.v).

iv)
⋂

p∈D(A) Sp(0) = 0, where D(A) is defined in Exercise 9.
Obviously, 0 is in each Sp(0). On the other hand, if x 6= 0, then (0 : x) 6= (1), and there is a prime p minimal over

(0 : x); by definition, p ∈D(A). Since (0 : x)⊆ p, there is no s ∈A\p such that s x = 0, and so [3.1] says x /∈ Sp(0).

2 Alternately, suppose x ∈ Sp(0); by (4.12*.i), there is s ∈ Sp such that s x = 0 ∈ p. Since p is prime and doesn’t contain s , we must have x ∈ p.
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If p is a minimal prime ideal of a ring A, show that Sp(0) (Exercise 10) is the smallest p-primary ideal.
Write q= Sp(0). Using minimality of p and [4.10.ii], r (q) = p. To see q is primary, suppose xy ∈ q. Then there

is n > 0 such that xn yn = (xy)n ∈ p. If x /∈ q, then xn /∈ p for all n, so yn ∈ p = r (q), and there exists m > 0 such
that y mn = (yn)m ∈ q. Thus q is primary.

Let a be the intersection of the ideals Sp(0) as p runs through the minimal prime ideals of A. Show that a is contained
in the nilradical of A.

Let P ⊆ Spec(A) be the set of minimal prime ideals. Since all primes contains a member of P , we have, by (1.8),
that N=

⋂

P . Now for each p ∈ P we have Sp(0)⊆ p by [4.10.i], so a :=
⋂

p∈P Sp(0)⊆
⋂

P =N.

Suppose that the zero ideal is decomposable. Prove that a= 0 if and only if every prime ideal of 0 is isolated.
If (0) is decomposable, then (4.6) states each minimal prime ideal is a minimal ideal of (0) (and vice versa). More-

over, there are only finitely many prime ideals of (0). If every prime ideal of (0) is isolated, then all are minimal, and
so (0) =

⋂

{primes of (0)}=
⋂

P =N, forcing a= 0.
On the other hand, suppose a = 0. Then 0 = a =

⋂

{Sp(0) : p ∈ P} gives a primary decomposition of (0). We
may discard all but finitely many terms to obtain an irredundant decomposition. Now if (0) had an embedded prime
P containing an isolated prime p, we would have SP(0)⊆ Sp(0) by [4.10.iii], contradicting irredundancy.

Let A be a ring, S a multiplicatively closed subset of A. For any ideal a, let S(a) denote the contraction of S−1a in A. The ideal
S(a) is called the saturation of a with respect to S. Prove that
i) S(a)∩ S(b) = S(a∩ b).

Note that ae∩be = S−1a∩S−1b= S−1(a∩b) = (a∩b)e by (4.12*.i) and (3.11.v). Then recalling (1.18), S(a)∩S(b) =
aec ∩ bec = (ae ∩ be )c = (a∩ b)ec = S(a∩ b).34

ii) S
�

r (a)
�

= r
�

S(a)
�

. By (1.18), contraction commutes with r , and by (3.11.v), extension S−1 does.Therefore by
(4.12*.i), S

�

r (a)
�

= r (a)ec =
�

r (ae )
�c = r (aec ) = r

�

S(a)
�

.5

iii) S(a) = (1) ⇐⇒ a meets S.
S(a) = (1) ⇐⇒ 1 ∈ S(a) ⇐⇒ ∃s ∈ S (s = s · 1 ∈ a) ⇐⇒ a∩ S 6=∅.

iv) S1

�

S2(a)
�

= (S1S2)(a).
If x ∈ (S1S2)(a), then there are s1 ∈ S1 and s2 ∈ S2 such that s1 s2x ∈ a. Then s1x ∈ S2(a), and x ∈ S1

�

S2(a)
�

. On
the other hand, if x ∈ S1

�

S2(a)
�

, then there is s1 ∈ S1 such that s1x ∈ S2(a), so there is s2 ∈ S2 such that s2 s1x ∈ a, and
then x ∈ (S1S2)(a).

If a has a primary decomposition, prove that the set of ideals S(a) (where S runs through all multiplicatively closed subsets
of A) is finite.

Let the decomposition be a=
⋂

n
i=1qi . By (4.9), S(a) is determined entirely by which of the pi = r (qi ) it meets.

This yields at most 2n different possibilities for S(a). (Make at most n possible choices of “empty” or “non-empty,”
one for each intersection S ∩ pi .)

Let A be a ring and p a prime ideal of A. Then nth symbolic power of p is defined to be the ideal (in the notation of Exercise 12)

p(n) = Sp(p
n)

where Sp =A\p. Show that
i) p(n) is a p-primary ideal;

3 Alternately, suppose that x ∈ S(a∩ b). Then there is s ∈ S such that s x ∈ a∩ b, so s x ∈ a and s x ∈ b, meaning x ∈ S(a) and x ∈ S(b); thus
x ∈ S(a)∩ S(b). Now suppose x ∈ S(a)∩ S(b). Then there are s , t ∈ S such that s x ∈ a and t x ∈ b. Then t (s x) ∈ ta⊆ a and s(t x) ∈ sb⊆ b, so
(s t )x ∈ a∩ b. Thus x ∈ S(a∩ b).

4 Note that (4.12*.vi) follows: if a⊆ b, then S(a)∩ S(b) = S(a∩ b) = S(a), so S(a)⊆ S(b).
5 Alternately, if x ∈ S

�

r (a)
�

, then there is s ∈ S such that s x ∈ r (a), so there is n > 0 such that s n xn = (s x)n ∈ a. Then since s n ∈ S we have
xn ∈ S(a), so x ∈ r (S(a)). If x ∈ r (S(a)), then there is n > 0 such that xn ∈ S(a), so there is s ∈ S such that s xn ∈ a. Then (s x)n = s n−1(s x) ∈ a
as well, so s x ∈ r (a) and x ∈ S

�

r (a)
�

.
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(3.13) shows pe is maximal, so by (4.2) (pe )n is primary. By (3.11.v), (pe )n = (pn)e . Since contraction preserves
being primary (p. 50) and p(n) = (pn)ec by (4.12*.i), it follows p(n) is primary.6 As for the radical,

r (p(n))
(4.12*.i)
= r

�

(pn)ec� (1.18)
=

�

r (pn)e
�c (3.11.v)
= r (pn)ec (1.13.vi)

= pec (3.13)
= p.

ii) if pn has a primary decomposition, then p(n) is its p-primary component;
First, p(n) is the smallest p-primary ideal containing pn . If q⊇ pn is p-primary and x ∈ p(n), then by (4.12*.i) there

is s ∈ Sp such that x s ∈ pn ⊆ q. Since s /∈ r (q) = p, we have s m /∈ q for all m; as q is primary, it follows that x ∈ q.
Thus p(n) ⊆ q.

Let
⋂

qi = pn be a primary decomposition. Then by (1.13.vi,iii), p = r (pn) = r
�⋂

qi

�

=
⋂

r (qi ). By (1.11.ii),
p = r (qi ) for some q = qi . Thus p definitely is a prime of pn . If we had r (q j ) ( p for some j , we would have
p=

⋂

r (ql )⊆ r (q j )( p, a contradiction; thus p is isolated. Since p(n) is the smallest p-primary ideal containing pn ,
pn = p(n) ∩ j 6=i qi is also a primary decomposition; but by the uniqueness (4.11) of isolated primary components, it
follows qi = p(n).

iii) If p(m)p(n) has a primary decomposition, then p(m+n) is its p-primary component;
First show p(m+n) is the smallest p-primary ideal containing p(m)p(n). Let q ⊇ p(m)p(n) be p-primary, and x ∈

p(m+n). Then there is s ∈ Sp such that x s ∈ pm+n = pmpn ⊆ p(m)p(n) ⊆ q. Since s /∈ r (q) = p and q is primary, it
follows that x ∈ q. Thus p(m+n) ⊆ q.

Now suppose p(m)p(n) =
⋂

qi is a primary decomposition. Since r (p(m)) = r (p(n)) = p, it follows from (1.13.iii,vi)
that r (p(m)p(n)) = r (p(m))∩r (p(n)) = p∩p= p. As in part ii), p= r (qi ) for some i , so p is a prime of p(m)p(n), and since
the radical is not a proper subset of p, we know p is isolated. Since p(m+n) is the smallest p-primary ideal containing
p(m)p(n), by (4.11) it follows p(m+n) is the uniquely determined p-primary component of p(m)p(n).

iv) p(n) = pn ⇐⇒ p(n) is p-primary.
N.B. The book has a misprint here: by part i), p(n) is always p-primary, so the condition should be that pn is

p-primary.
Suppose p(n) = pn . Then since p(n) is p-primary by i), pn is p-primary. On the other hand suppose pn is p-primary.

Then pn =
⋂

{pn} gives a trivial primary decomposition, so by the first uniqueness theorem (4.5), p is the only prime
of pn . By part ii), p(n) is the p-primary component of pn , so we conclude p(n) = pn .

Let a be a decomposable ideal in a ring A and let p be a maximal element of the set of ideals (a : x), where x ∈A and x /∈ a. Show
that p is a prime ideal belonging to a.

First, let q be p′-primary and x /∈ q, so (q : x) is a p′-primary ideal by (4.4.ii). Suppose x is such that (q : x) is
maximal among all ideals of this form. Let y ∈A\(q : x)⊆A\q. Using (1.12.i,iii) we have (q : x)⊆

�

(q : x) : y
�

= (q :
xy), and this last is p′-primary by (4.4.ii) since we assumed xy /∈ q. As we are assuming (q : x)maximal of this form,
(q : xy) = (q : x), so for every z ∈ A, xy z ∈ q =⇒ x z ∈ q. Taking z = yn , xyn+1 ∈ q =⇒ xyn ∈ q, and stringing
these together, xyn ∈ q =⇒ x ∈ q. But we assumed x /∈ q, so that there is no power yn of y such that yn ∈ (q : x),
or in other words y /∈ r (q : x) = p′. Summarizing, y ∈ A\(q : x) =⇒ y ∈ A\p′, or p′ ⊆ (q : x). But by assumption
(q : x)⊆ p′, so a maximal ideal of the form (q : x), if such exists, is equal to r (q).

Now write a=
⋂n

i=1 qi for an irredundant primary decomposition, and set pi = r (qi ).Suppose x ∈A is such that
(a : x) is maximal among such ideals. (1.12.iv) gives (a : x) =

�⋂

qi : x
�

=
⋂

(qi : x), and (4.4) shows each (qi : x) is
(1) or is pi -primary. We can make any set of (qi : x) = (1), i ∈ I , by taking x ∈

⋂

i∈I qi , so if (a : x) is maximal, while
still (a : x) 6= (1) (⇐⇒ x /∈ a), we have all but one (qi : x) = (1), and (qi : x)maximal among such proper ideals. The
preceding paragraph shows this happens if and only if (a : x) = (qi : x) = pi , a prime ideal belonging to a.

Let a be a decomposable ideal in a ring A, let Σ be an isolated set of prime ideals belonging to a, and let qΣ be the intersection
of the corresponding primary components. Let f be an element of A such that, for each prime ideal p belonging to a, we
have f ∈ p ⇐⇒ p /∈Σ, and let S f be the set of all powers of f . Show that qΣ = S f (a) = (a : f n) for all large n.

Note that the solution itself doesn’t explicitly use that Σ is composed of isolated primes of a. I think the assump-
tion is only needed because if one has an isolated prime p contained in an embedded prime P with p /∈Σ and P ∈Σ,
it’s not possible to require f ∈ p /∈Σ but f /∈P ∈Σ.

6 Alternately, suppose xy ∈ p(n); we will show x ∈ p(n) or y ∈ r (p(n)). There is s ∈ Sp such that s xy ∈ pn . If x /∈ p(n), then s x /∈ pn , so the
highest possible power of p containing s x is pn−1. Then, using (1.13.vi), we must have y ∈ p= r (pn).
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(a : f n)⊆ S f (a): By definition, S f (a) = {x ∈A : ∃ f n ∈ S f ( f
n x ∈ a)}=

⋃

n≥0(a : f n).
S f (a) = qΣ: Fix a primary decomposition a =

⋂m
i=1 qi , with pi = r (qi ), such that Σ = {p1, . . . , pp}.7 8 Since pi

are prime, we have S f ∩ pi 6= ∅ just if f ∈ pi just if pi /∈ Σ, so S f meets pp+1, . . . , pm but no others. Then (4.9) says
S f (a) =

⋂p
i=1 qi = qΣ.

∃n ≥ 0
�

qΣ ⊆ (a : f n)
�

: Since by (1.12.iv) we have (a : f n) =
⋂

(qi : f n), we are looking for n large enough that
for each i and each x ∈ qΣ we have f n x ∈ qi . In case pi ∈Σ, we already have f 0x = x ∈ qΣ ⊆ qi . For pi /∈Σ, we have
by the definition of f that f ∈ pi = r (qi ). Thus there is ni ≥ 1 such that f ni

i ∈ qi . Taking n =maxi ni we then have
f n x ∈ qi for all i .

If A is a ring in which every ideal has a primary decomposition, show that every ring of fractions S−1A has the same property.
Recall from (3.11.i,ii) that every proper ideal of S−1A is an extended ideal S−1a for some aÃ A with S ∩ a=∅.

So let a proper ideal S−1aÃ S−1A be given, and let a=
⋂

qi be a primary decomposition of a. By (3.11.v) we then
have S−1a = S−1

�⋂

qi

�

=
⋂

S−1qi . But by (4.8) that the proper primary ideals of S−1A are exactly those ideals of
the form S−1q with q primary in A such that S ∩ r (q) = ∅, so

⋂

S−1qi , perhaps omitting a few qi that meet S, is a
primary decomposition of S−1a.

Let A be a ring with the following property.
(L1) For every ideal a 6= (1) in A and every prime ideal p, there exists x /∈ p such that Sp(a) = (a : x), where Sp =A\p.

Then every ideal in A is an intersection of (possibly infinitely many) primary ideals.
For future overuse, we state and prove a slight generalization of a result of [4.11]: if a 6= (1) is an ideal of A and

p is a prime ideal minimal over a, then q = Sp(a) is a p-primary ideal. To prove this, note that in the ring A/a, p/a
is a minimal prime, and [4.11] gives that q̄ = Sp/a(0̄) is p/a-primary. We claim that q̄ = q/a, so that q, being the
contraction of a primary ideal, is primary, by a remark on p. 50. Indeed, if s x ∈ a for s ∈ Sp, then s̄ x̄ = 0̄, where
s̄ ∈ Sp/a = (A/a)\(p/a), the image of A\p. On the other hand, if s̄ x̄ = 0̄, with s̄ ∈ Sp/a, then (s+a)(x+a)⊆ a, so s x ∈ a.
Finally r (q̄) = p/a, so using the exercise (1.18) on contraction (along A→A/a), r (q) = r (q̄c ) = (r (q̄))c = (p/a)c = p,
so q is p-primary as claimed.910

Let p0 be minimal over a0 := a, and set q0 := Sp0
(a0). By the above paragraph q0 is p0-primary and by (L1), there

is x0 /∈ p0 such that q0 = (a0 : x0).
We claim a0 = q0 ∩ [a0 + (x0)]. Indeed, a0 ⊆ q0 and a0 ⊆ a0 + (x0). On the other hand let a0 + b0x0 ∈ a0 + (x0)

be arbitrary. If it is also in q0 = (a0 : x0), then x0(a0 + b0x0) = a0x0 + b0x2
0 ∈ a0, implying b0x2

0 ∈ a0 ⊆ q0. Since
x2n

0 /∈ p0 ⊇ q0, which is primary, we have b0 ∈ q0 = (a0 : x0), so b0x0 ∈ a0 and hence a0+ b0x0 ∈ a0.
Since this is so, there is an ideal a1 ⊇ a0+(x0)maximal with respect to the requirement that q0∩a1 = a0. Suppose

a1 6= (1). Then there is a prime ideal p1 minimal among those containing a1, and q1 := Sp1
(a1) is p1-primary. By (L1),

q1 = (a1 : x1) for some x1 /∈ p1. By the same argument as the previous paragraph, replacing every subscript 0 by a 1,
we see a1 = q1 ∩ [a1+(x1)]. Then a0 = q0 ∩ a1 = q0 ∩ q1 ∩ [a1+(x1)].

We continue this process of producing qα by transfinite induction. For the “successor” step, suppose we have
a0 = [aα+(xα)]∩

⋂

β≤α qβ for some ordinal α and some primary ideals qβ and aα 6⊆ r (qβ) for anyβ<α. If aα 6= (1),
then as above there is aα+1 containing aα+ (xα), maximal subject to the constraint that a0 = aα+1 ∩

⋂

β≤α qβ. Take
pα+1 a minimal prime over aα+1, so that qα+1 = Spα+1

(aα+1) is pα+1-primary. By (L1) there is xα+1 /∈ pα+1 such that

7 This paragraph adapted from Yimu Yin’s solution: http://pitt.edu/~yimuyin/research/AandM/exercises04.pdf
8 Here is a divergent, worse proof of S f (a) ⊆ qΣ that I came up with before looking up others’ solutions. Assume x ∈ S f (a). By [4.12.i],

S f (a) =
⋂

S f (qi ), so there are ni ≥ 0 such that f ni x ∈ S f (qi ) for each i . Since qi is primary, we have x ∈ qi or ( f ni )mi ∈ qi for some ni ≥ 0,
meaning f ∈ r (qi ) = pi . By assumption f ∈ pi ⇐⇒ pi /∈Σ, so for each qi with pi ∈Σ we have x ∈ qi . Thus x ∈ qΣ.

9 We can arguably simplify the situation of the problem slightly by replacing A with A/a and a with (0̄). If we find a way to write
⋂

p∈Ξ Sp/a(0̄) = (0̄) for some set Ξ ⊆ Spec(A), and these Sp/a(0̄) are primary, then contracting will show, by (1.18), that a =
⋂

p∈Ξ Sp(a) is

an intersection of primary ideals upstairs. Also, (L1) survives in A/a since, by (1.18), (0̄ : x̄p)
c =

�

(0̄)c : (x̄p)
c � =

�

a : (xp) + a
�

= (a : xp), so
(0̄ : x̄p) = (0̄ : x̄p)

c e = (a : xp)
e = Sp(a)/a. (Finally looking over the book’s “hint,” I’m no longer sure this simplification really simplifies very

much. In fact, it may make things a little harder.)
10 What I now want to do is as follows. Recall from [4.9] the set D(A) of prime ideals p of A such that there exists a ∈ A with p minimal in

the set of prime ideals containing (0 : a). By [4.10.iv],
⋂

p∈D(A) Sp(0) = 0. This would be what we wanted if we could be assured the Sp(0) were
all are primary. Let P be the set of minimal primes of A. If p ∈ P , then ([4.11]) Sp(0) = (0 : xp) is p-primary. But it’s not clear we should have
D(A) = Spec(A) or D(A) = P . We also have

⋂

p∈P Sp(0) =
⋂

p∈P

�

0 : (xp)
�

=
�

0 :
∑

p∈P (xp)
�

, which will equal zero if
∑

p∈P (xp) contains a
non-zero-divisor. But I am not sure why this would be the case.
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qα+1 = (aα+1 : xα+1). The same argument showing a0 = q0 ∩ [a0+(x0)] shows that aα+1 = qα+1 ∩ [aα+1+(xα+1)], so

a0 = aα+1 ∩
⋂

β≤α

qβ = [aα+1+(xα+1)]∩
⋂

β≤α+1

qβ.

For the “limit” step, suppose that for all α < β we have a0 = aα+1 ∩
⋂

γ≤α qγ , with aα ( aγ for α < γ . Set
aβ :=

⋃

α<β aα. Then aα ( aβ for each α <β, and

aβ ∩
⋂

α<β

qα =
⋃

α<β

�

aα ∩
⋂

α<β

qα

�

=
⋃

α+1<β

�

aα+1 ∩
⋂

γ≤α
qγ ∩

⋂

α<γ<β

qγ

�

=
⋃

α+1<β

�

a0 ∩
⋂

γ<β

qγ

�

=
⋃

α+1<β

a0 = a0.

If at any stage we get aα = (1) we are done. In particular, if for some n < ω we have an = (1), then we have
found a primary decomposition of a = a0. Since for α < β we have strict containment aα ( aβ, the number of
different aα we encounter is bounded by the cardinality of A, so the process does eventually terminate, leaving us
with a decomposition a=

⋂

α<β qα for some primary ideals qα and some β of cardinality less than that of A.

Consider the following condition on a ring A:
(L2) Given an ideal a and a descending chain S1 ⊇ S2 ⊇ · · · ⊇ Sn ⊇ · · · of multiplicatively closed subsets of A, there exists
an integer n such that Sn(a) = Sn+1(a) = · · · . Prove that the following are equivalent:
i) Every ideal in A has a primary decomposition;
ii) A satisfies (L1) and (L2).

i) =⇒ (L1): Let aÃA have primary decomposition
⋂

qi and let p ∈ Spec(A) and Sp =A\p. Also let pi = r (qi ).
LetΣ be the set of indices i with qi ⊆ pi ⊆ p (hence qi∩Sp =∅) andΞ the set of those with qi 6⊆ p (hence qi∩Sp 6=∅).
(4.9) says that Sp(a) =

⋂

i∈Σ qi . Now (a : x) =
⋂m

i=1(qi : x), and (qi : x) = (1) if x ∈ qi and = qi if x /∈ pi , so we are
looking for x ∈

⋂m
i∈Ξ qi \

⋃

i∈Σ pi . For each i ∈ Ξ, there is an element xi ∈ qi \p, and then x :=
∏

i∈Ξ xi ∈
⋂

qi \p
since p is prime. But since

⋃

i∈Σ pi ⊆ p, we have (a : x) = Sp(a) as desired.
i) =⇒ (L2): Let a Ã A have primary decomposition

⋂m
i=1 qi . (4.9) states that Sn(a) =

⋂

i∈Ξn
qi , where Ξn ⊆

{1, . . . , m} is the set of indices i such that Sn ∩ r (qi ) =∅. As n gets bigger, Ξn decreases; but it can decrease at most
m times, so at some finite stage it is all done decreasing and Sn(a) has stabilized.

ii) =⇒ i): Let aÃA be given. [4.17] shows there exist primary qα, α <β, such that a=
⋂

qα. We will be done if
we can show finitely many suffice. Write pα = r (qα) and Sβ =A\

⋃

α<β pα. Then [3.7.i] shows that the Sα are saturated
multiplicative submonoids of A and apparently Sα ⊇ Sβ for α <β. Recall from the proof of [4.17] that at each finite
stage of the construction we have an ideal an+1 such that a = an+1 ∩ qn ∩ · · · ∩ q0, and an+1 6⊆ pm for m < n + 1.
Then an+1 ∩ Sn 6=∅ and [4.12.iii] says that Sn(an+1) = (1), so Sn(a) = q0 ∩ · · · ∩qn . (L2) says that the sequence Sn(a)
stabilizes in finitely many steps, say at Sn(a) = q0 ∩ · · · ∩ qn . Then for all α≥ n we have Sα(a) = q0 ∩ · · · ∩ qn .

Write a = Sn(a) ∩ qα ∩
⋂

γ /∈{0, ..., n,α} qγ . Then taking Sα and using the finitary distributive property [4.12.i],
we should get a term Sα(qα). Note qα ⊆ pα does not meet A\pα ⊇ Sα. Thus if x ∈ Sα(qα), so there is s ∈ Sα
such that s x ∈ qα, that qα is primary implies ∃n (s n ∈ qα) (which cannot happen) or x ∈ qα, so the contributed
term is Sα(qα) = qα. Thus

⋂n
i=0 qi ∩ qα ∩ · · · =

⋂n
i=0 qi , so

⋂n
i=0 qi ⊆ qα. Since this holds for all α > n, we see

a=
⋂

α<β qα =
⋂n

i=0 qi has a primary decomposition.

Let A be a ring and p a prime ideal of A. Show that every p-primary ideal contains Sp(0), the kernel of the canonical homomor-
phism A→Ap.

This was proved for the first statement of [4.11].

Suppose that A satisfies the following condition: for every prime ideal p, the intersection of all p-primary ideals of A
is equal to Sp(0). (Noetherian rings satisfy this condition: see Chapter 10.) Let p1, . . . , pn be distinct prime ideals, none of
which is a minimal prime ideal of A. Then there exists an ideal a in A whose associated prime ideals are p1, . . . , pn .

We attempt an induction proof. For n = 1, the ideal a = p1 satisfies the condition. Suppose that the result has
been proved for n, and let pn+1 be one last prime. Then there is an ideal b with a primary decomposition

⋂n
i=1 qi

where r (qi ) = pi . What we’d like is to take any pn+1-primary ideal qn+1 and let a = b∩ qn+1. This will give us the
decomposition we want unless it is redundant. If it is redundant, there is some term containing the intersection of
the rest. Taking radicals and using the distributivity property (1.13.iii), the intersection of some n of the primes is
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contained in the remaining prime. By (1.11.ii), this implies that the big prime contains one of the first n. We can
arrange then, by reordering the pi so that pn+1 is maximal among them, that qn+1 we don’t have

⋂

i 6= j qi ⊆ q j for
any j 6= n+ 1. Write p′ = pn+1

Now we only have to worry about the possibility that
⋂n

i=1 qi ⊆ q′. If there is a p′-primary q′ for which this
doesn’t happen, we are done. Otherwise, taking the intersection of both sides over all such, we see

⋂n
i=1 qi ⊆ Sp′(0),

using the first part of [4.11]. By [4.10.iii], for a smaller prime p⊆ p′ we have
⋂n

i=1 qi ⊆ Sp′(0)⊆ Sp(0); in particular,
we may take p minimal. Now again taking radicals of both sides and using (1.13.iii), we get

⋂n
i=1 pi ⊆ p. By (1.11.ii)

again, this means pi ⊆ p for some i ∈ {1, . . . , n}; but then by minimality of p, we have pi = p. But the assumption of
the problem was that none of the pi were minimal, so the possibility that worried us in this paragraph is forestalled,
and we are done.

Primary decomposition of modules
Practically the whole of this chapter can be transposed to the context of modules over a ring A. The following exercises

indicate how this is done.

Let M be a fixed A-module, N a submodule of M . The radical of N in M is defined to be

rM (N ) = {x ∈A : xq M ⊆N for some q > 0}.

Show that rM (N ) = r (N : M ) = r
�

Ann(M/N )
�

. In particular, rM (N ) is an ideal.

x ∈ rM (N ) ⇐⇒ ∃q > 0 (xq M ⊆N ) ⇐⇒ ∃q > 0
�

xq ∈ (N : M )
�

⇐⇒ x ∈ r (N : M ).

By (2.2.ii), and since N ⊆ M , we have (N : M ) = Ann
�

(N +M )/N
�

= Ann(M/N ), so taking radicals, r (N : M ) =
r
�

Ann(M/N )
�

.

State and prove the formulas for rM analogous to (1.13).
−i) P ⊆N =⇒ rM (P )⊆ rM (N ): xq M ⊆ P , implies xq M ⊆N .
0) rB (C

n) = rB (C ) for B an A-algebra, C a subalgebra, and n > 0: C n ⊆C , so rB (C
n)⊆ rB (C ) by −i).

If xq B ⊆C , then taking nth powers,
and remembering 1 ∈ B , gives xqnB ⊆C n .

i) rB (b)⊇ f −1(b), for f : A→ B an A-algebra and bÃ B: If b ∈ b, then bB = (b )⊆ b,
and by definition if f (a) = b , then aB = f (a)B ⊆ b.

ii) r
�

rM (N )
�

= rM (N ): x ∈ r
�

rM (N
�

) ⇐⇒ ∃p > 0
�

x p ∈ rM (N )
�

⇐⇒ ∃p, q > 0
�

x pq M ⊆N
�

⇐⇒ x ∈ rM (N ).
iii) rM (N ∩ P ) = rM (N )∩ rM (P ): If xn M ⊆N ∩ P , then trivially xn M ⊆N and xn M ⊆ P .

If xn M ⊆N and x p M ⊆ P , then for q =max{n, p} we have xq M ⊆N ∩ P .
iv) rM (N ) = (1) ⇐⇒ M =N : 1 ∈ r

�

Ann(M/N )
�

⇐⇒ 1 ∈Ann(M/N ) ⇐⇒ M/N = 0 ⇐⇒ M =N .
v) rM (N + P )⊇ r

�

rM (N )+ rM (P )
�

: By −i), rM (N ), rM (P )⊆ rM (N + P ), so rM (N )+ rM (P )⊆ rM (N + P ).
Taking radicals and applying ii), r

�

rM (N )+ rM (P )
�

⊆ r
�

rM (N + P )
�

= rM (N + P ).
The converse is false. Let A 6= 0, M =A⊕A with action a(b , c) = (ab , ac),

N =A⊕ (0), and P = (0)⊕A,
Then M =N + P , so rM (N + P ) = (1), but rM (N ) = rM (P ) = 0.

vi) If p is prime, r (pn) = p for all n > 0: I’ve no clue how to interpret a power of a module.
I seem to have failed this problem, in that I wasn’t sure in all cases what the appropriately analogous formulas

were. The ones involving algebras were stretches, brought about by the difficulty of comparing N and rM (N ), one
being a submodule of M and the other being an ideal of A.

An element x ∈A defines an endomorphismφx of M , namely m 7→ x m. The element x is said to be a zero-divisor (resp. nilpotent)
in M if φx is not injective (resp. is nilpotent). A submodule Q of M is primary in M if Q 6=M and every zero-divisor in
M/Q is nilpotent.

Show that if Q is primary in M , then (Q : M ) is a primary ideal and hence rM (Q) is prime ideal p. We say that Q is
p-primary (in M ).

Suppose xy ∈ (Q : M ) and y /∈ (Q : M ) so that xy(M/Q) = 0 but y(M/Q) 6= 0. Then the endomorphism
φ̄x ◦ φ̄y = φ̄xy of M/Q is zero, though φ̄y is not. Then φ̄x has non-empty kernel, so x is a zero-divisor of Q. By
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the definition of “primary,” x is then nilpotent in M/Q, so for some n > 0 we have 0= φ̄◦nx = φ̄xn : M/Q→M/Q.
Then the associated endomorphismφxn : m 7→ xn m of M has image in Q, so xn ∈ (Q : M ). Thus (Q : M ) is primary.

Prove the analogues of (4.3) and (4.4).
Lemma 4.3*. If Qi ⊆M (1≤ i ≤ n) are p-primary, then Q =

⋂n
i=1 Qi is p-primary.

Since the Qi are primary, hence not equal to M , their intersection Q 6= M . Suppose x ∈ A is a zero-divisor of
M/Q. Then there is some nonzero m ∈M such that x m ∈Q =

⋂

Qi . Then x is a zero-divisor of each M/Qi , so by
assumption is nilpotent, meaning there is ni > 0 such that xni M ⊆Qi . Taking n =maxi ni we see xn M ⊆Q, so x is
nilpotent in M/Q. Thus Q is primary. As for the radical,

r (Q : M ) = r
�

⋂

Qi : M
�

(1.12.iv)
= r

�

⋂

(Qi : M )
�

(1.13.iii)
=

⋂

r (Qi : M ) =
⋂

i

p= p.

Lemma 4.4*. i) Let N ⊆M be A-modules and m ∈N. Then (N : m) = (1);
ii) Let Q ⊆M be a p-primary submodule, and m ∈M . If m /∈Q then (Q : m) is p-primary;
iii) Let Q ⊆M be a p-primary submodule, and x ∈A. If x /∈ p then (Q : x) := {m ∈M : x m ∈Q}=Q.

i): Since m ∈N and N is an A-module, Am ⊆N , so (N : m) = (1).
ii): Suppose xy ∈ (Q : m), so xy m ∈ Q. Suppose y /∈ (Q : m), so that y m /∈ Q. Then x is a zero-divisor in

M/Q, so by the assumption Q is primary, there is n > 0 such that xn acts as zero on M/Q. Then xn M ⊆Q, and in
particular xn m ∈Q, so xn ∈ (Q : m). Thus (Q : m) is primary.

Note that m ∈ M implies (Q : M ) ⊆ (Q : m). Taking radicals, p ⊆ r (Q : m). On the other hand assume
x ∈ r (Q : m). Then for some minimal n > 0 we have xn m ∈Q. Then x(xn−1m̄) = 0̄ in M/Q, so x is a zero-divisor
of M/Q and hence there is p > 0 such that x p M ⊆Q. Then x ∈ rM (Q) = p. Thus (Q : m) is p-primary.

iii): Obviously if m ∈Q then x m ∈Q, so Q ⊆ (Q : x). By contraposition, we will suppose m ∈ (Q : x)\Q and
show x ∈ p. Well, x m ∈Q, and m̄ 6= 0̄ in M/Q, so x is a zero-divisor, and for some power n > 0 we have xn M ⊆Q.
But then x ∈ rM (Q) = p.

A primary decomposition of N in M is a representation of N as an intersection

N =Q1 ∩ · · · ∩Qn

of primary submodules of M ; it is a minimal primary decomposition if the ideals pi = rM (Qi ) are all distinct and if
none of the components Qi can be omitted from the intersection; that is Qi 6⊇

⋂

j 6=i Q j (1≤ i ≤ n).
Prove the analogue of (4.5), that the prime ideals pi depend only on N (and M ). They are called the prime ideals

belonging to N in M .

Theorem 4.5*. Let N be a decomposable submodule of M and let N =
⋂n

i=1 Qi be a minimal primary decomposition
of N . Let pi = rM (Qi ) (1 ≤ i ≤ n). Then the pi are precisely the prime ideals which occur in the set of ideals r (N : m)
(m ∈M ), and hence are independent of the particular decomposition of N .

Set Pi =
⋂

j 6=i Q j . By the assumption of irredundancy, Qi ( Pi . Let m ∈ Pi\Qi , and consider the ideal (N : m) =

(Pi ∩Qi : m)
(1.12.iv)
= (Pi : m)∩ (Qi : m). By (4.4*.i,ii) of [4.21] above (Pi : m) = M and (Qi : m) is pi -primary, so

(N : m) is pi -primary. Thus each pi is r (N : m) for some m ∈M .11

Suppose on the other hand that r (N : m) is a prime p for some m ∈ M . Note (N : m) =
�

⋂

Qi : m
�

(1.12.iv)
=

⋂

(Qi : m), so by (4.4*) above, p = r (N : m) =
⋂

m /∈Qi
pi . Since the prime p is an intersection of some of the pi ,

(1.11.ii) shows p= pi for some i .

Show that they are also the prime ideals belonging to 0 in M/N.
Note that for any module P ⊆M we have (N : P ) = (0+N : P+N ). Indeed xP ⊆N ⇐⇒ x(P+N )⊆ 0+N =N .

Taking radicals, r (N : P ) = r (0+N : P +N ). Specializing to cyclic submodules Am gives r (N : m) = r (0̄ : m̄), so
one is prime just if the other is, and by Theorem 4.5*, the same primes belong to N ⊆M and 0⊆M/N .

11 I owe this part of the argument to Multiplicative Theory of Ideals by Max D. Larsen and Paul Joseph McCarthy. I had initially started reasoning
about ideals of the form

�

(Q : M ) : x
�

, and was trying to prove that if N =
⋂

Qi is an irredundant decomposition, then (N : M ) =
⋂

(Qi : M )was
likewise.
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State and prove the analogues of (4.6)–(4.11) inclusive. (There is no loss of generality in taking N = 0.)
We must convince ourselves we genuinely aren’t losing any generality. What we should do is try to lift a primary

decomposition, as we know (p. 50) primary ideals are preserved under contraction. So suppose we are given an irre-
dundant primary decomposition 0=

⋂

Qi/N in M/N (recalling the correspondence (p. 18) between submodules of
M/N and submodules of M containing N ). Apparently N =

⋂

Qi , and we should show that the Qi are rM/N (Qi/N )-
primary. Much as in the last part of [4.22], we have (Qi/N : M/N ) = {x ∈ A : xM ⊆ Qi} = (Qi : M ), and taking
radicals gives rM (Qi ) = rM/N (Qi/N ). Now we must show Qi is primary. Suppose x ∈ A is a zero-divisor of M/Qi .
The third isomorphism theorem (2.1.i) gives M/Qi

∼= (M/N )/(Qi/N ), so x is a zero-divisor of the latter, hence
nilpotent since Qi/N is primary, hence nilpotent in M/Qi since they are isomorphic. Thus Qi is primary. It is clear
that irredundancy is preserved under lifting, as Qi/N ⊇

⋂

j 6=i Q j/N ⇐⇒ Qi ⊇
⋂

j 6=i Q j by the order-preserving
correspondence of p. 18.12

Proposition 4.6*. Let N ⊆ M be a decomposable module. Then any prime ideal p⊇ rM (N ) contains a minimal prime
ideal belonging to N, and thus the minimal prime ideals of N are precisely the minimal elements in the set of all prime
ideals containing rM (N ).

Write N =
⋂

Qi , so that ([4.20.iii]) rM (N ) =
⋂

rM (Qi ) =
⋂

pi . If p ⊇
⋂

pi , then by (1.11.ii), there is i with
p ⊇ pi , and surely for any p j ⊆ pi we have p j ⊆ p, so p contains an isolated prime ideal of N . In particular, if p is
minimal over rM (N ), this shows it equals some isolated p j .

Proposition 4.7*. Let N ⊆ M be a decomposable module, let N =
⋂n

i=1 Qi be a minimal primary decomposition, and
let pi = rM (Qi ). Then

n
⋃

i=1

pi = {x ∈A : (N : x) 6=N}.

In particular, if 0⊆ M is decomposable, the set D ⊆ A of zero-divisors of M is the union of the prime ideals belonging to
0.

Since by [4.22], the set of primes associated to N ⊆ M is the same as that associated to 0⊆ M/N , and for x ∈ A
we have (N : x) 6=N ⊆M just if (0 : x) 6= 0⊆M/N , we can indeed assume N = 0.

Then the right-hand side D is the set of x such that there exists m 6= 0 ∈M such that m ∈ (0 : x), or x m = 0; with
is to say D is the set of zero-divisors of M . Now if x ∈ r (D), then there is a nonzero m ∈ M and a least n > 0 such

that xn m = 0. Then m′ = xn−1m 6= 0 and x m = 0, so x ∈D . Thus D = r (D) = r
�

⋃

m 6=0(0 : m)
�

=
⋃

m 6=0 r (0 : m).

The proof of Theorem 4.5* ([4.22]) shows that each r (0 : m) for m 6= 0 is the intersection of some of the pi , and
each pi = r (0 : m) for some m. Thus D =

⋃

pi .

Proposition 4.8*. Let S be a multiplicative submonoid of A, and let Q ⊆M be a p-primary module.
i) If S ∩ p 6=∅, then S−1Q = S−1M .
ii) If S ∩ p=∅, then S−1Q is a S−1p-primary submodule of S−1M , and its preimage ( contraction) under the canonical
map M → S−1M is Q. Hence primary S−1A-submodules of S−1M correspond to primary A-submodules of M .

i): Let s ∈ S ∩ p. Since p = rM (Q), there is n > 0 such that s n M ⊆ Q. Then any element m/t ∈ S−1M can be
written as s n m/s n t ∈ S−1Q.

ii): Suppose x/s ∈ S−1A is a zero-divisor in S−1M/S−1Q. Then there is some non-zero m/t ∈ S−1M/S−1Q such
that (x/s)m/t = xm/st = 0. Then xm/st ∈ S−1Q, so there is u ∈ S such that u x m ∈ Q ⊆ M . Then since m/t
was non-zero, m /∈Q, so u x is a zero-divisor of M/Q, hence nilpotent since Q is primary. Then there is n > 0 such
that (u x)n M ⊆Q. That means xn S−1M = xn un S−1M ⊆ S−1Q, so x is nilpotent in S−1M/S−1Q, meaning S−1Q is
primary.

If x ∈ p = rM (Q), let n > 0 be such that xn M ⊆ Q. Then for arbitrary s ∈ S we have (x/s)n S−1M ⊆ S−1Q, so
x/s ∈ r (S−1Q : S−1M ) = rS−1M (S

−1Q). On the other hand, if x/s ∈ rS−1M (S
−1Q) then (xn/1)S−1M = (x/s)n S−1M ⊆

S−1Q for some n > 0. Thus for every m/t ∈ S−1M we have xn m/s t ∈ S−1Q. This means there is u ∈ S such that
u xn m ∈ Q. Then u xn is a zero-divisor of M/Q, so nilpotent in M/Q, and so some power takes M into Q, and
u xn ∈ rM (Q) = p. But then since p is prime and u /∈ p we have xn ∈ p, so x ∈ r (p) = p, and finally x/s ∈ S−1p.
Therefore S−1Q is S−1p-primary.

12 Note that, on the other hand primary decomposition does not generally survive the quotient process. Indeed, Example 3) on p. 51 shows
that the primary ([4.8]) ideal (x, z)2 of k[x, y, z], where k is a field, has image no longer primary in the quotient ring k[x, y, z]/(xy − z2).

72



Chapter 4: Primary Decomposition Ex. 4.23

Now suppose m ∈M is such that m/1 ∈ S−1Q. Then there is s ∈ S such that s m ∈Q. By (4.7*) above, p= {x ∈
A : Q 6= (Q : x)}, so m ∈ (Q : s) =Q as s /∈ p.

Finally, we show that every S−1A-submodule N ′ of S−1M is an extended module of the form S−1N for some
A-submodule N ⊆ M . Indeed, let N be the set of n ∈ M such that n/1 ∈ N ′, (which we can also think of as the
contraction of N along the canonical map f : M → S−1M ). If n/s ∈N ′, then n/1= s(n/s) ∈N ′, so n ∈N and hence
n/s ∈ S−1N . On the other hand f (N ) = f

�

f −1(N ′)
�

⊆N ′, so S−1N ⊆N ′.

Proposition 4.9*. Let S be a multiplicative submonoid of A and let N ⊆M be a decomposable ideal. Let N =
⋂n

i=1 Qi
be a minimal primary decomposition of N . Let pi = rM (Qi ) and suppose the Qi numbered so that S meets pp+1, . . . , pn

but not p1, . . . , pp . Write S(N ) = {m ∈M : m/1 ∈ S−1N}. Then

S−1N =
p
⋂

i=1

S−1Qi , S(N ) =
p
⋂

i=1

Qi ,

and these are minimal primary decompositions.
By (3.4.ii) we have S−1N =

⋂n
i=1 S−1Qi . By (4.8*.i) above, we have S−1Qi = S−1M for i > p, so S−1N =

⋂p
i=1 S−1Qi , and by (4.8*.ii), S−1Qi is S−1pi -primary for i ≤ p. Since these pi don’t meet S, by (3.11.iv), the

S−1pi are distinct primes of S−1A. If we had, for some j ≤ p, that S−1Q j ⊇
⋂p

j 6=i=1 S−1Qi , then taking preim-

ages under f : M → S−1M we see that Q j ⊇
⋂

j 6=i Qi , contradicting the assumed irredundancy of the Qi . Thus

S−1N =
⋂p

i=1 S−1Qi is an irredundant primary decomposition of S−1N . Taking preimages under f : M → S−1M ,

S(N ) = f −1(S−1N ) = f −1
�

p
⋂

i=1

S−1Qi

�

=
p
⋂

i=1

f −1(S−1Qi ) =
p
⋂

i=1

Qi

by (4.8*.ii) again. This is an irredundant primary decomposition since the decomposition of N is.

Theorem 4.10*. Let N ⊆ M be a decomposable ideal, let N =
⋂n

i=1 Qi be a minimal primary decomposition of N , let
pi = rM (Qi ), and let Σ = {pi1

, . . . , pim
} be an isolated set of prime ideals of N . Then

⋂

pi∈Σ
Qi is independent of the

decomposition.
Let S =A\

⋃

Σ. Then S is a multiplicative submonoid, and for p ∈Σwe have p∩S =∅, while if p /∈Σ, then since
p is not contained in an element of Σ by isolation, (1.11.i) shows p 6⊆

⋃

Σ, so p∩ S 6=∅. Then
⋂

pi∈Σ
Qi = S(N ) by

(4.9*), so this intersection is actually independent of the Qi chosen.

Corollary 4.11*. The isolated primary components (i.e., the primary components Qi corresponding to minimal prime
ideals pi ) are uniquely determined by N.

Let pi be an isolated prime of N . TakingΣ= {pi} and Spi
=A\pi in (4.10*) above gives Spi

(N ) =Qi independent
of the choice of decomposition.
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Integral Dependence and Valuations

EXERCISES
Let f : A→ B be an integral homomorphism of rings. Show that f ∗ : Spec(B)→ Spec(A) is a closed mapping, i.e. that it maps

closed sets to closed sets. (This is a geometrical equivalent of (5.10).)

Write C = f (A). That f is integral means that B is integral over C . Write f : A
p
−� C

i
,→ B . f will be closed if

both p and i are closed.
But p∗ is a homeomorphism between Spec(C ) and V

�

ker(p)
�

⊆ Spec(A) by [1.21.v]. For any closed subset
K ⊆ Spec(C ), we have p∗(K) closed in the subspace topology on V

�

ker(p)
�

. Since this subset of Spec(A) is closed as
well, p∗(K) is closed in Spec(A). Thus all surjections induce closed maps on prime spectra.

For closedness of i∗, any closed subset of Spec(B) is ([1.15.i]) the set V (b) of all primes containing some radical
ideal bÃ B . Let c= i∗(b) = b∩C , we claim i∗

�

V (b)
�

=V (c). If b⊆ q ∈ Spec(B), then intersecting both sides with
C gives c ⊆ i∗(q) ∈ Spec(C ), so i∗

�

V (b)
�

⊆ V (c). Surjectivity is a little less obvious. Every prime p ⊇ c induces a
quotient prime p̄ of C/c. (5.6.i) says j : C/c� B/b is integral, so by (5.10), there is there is q̄ ∈ Spec(B/b) (the image
of q ∈ Spec(B)) such that j ∗(q̄) = p̄. Thus j ∗ surjectively maps Spec(B/b) ≈ V (b) to Spec(C/c) ≈ V (c), so using
[3.21.iii], i∗

�

V (b)
�

=V (c) and i∗ is closed.1

Let A be a subring of a ring B such that B is integral over A, and let f : A→ Ω be a homomorphism of A into an algebraically
closed field Ω. Show that f can be extended to a homomorphism of B into Ω.
Ω is an integral domain, so f (A) is as well. Thus p= ker( f ) is a prime ideal of A, and f (A)∼= A/p. By Theorem

5.10, there is a prime ideal qÃ B with q∩A= p. Then B/q, by (5.6.i), is integral over A/p. Thus it suffices to prove
the result in the case A⊆ B are integral domains with B integral over A and f : A�Ω is an injection.

We use Zorn’s Lemma to construct an embedding B � Ω. Let Σ be the set of pairs (C , σ), where A⊆ C ⊆ B/
and σ : C → Ω is an embedding, and such that σ |A = f . Partially order Σ by (C , σ) ≤ (C ′, σ ′) just if C ⊆ C ′ and
σ = σ ′|C . Σ 6=∅ since the inclusion (A, f ) is a minimal element. If




(Cα, σα)
�

α
is a chain in Σ, then

⋃

Cα ⊆ C and
σ =

⋃

σα is a well defined homomorphism, injective since each σα is, so every chain has an upper bound. By Zorn’s
Lemma, there is a maximal element (C , σ) ∈Σ. We will be done if C = B .

Suppose for a contradiction then there is b ∈ B\C , and b is integral over A, hence a fortiori over C . Say b satisfies
p(x) =

∑

ci x i ∈C [x], and write (σp)(x) =
∑

σ(ci )x
i ∈Ω[x] Then the expected composition

C [x]→Ω[x]→Ω[x]/
�

(σp)(x)
�∼=Ω

has kernel
�

p(x)
�

, and so descends to an injection C [x]/
�

p(x)
�

�Ω restricting to σ on C . But C [x]/
�

p(x)
�∼=C [b ],

and by assumption C (C [b ]⊆ B so the induced map C [b ]�Ω contradicts maximality of σ .

Let f : B→ B ′ be a homomorphism of A-algebras, and let C be an A-algebra. If f is integral, prove that f ⊗1: B⊗AC → B ′⊗AC
is integral. (This includes (5.6) ii) as a special case.)

Start with a decomposable element x⊗c ∈ B ′⊗AC . Since x is integral over B , it satisfies some polynomial equation
∑n

i=0 f (bi )x
i = 0 for bi ∈ B (with leading coefficient bn = 1). Then

∑

f (bi )x
i ⊗ c n = 0 in B ′ ⊗AC . Rearranging,

0=
∑
�

f (bi )⊗ c n−i
�

(x⊗ c)i . But each f (bi )⊗ c n−i ∈ im( f ⊗ idC ), so x⊗ c is integral over im( f ⊗ idC ). But element
of B ′⊗AC is a finite sum of elements of the form x ⊗ c , so (5.3) shows that the whole ring B ′⊗AC is integral over
im( f ⊗ idC ).

The parenthetical comment follows from setting C = S−1A and using (3.5), which states S−1A⊗AB ∼= S−1B .

1 I went this quotient route because first applying (5.10) for p ∈V (c) gives a prime q ∈ Spec(B), but it wasn’t completely obvious to me that
q ∈V (b).
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Let A be a subring of B such that B is integral over A. Let n be a maximal ideal of B and let m = n∩A be the corresponding
maximal ideal of A (see (5.8)). Is Bn necessarily integral over Am?

Per the book’s suggestion, no. Let k be a field, of characteristic 6= 2 so that x + 1 6= x − 1, B = k[x], and
A = k[x2 − 1]. Then x ∈ B satisfies y2 − [1 − (x2 − 1)] = 0 in A[y], so is integral over A. Then by (5.3), B is
integral over A. Now consider the ideal n := (x − 1) of B , and let m := n ∩ A = (x2 − 1). Then Sm := A\m. As
x + 1 /∈ n we have 1/(x + 1) ∈ Bn. If 1/(x + 1) were integral over Am, we would have ai/si ∈ S−1

m A (in least terms)
such that

∑n
i=0[ai/si ][1/(x+1)]i = 0 in Bn and an/sn = 1. We can rewrite that as

∑

ai (x+1)n−i/si (x+1)n = 0, and,
B being an integral domain, we can multiply through by (x + 1)n

∏n
i=0 si to get

∑

ai ti (x + 1)n−i = 0 in B , where
ti =

∏

j 6=i s j ∈A\(x2−1) and an = 1. Then (x+1) divides each term but possibly an tn(x+1)0 = tn . Since 0 ∈ (x+1),
this forces tn ∈ (x + 1)∩A= (x2− 1), a contradiction.

Let A⊆ B be rings, B integral over A.
i) If x ∈A is a unit in B then it is a unit of A.

Let x ∈ A∩ B×. Then x is not in any n ∈ Max(B). Let m ∈ Max(A). By (4.10), there is n ∈ Spec(B) such that
n∩A=m, and by (5.8), n is maximal. Thus x /∈ n, hence x /∈m. As m was arbitrary, x is in no maximal ideal of A,
and hence x ∈A×.2

ii) The Jacobson radical of A is the contraction of the Jacobson radical of B.
For a maximal ideal m of A, (5.10) and (5.8) give a unique maximal ideal n of B such that n ∩ A = m. Write

N ⊆Max(B) for the set of these. Then

R(A) =
⋂

Max(A) =
⋂

n∈N

(A∩n) =A∩
⋂

N ⊇A∩
⋂

Max(B) =A∩R(B).

On the other hand, by (5.8) again, the set M = {n∩A : n ∈Max(B)} is a subset of Max(A). Thus

A∩R(B) =A∩
⋂

Max(B) =
⋂

n∈Max(B)

(A∩n) =
⋂

M ⊇R(A).

Let B1, . . . , Bn be integral A-algebras. Show that
∏n

i=1 Bi is an integral A-algebra.
Use induction, and assume we have the n = 2 case. The base step n = 1 is trivial, so suppose we have proved the

proposition up to n and have B1, . . . , Bn+1 integral A-algebras. The inductive assumption yields that
∏n

i=1 Bi is an
integral A-algebra, and the n = 2 case shows

∏n+1
i=1 Bi

∼=
∏n

i=1 Bi ×Bn+1 is an integral A-algebra as well.
So it is now enough to prove the n = 2 case. Let B and C be integral A-algebras, and (b , c) ∈ B×C . Then3, 4there

are p(x) ∈A[x] such that p(b ) = 0 in B and q(x) ∈A[x] such that q(c) = 0 in C . Therefore p
�

(b , c)
�

=
�

0, p(c)
�

and
q
�

(b , c)
�

=
�

q(b ), 0
�

in B ×C , so multiplying these, (pq)
�

(b , c)
�

= p
�

(b , c)
�

q
�

(b , c)
�

=
�

0, p(c)
��

q(b ), 0
�

= (0, 0),
where (pq)(x) has leading coefficient 1, showing (b , c) is integral over the image of A.

Let A be a subring of a ring B, such that the set B\A is closed under multiplication. Show that A is integrally closed in B.
Let b ∈ B be integral over A, and let n ≥ 2 be such that b satisfies an equation b n+an−1b n−1+ · · ·+a1b +a0 = 0

for ai ∈A. Since 0, a0 ∈A, we have b n + · · ·+ a1b ∈A. We can factor this as b (b n−1+ · · ·+ a1) ∈A, and since B\A is
multiplicatively closed, either b ∈ A or b n−1+ an−1b n−2+ · · ·+ a1 ∈ A. Iterating this process, we eventually arrive
at b + an−1 ∈A, so b ∈A.

2 The proof from (5.7) also works without modification. Suppose x−1 ∈ B . By uniqueness of inverses in B , the only possible inverse of x in A
is x−1, so we need to show x−1 ∈A. Since x−1 is integral over A, there are n > 0 and ai ∈A such that x−n =

∑n−1
i=0 ai x−i holds in B . Multiplying

through by xn−1 yields x−1 =
∑n−1

j=0 an−1− j x j , so x−1 ∈A.
3 This good solution taken from .
4 Here is a terrible solution I came up with myself. First we show that f (A)× g (A) is integral over the subalgebra A′ = im( f , g ) = {( f (a), g (a) :

a ∈ A}= A · (1, 1). Now f (A)× g (A) is generated over A′ by (1, 0) and (0, 1), so it is finitely generated, and φ : (x, y) 7→ (b x, cy) is an A-module
endomorphism of f (A)× g (A). (2.4) then gives us an equation of the form

∑

i≤n aiφ
i = 0, where an = 1; applying both sides to (1, 1) gives

∑

i≤n ai (b , c)i = (0, 0), showing (b , c) is integral over A′.
Since A′′ = f (A)× g (A) is integral over A′ = im( f , g ), by (5.4) if B ×C is integral over A′′, it will also be integral over A′. It suffices by (5.3) to

show each of B×{0} and {0}×C is integral over A′′. We will prove it for B×{0}, the argument for {0}×C being symmetric. So let (b , 0) ∈ B×C .
As b is integral over im A⊆ B , there are ai ∈ A such that

∑

0≤i≤n ai b i = 0. Then
∑

ai (b , 0)i =
�

0, g (a0)
�

∈ A′′. Setting a′i = f (ai ) for i 6= 0 and
a′0 =

�

f (a0), 0
�

we have
∑

ai (b , 0)i = (0, 0), so (b , 0) is integral over A′′.
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i) Let A be a subring of an integral domain B, and let C be the integral closure of A in B. Let f , g be monic polynomials in B[x]
such that f g ∈C [x]. Then f , g are in C [x].

(Note that A really plays no part: we could have started with C ⊆ B integrally closed in B , and let A= C , with
integral closure in B just C again, so without loss of generality we may take A=C .)

Let K be the field of fractions of B , let Ω be a splitting field of f g ∈ K[x]. Then in Ω[x] we have f g =
∏

i (x −
ξi )
∏

j (x − η j ), where the ξi are roots of f and the η j are roots of g . Since each ξi and η j is a root of f g ∈ C [x],
we have each ξi and η j integral over C in Ω. Recall from (5.3) that the set D of elements of Ω integral over C is a
ring. Since each coefficient of f =

∏

i (x − ξi ) (resp. g =
∏

j (x − η j )) is a polynomial in the ξi (resp. η j ), we have
f , g ∈ D[x] ∩ B[x] = (D ∩ B)[x]. But since D ∩ B consists of elements of B integral over C , and C is integrally
closed in B , we have D ∩B =C , so f , g ∈C [x].

ii) Prove the same result without assuming that B (or A) is an integral domain.
Note in particular that considering linear polynomials (x − b ), (x − c), this gives us a near-converse to [5.7]:

b + c ∈C & bc ∈C ⇐⇒ b , c ∈C
We need to see if we can alter our proof of part i) to avoid fields.5 The revised version would go as follows: let B+

be a ring containing B and such that f and g split into linear factors x−ξi and y−η j in B+[x]. These linear factors
also divide f g , so ξi , η j are roots of f g , and so are integral over C . The coefficients of f and g , being polynomials
in the ξi and η j , are then also integral over C by (3.8). But these coefficients are in B , so by assumption also in C .

To create the extension ring B+ we need, let deg( f ) = n and deg(g ) = m, and note that we can extend B to
B1 = B[x]/

�

f (x)
�

to get a larger field in which f has a root α1 = x̄. Then f (y) is in the kernel of the canonical
map B1[y]� B1[y]/(y − α1) since in the quotient ȳ = ᾱ1, and f (ᾱ1) = 0. Thus f (y) is an element of the principal
ideal (y − α1), so there is a monic polynomial f1(y) in B1[y] such that f (y) = f1(y)(y − α1) in B1[y]. Since degree
of monic polynomials is multiplicative, we have deg( f1) = n− 1. Repeating this process, and because the degree of
the non-linear factor decreases each time we make such an extension, we eventually get a ring B ′ = Bn over which
f splits. We can then perform a similar process for g over B ′ to get a ring (B ′)m = B+ in which both f and g split
completely.

Let A be a subring of a ring B and let C be the integral closure of A in B. Prove that C [x] is the integral closure of A[x] in B[x].
Write C ′ for the integral closure of A[x] in B[x]. Then x ∈A[x]⊆C ′ and C is integral over A, hence over A[x],

so by (5.3), A[x]⊆C [x]⊆C ′.
It is now enough to show C [x] is integrally closed. Let f ∈ B[x] be such that there exist gi ∈ C [x] with gn = 1

and f n +
∑n−1

i=1 gi f i + g0 = 0 ∈ C [x]. Since g0 ∈ C [x], we have C [x] 3 f n +
∑n−1

i=1 gi f i = f ( f n−1+
∑n−1

i=1 gi f i−1)
a product of monic polynomials in B[x]. Then [5.8.ii] says that f ∈C [x].

A ring homomorphism f : A→ B is said to have the going-up property (resp. the going-down property) if the conclusion of the
going-up theorem (5.11) (resp. the going-down theorem (5.16)) holds for B and its subring f (A).

Let f ∗ : Spec(B)→ Spec(A) be the mapping associated with f .
i) Consider the following three statements:

(a) f ∗ is a closed mapping.
(b) f has the going-up property.
(c) Let q be any prime ideal of B and let p= qc . Then f ∗ : Spec(B/q)→ Spec(A/p) is surjective.
Prove that (a) =⇒ (b) ⇐⇒ (c) (See also Chapter 6, Exercise 11.)
Factorize the map canonically as f = i ◦ p for p : A� f (A) and i : f (A) ,→ B the expected maps. p∗ canonically

homeomorphs Spec
�

f (A)
�

into the closed subset V
�

ker( f )
�

⊆ Spec(A) by [1.21.iv], and for each p ⊇ ker( f ), the
third isomorphism theorem (2.1.i) gives p(A)/p(p)∼=A/p, so f will satisfy any of the three properties if and only if
i does. Thus we might as well assume f : A ,→ B is an inclusion.

As far as the going-up property is concerned, by induction, it is enough to show that if p ⊆ p′ ∈ Spec(A) and
q ∈ Spec(B) is such that q ∩ A = p, then there is q′ ⊇ q such that q′ ∩ A = p′. This is the same as showing each
restriction f ∗

�

�

V (p)
V (q) : V (q)→V (p) is surjective.

(a) =⇒ (b): Since V (q) ([1.15]) is closed, by assumption f ∗
�

V (q)
�

is a closed set containing f ∗(q) = p, so
{p} ⊆ f ∗

�

V (q)
�

. (In fact, they are equal, for if p 6⊆ q′ ∩ A, then q ⊇ p is not contained in q′.) But by [1.18.ii],

V (p) = {p}, so f ∗
�

�

V (p)
V (q) is surjective.

5 Expanded from http://pitt.edu/~yimuyin/research/AandM/exercises05.pdf
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(b) ⇐⇒ (c): The identifications of [3.21.iii] identify f ∗
�

�

V (p)
V (q) with the map f̄ ∗ : Spec(B/q)→ Spec(A/p) induced

by f̄ : A/p→ B/q. Then (b) holds if each f ∗
�

�

V (p)
V (q) is surjective and (c) if each f̄ ∗ is surjective, but these are essentially

the same maps.

Consider the following three statements:
(a ′) f ∗ is an open mapping.
(b ′) f ∗ has the going-down property.
(c ′) For any prime ideal q of B, if p= qc , then f ∗ : Spec(Bq)→ Spec(Ap) is surjective.
Prove that (a ′)=⇒ (b ′)⇐⇒ (c ′). (See also Chapter 7, Exercise 23).
(b ′)⇐⇒ (c ′): First we should show the map of (c ′) exists. f composed with the canonical map B → Bq yields a

map f q : A→ Bq. Since each element of Sq = B\q by definition becomes a unit in Bq, and since f −1(Sq) =A\f −1(q) =
A\p = Sp, each element of Sp is sent to a unit in Bq, so by (3.1) there is a unique induced map Ap→ Bq, as hoped.
Call this map f q

p .
By induction, the going-down property requires only that if p′ ⊆ p ∈ Spec(A) and q ∈ Spec(B) is such that

f ∗(q) = p, then there is q′ ⊆ q such that f ∗(q′) = p′. This is the same as showing each restriction f ∗
�

�

�

S−1
q Spec(A)

S−1
q Spec(B)

is

surjective, where S−1 Spec(A) is the set of primes in A not meeting S. But composing with the canonical inclusions
Spec(Ap) ,→ S−1

p Spec(A) and Spec(Bq) ,→ S−1
q Spec(B) of [3.21.i], we can identify ( f q

p )∗ with this restriction.
(a ′)⇐⇒ (b ′): We claim that open sets in the Zariski topology are “downward closed,” meaning p′ ⊆ p ∈ U =⇒

p′ ∈ U . Indeed, write U = X \C , C closed. Then p′ /∈ U would imply {p} ⊆ C , so {p} ⊆ C = C ; but by [1.18.ii],
{p}=V (p′) 3 p, so p ∈C and hence p /∈U . This may be obvious, but I don’t recall having seen it proved.

Recall the notation S−1X = {p ∈X : S∩p=∅} from [3.21.i] and let X = Spec(A) and Y = Spec(B). In the special
cases Sp = A\p and Sg = {1, g , g 2, . . .}, write Xp = S−1

p X and Xg = S−1
g X. Recall from [3.22] that Yq ≈ Spec(Bq)

is the intersection of all its basic open neighborhoods Yg (g /∈ q). Write f q : A→ Bq again for the composition of f
with the canonical map φq : B→ Bq. Then

( f q)∗
�

Spec(Bq)
� [1.21.vi]
= f ∗(φ∗q

�

Spec(Bq)
� [3.21.i]
= f ∗(Yq) =

⋂

g /∈q

f ∗(Yg ).

By [1.17], the Yg are open, so the Ug := f ∗(Yg ) are open. Then since q ∈ Yg and p = f ∗(q), p ∈ Ug , so all primes
p′ ⊆ p are in Ug . Intersecting, Xp ⊆ f ∗q

�

Spec(Bq)
�

.
Now f q factors through φp : A→ Ap as f q = f q

p ◦φp, so taking ∗’s, by [1.21.vi] we have Xp ⊆ im(φ∗p ◦ ( f
q
p )∗).

But φ∗p is a homeomorphism between Spec(Ap) and the open subset Xp ⊆X by [3.21.i], so ( f q
p )∗ is surjective.

Let f : A→ B be a flat homomorphism of rings. Then f has the going-down property.
[3.18] states that f ∗ : Spec(Bq)� Spec(Ap) is surjective for each q ∈ Spec(B) and p = qc . Then (c ′) =⇒ (b ′) in

[5.10] shows f has the going-down property.

Let G be a finite group of automorphisms of a ring A, and let AG denote the subring of G-invariants, that is of all x ∈A such that
σ(x) = x for all σ ∈G. Prove that A is integral over AG .

The first (rather trivial) thing to do is to show AG is a ring. But indeed, by the definition of a ring homomorphism
we have σ(1) = 1 for all σ ∈G, and if a, b ∈AG , then σ(a− b ) = σ(a)+σ(−b ) = a− b and σ(ab ) = σ(a)σ(b ) = ab
for all σ ∈G. Thus AG , containing 1 and being closed under subtraction and multiplication, is a subring of A.

To see AG ,→ A is integral, let x ∈ A, and let t be an indeterminate. If p :=
∏

σ∈G

�

t − σ(x)
�

∈ A[t ], then each
coefficient of p is a symmetric polynomial in the σ(x), so p ∈AG[t ]. As p is monic and 0= x− x divides p(x), we
see x is a root of p, and so x is integral over AG .

Let S be a multiplicatively closed subset of A such that σ(S) ⊆ S for all σ ∈ G, and let SG = S ∩AG . Show that the
action of G on A extends to an action on S−1A, and that (SG)−1AG ∼= (S−1A)G .

Suppose a/s = b/t ∈ S−1A. Then there is u ∈ S such that u t a = u s b in A. Applyingσ ∈G yieldsσ(u)σ(t )σ(a) =
σ(u)σ(s)σ(b ) in A, meaning σ(a)/σ(s) = σ(b )/σ(t ) in S−1A. Thus if we define the action of G on S−1A by
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σ(a/s) := σ(a)/σ(s), this definition is independent of the choice of representatives, hence well defined. It is ob-
viously multiplicative, and only slightly less obviously additive:

σ

�

a
s
+

b
t

�

= σ
�

at + b s
s t

�

=
σ(at + b s)
σ(s t )

=
σ(a)σ(t )+σ(b )σ(s)

σ(s)σ(t )
=
σ(a)
σ(s)

+
σ(b )
σ(t )

= σ
�

a
s

�

+σ
�

b
t

�

.

For each a ∈ AG , we have σ(a/1) = σ(a)/1 = a/1, so the natural map AG ,→ A → S−1A factors as AG →
(S−1A)G ,→ S−1A. Each element s ∈ SG becomes a unit in S−1A, hence a unit in (S−1A)G since σ(1/s) = σ(1)/σ(s) =
1/s for all σ ∈G. Thus (3.1) gives a unique homomorphism χ : (SG)−1AG→ (S−1A)G taking a/s 7→ a/s .

χ is injective, for if a/s = 0 in (S−1A)G ⊆ S−1A, there is t ∈ S such that t a = 0. Then taking t ′ =
∏

σ∈G σ(t ), we
also have t ′a = 0, meaning a/s = 0 already in (SG)−1AG .

On the other hand, let a/s ∈ (S−1A)G Let s ′ =
∏

σ 6=idA
σ(s) ∈ SG . Then since a/s and s s ′/1 are invariant, so

is their product as ′/1. Thus for every σ ∈ G we have σ(as ′)/1 = s(as ′/1) = as ′/1, so there is tσ ∈ S such that
tσas ′ = tσ ·σ(as ′). Set t =

∏

τ∈G τ
�
∏

σ∈G tσ
�

∈ SG . Then since tσ divides t we have σ(t as ′) = t ·σ(as ′) = t as ′, so
t as ′ ∈AG . Then a/s = t s ′a/t s ′ s with t s ′a ∈AG and t s ′ s ∈ SG , so χ is surjective.

In the situation of Exercise 12, let p be a prime ideal of AG , and let P be the set of prime ideals of A whose contraction is p. Show
that G acts transitively on P. In particular, P is finite.

Let q, q′ ∈ P . For any x ∈ q, we have
∏

σ∈G σ
−1(x) ∈ AG ∩ q = p. But also p = AG ∩ q′, so

∏

σ∈G σ
−1(x) ∈ q′.

Thus, since q is prime, for some σ ∈G we have y = σ−1(x) ∈ q′. Then x = σ(y) ∈ σ(q′). Since x ∈ qwas arbitrary, we
see q⊆

⋃

σ∈G σ(q
′). By (1.11.i), q is contained in some σ(q′). Since both q∩AG = p and σ(q′)∩AG = σ(q′)∩σ(AG) =

σ(q′∩AG) = σ(p) = p, (5.9) says we must have q= σ(q′). As q and q′ ∈ P were arbitrary, it follows that G sends any
element of P to any other element of P , so G acts transitively. Since G is finite, and sends q to every element of P ,
we have |P |= |G|/|StabG(q)| ≤ |G| finite.

Let A be an integrally closed domain, K its field of fractions and L a finite normal separable extension of K. Let G be the Galois
group of L over K and let B be the integral closure of A in L. Show that σ(B) = B for all σ ∈G, and that A= BG .

If b ∈ B , then there it satisfies a polynomial equation
∑

ai b i = 0 for some ai ∈A=AG . Applying a σ ∈G to this
equation yields 0 = σ(0) = σ

�
∑

ai b i
�

=
∑

σ(ai )σ(b )
i =

∑

aiσ(b )
i . Thus σ(b ) satisfies a monic polynomial (the

same as b does) over A, and hence is in B . Thus σ(B)⊆ B . On the other hand, replacing σ by σ−1 in this reasoning
yields σ−1(B)⊆ B , and applying σ to both sides gives B = σ

�

σ−1(B)
�

⊆ σ(B). Since σ ∈G was arbitrary, B = σ(B)
for all σ ∈G.

BG = B ∩ LG = B ∩K =A, since K is the fixed field of G and A is integrally closed in K .

Let A, K be as in Exercise 14, let L be any finite extension field of K, and let B be the integral closure of A in L. Show that, if p is any
prime ideal of A, then the set of prime ideals q of B which contract to p is finite (in other words, that Spec(B)→ Spec(A)
has finite fibers).

Recall6 that any extension factors as a separable extension followed by a purely inseparable extension. Since a
product of two finite numbers is finite, it suffices to show the fibers are finite for either of these kinds of extensions.

In the case of a separable extension L/K , let Ω/L/K be the least normal extension of K containing L. Write C
for the integral closure of A in Ω; it is clearly also integral over B . If B had infinitely many primes lying over p, then
(5.10) would give us at least one prime of C lying over each of those, hence infinitely many primes of C lying over
p. But Ω⊇K is a finite extension, so H =Gal(Ω/K) is finite. By [5.14], A=C H , so by [5.13] there are only finitely
many primes of C lying over p.

In the case of a finite, purely inseparable extension L/K of fields of characteristic p > 0, it is well known7 that
for each x ∈ L there is n ≥ 0 such that x pn ∈ K . If we let x1, . . . , xm generate L as a vector space over K , and let
ni ≥ 0 be the least exponents such that xi

pni ∈ K , then if n =maxi ni , we have for all ci ∈ K that
�
∑m

i=1 ci xi

�

pn =
∑m

i=1 c pn

i x pn

i ∈ K , (using the binomial theorem and the fact that p divides
�pn

l

�

for 0 < l < pn), so that Lpn ⊆ K .
Write B for the integral closure of A in L, and suppose P ∈ Spec(B) lies over p ∈ Spec(A). If x ∈ B has x pn ∈ p⊆P,
then as P is prime we have x ∈P; and if x ∈P, then x pn ∈P∩K = p. Thus P is determined uniquely by p, so the
only possibility for a prime of B lying over p is P := {x ∈ B : x pn ∈ p}. To see P really is an ideal, note that b ∈ B

6 http://planetmath.org/encyclopedia/PurelyInseparable.html
7 or sometimes the definition: http://planetmath.org/encyclopedia/PurelyInseparable.html
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and x, y ∈P imply (b x)pn = b pn
x pn ∈Ap= p and (x−y)pn = x pn+(−y)pn ∈ p. To see P is prime, suppose xy ∈P

but x /∈P; then x pn
y pn ∈ p but x pn

/∈ p, so y pn ∈ p and y ∈P.

Noether’s normalization lemma
Let k be a field and let A 6= 0 be a finitely generated k-algebra. Then there exist elements y1, . . . , yr ∈ A which are algebraically

independent over k and such that A is integral over k[y1, . . . , yr ].
We shall assume that k is infinite. (The result is still true if k is finite, but a different proof is needed.) Let x1, . . . , xn

generate A as a k-algebra. We can renumber the xi so that x1, . . . , xr are algebraically independent over k and each of
xr+1, . . . , xn is algebraic over k[x1, . . . , xr ]. Now proceed by induction on n. If n = r there is nothing to do, so suppose
n > r and the result true for n − 1 generators. The generator xn is algebraic over k[x1, . . . , xn−1], hence there exists a
polynomial f 6= 0 in n variables such that f (x1, . . . , xn−1, xn) = 0. Let F be the homogeneous part of highest degree in
f . Since k is infinite, there exist λ1, . . . , λn−1 ∈ k such that F (λ1, . . . , λn−1, 1) 6= 0. Put x ′i = xi − λi xn (1≤ i ≤ n− 1).
Show that xn is integral over the ring A′ = k[x ′1, . . . , x ′n−1] and hence that A is integral over A′. Then apply the inductive
hypothesis to A′ to complete the proof.

First, if the λi didn’t exist, we would have F (x1, . . . , xn−1, xn) = xdeg F
n F (x1, . . . , xn−1, 1) = 0 by homogeneity.

But k being infinite, F is zero as a function kn→ k if and only if F = 0 ∈ k[x1, . . . , xn].
8

Let F =
∑

I aI
∏n

j=1 x i j
j =

∑

I aI x in
n
∏n−1

j=1 (x
′
j +λ j xn)

i j . The coefficient of xdeg F
n in F ∈ k[x ′1, . . . , x ′n−1, xn] is

c :=
∑

aIλ
i1
1 · · ·λ

in−1
n−1 = F (λ1, . . . , λn−1, 1) 6= 0, so that the equation c−1 f (x1, . . . , xn−1, xn) = 0 is monic when writ-

ten in A′[xn]. Thus xn is integral over A′, and so A= k[x1, . . . , xn] is integral over A′ by (5.3). But by the induction
hypothesis, A′ is integral over some k[y1, . . . , yr ], with y1, . . . , yr algebraically independent over k, and by the tran-
sitivity (5.4) of integral dependence, A is integral over k[y1, . . . , yr ].

9

From the proof [of [5.16]] it follows that y1, . . . , yr may be chosen to be linear combinations of x1, . . . , xn . This has the
following geometrical interpretation: if k is algebraically closed and X is an affine algebraic variety in kn with coordinate
ring A 6= 0, then there exists a linear subspace L of dimension r in kn and a linear mapping of kn onto L which maps X
onto L.

X �
� ι //

ρ     

kn

π
����

k r

A= k[x] k[t ]ι#oooo

k[y]
OO
π#

OO

dd
$

dd

We want the commutative diagram of regular maps on the right, with π linear. Let-
ting the coordinate ring ([1.27]) of kn be k[t ], that of the affine algebraic variety X ⊆ kn

be A= k[t ]/I (X ) = k[x], and that of k r be A0 := k[y], [1.28] says that this is equivalent
to demanding the diagram of k-algebra homomorphisms below it. Here ι# is the projec-
tion t j 7→ x j : k[t1, . . . , tn] � A. The normalization proven above gives us a candidate
map $ : A0 � A, namely the k-subalgebra inclusion gotten by mapping the yi to alge-
braically independent elements x ′i of A such that A is integral over A′ = k[x ′1, . . . , x ′r ].
In the course of the proof above, we found that when k is infinite (which is true if
k is algebraically closed), we can take the x ′i to be k-linear combinations of the x j . If
x ′i =

∑n
j=1 ai j x j in A for ai j ∈ k, 1 ≤ i ≤ r and 1 ≤ j ≤ n, and we want ι# ◦π# = $,

we may take π#(yi ) :=
∑n

j=1 ai j t j . Since yi : k r � k is the i th projection and π#(η) = η ◦π by definition, it follows
that π should be given by (v1, . . . , vn) 7→

�
∑n

j=1 a1 j v j , . . . ,
∑n

j=1 ar j v j ,
�

. This is obviously linear, and by Eq. 1.2 of
[1.28], $ = ι# ◦π# = (π ◦ ι)# = ρ# as hoped. (This map is not, as defined, to a linear subspace L ⊆ kn , but we can if
we like pick any r linearly independent vectors wi ∈ kn and define a new map by v 7→

∑

(yi ◦π)(v)wi .)
To see that ρ is surjective, let a point of k r be given. Write it as an inclusion p : {0} → k r . It corresponds by

[1.28] to a map ψp : A0 = k[y]→ k and hence to a map A′ = k[x ′]→ k.10 Since A is integral over A′, by [5.2] this

8 Proved by induction, e.g. in Theorem 5.18 in Fields and Galois Theory, J.S. Milne, http://jmilne.org/math/CourseNotes/ft.html:
if n = 1 and F 6= 0 then F has ≤ deg(F ) roots, so is not identically zero since k is infinite. Assume the result has been proved for n, let F ∈
k[x1, . . . , xn+1] be zero on kn+1, and write 0 = F =

∑

Gi x i
n+1 for Gi ∈ k[x1, . . . , xn]. For any (a1, . . . , an) ∈ kn we have F (a1, . . . , an , xn+1) ∈

k[xn+1] identically zero by assumption, so by the n = 1 case each Gi (a1, . . . , an) = 0. Then by the induction step each Gi = 0, so F = 0.
9 We include as a bonus a proof (http://ericmalm.net/ac/projects/math210b-w08/math210b-transcendence.pdf) that works

when k is finite. Again, assume that xn is algebraic over k[x1, . . . , xn−1], and say that this is witnessed by f (x1, . . . , xn) = 0. Let d > deg f , and
x ′i = xi − xd i

n for i = 1, . . . , n− 1. Write xi = x ′i + xd i
n in f = 0. Expanding out each monomial term aI x I := aI x i1

1 · · · x
in
n of f in terms of xn and

the x ′i , the monomial term aI x eI
n divisible only by xn will have have exponent eI = in + i1d + i2d 2 + · · ·+ in−1d n−1. By our choice of d , the

exponents eI are all distinct as we range over different aI x I , so there is no cancellation among them. One such exponent eM will be the greatest,
and then we can divide through by the corresponding coefficient aM to get aM f (x ′1 + xd

n , . . . , x ′n−1 + xd n−1
n , xn) = 0 monic in xn . This shows A

is integral over A′, and we conclude as before. Note that we no longer have that the xi are k-linear combinations of elements of A′, however.
10 http://math.stackexchange.com/questions/24794/atiyah-macdonald-exercises-5-16-5-19
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extends to a map φb : A→ k, corresponding to an inclusion b : {0} → X . We have φb ◦$ = ψp , so by Eq. 1.2 of
[1.28] again, ρ ◦ b = p.11 We show in [8.5] that the fibers of ρare finite of bounded cardinality.

Nullstellensatz (weak form).
Let X be an affine algebraic variety in kn , where k is an algebraically closed field, and let I (X ) be the ideal of X in the polynomial

ring k[t1, . . . , tn] Chapter 1, Exercise 27. If I (X ) 6= (1) then X is not empty.

Write k[t ] := k[t1, . . . , tn]. If I (X ) 6= (1), then A= k[t ]/I (X ) 6= 0, so by [5.16], X is carried by a linear projection
onto a linear subspace L⊆ kn . Since L is non-empty, so must be X. Let’s call this the weaker Nullstellensatz.

The name “weak Nullstellensatz” usually refers to the following related result:

Weak Nullstellensatz. If k is an algebraically closed field and aÃ k[t1, . . . , tn] is not (1), then Z(a) 6=∅.

This implies the weaker Nullstellensatz, for if X = Z(a) and I (X ) 6= (1), then since a ⊆ I Z(a) 6= (1), we have
a 6= (1) and hence X = Z(a) 6=∅. The weak Nullstellensatz would also follow from the weaker Nullstellensatz if we
could prove a 6= (1) =⇒ I Z(a) 6= (1). This is an easy consequence of the strong Nullstellensatz of [7.14], but one
wants to prove strong from weak, not vice versa.

Deduce that every maximal ideal in the ring k[t1, . . . , tn] is of the form (t1− a1, . . . , tn − an) where ai ∈ k.

This is also the result of [1.27], and there is a proof there. It does not seem to obviously follow from the weaker
Nullstellensatz above, which we are supposed to use to prove it,12 but does from the weak Nullstellensatz, which is
in fact equivalent.

First assume the weak Nullstellensatz. IfmÃ k[t ] is a maximal ideal, then Z(m) 6=∅, so there exists an x ∈ Z(m),
meaning m⊆ I Z(m)⊆mx ; as m is maximal, it follows m=mx . Now assume all maximal ideals of k[t ] come from
points of kn . Any a 6= (1) is contained in some maximal idealm by (1.4), and by assumptionm=mx for some x ∈ kn ,
so since mx vanishes at x by definition, x ∈ Z(a).

Let k be a field and let B be a finitely generated k-algebra. Suppose that B is a field. Then B is a finite algebraic extension of k. (This
is another version of Hilbert’s Nullstellensatz. The following proof is due to Zariski. For other proofs, see (5.24), (7.9).)

This is called Zariski’s Lemma, and there are other proofs at (1.27.2*), (5.24), (7.9).13 Here is a simpler proof than
that suggested.14 Use Noether normalization ([5.16]) on the finitely generated k-algebra B : then there exist (possibly
zero) elements y1, . . . , yr ∈ B , algebraically independent over k, such that B is integral over A = k[y1, . . . , yr ]. By
(5.7), B being a field implies A is a field, so there are zero y’s and thus A= k. Then B is integral over k, hence a finite
algebraic extension.

Now we proceed with the book’s intended proof.

Let x1, . . . , xn generate B as a k-algebra. The proof is by induction on n. If n = 1 the result is clearly true, so assume n > 1.

If B = k[x1] is a field, it follows x−1
1 ∈ B , say x−1

1 =
∑n

i=0 ci x i
1 for ci ∈ k. Multiplying both sides by x1 and

subtracting 1 gives 0=
∑n

i=0 ci x i+1
1 − 1, showing x1 is algebraic over k, so B = k(x1) is a finite algebraic extension.

Let A= k[x1] and let K = k(x1) be the field of fractions of A. By the inductive hypothesis, B is a finite algebraic extension
of K, hence each of x2, . . . , xn satisfies a monic polynomial equation with coefficients in K, i.e. coefficients of the form a/b

11 This can also be verified by evaluating both sides of φb ◦$ =ψp at each yi :

yi (p) =φb
�
∑

ai j x j
�

=
∑

ai j b j =π
#(yi )(b ) = yi

�

π(b )
�

.

Note that kernels did not need to be mentioned here. One can also, however, prove ρ is surjective using the result of [1.27] that the maximal ideals
of P (X ) are in bijection with the points of X . The regular map ρ : X → L induces by precomposition a homomorphism$ = ρ# : P (Y )→ P (X ),
which in turn induces through contraction a map $∗ : Spec

�

P (X )
�

→ Spec
�

P (Y )
�

. Since A is integral over A0, by (5.8) contractions of maximal
ideals are maximal, so this restricts to a map eρ : Max

�

P (X )
�

→Max
�

P (Y )
�

. The identification X ↔Max
�

P (X )
�

conflates eρ with the original ρ
by [1.28], so it is enough to show eρ is surjective. Since A is integral over A0, this follows from (5.10) and (5.8).

12 This has caused me some consternation; see the discussion at http://math.stackexchange.com/questions/24794/
atiyah-macdonald-exercises-5-16-5-19.

13 The original proof, from Oscar Zariski, “A new proof of Hilbert’s Nullstellensatz”, Bull. Amer. Math. Soc. Volume 53, Number 4 (1947),
362–368, can be found online at http://projecteuclid.org/DPubS?verb=Display&version=1.0&service=UI&handle=euclid.bams/
1183510605.

14 http://www.math.lsa.umich.edu/~hochster/615W10/supNoeth.pdf
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where a and b are in A. If f is the product of the denominators of all these coefficients, then each of x2, . . . , xn is integral
over Af .

Write ai/bi for the coefficients, with ai , bi ∈A. If f =
∏

bi , then ai/bi = ai

�
∏

j 6=i b j

�

/ f ∈Af .

Hence B and therefore K is integral over Af .

By (5.3), B =A[x2, . . . , xn] is integral over Af , so since K ⊆ B , we see K is also integral over Af .

Suppose x1 is transcendental over k. Then A is integrally closed, because it is a unique factorization domain.

First we show a UFD A is integrally closed. Suppose an element of its field of fractions is integral over A. We can
write it in least terms as a/b , since A has unique factorization. Then (a)+(b ) = (1) in A, so (an)+(b ) = (1) for all n by
(1.16). We have an equation 0= (a/b )n +

∑n−1
i=0 ci (a/b )i , and multiplying by b n gives an =−

∑n−1
i=0 ci a

i b n−i ∈ (b ).
But then (1) = (an)+ (b ) = (b ), so b is a unit and a/b ∈A.

Now, if x1 is transcendental over k, then A= k[x1] has a division algorithm, so it is a PID and hence a UFD.

Hence Af is integrally closed (5.12), and therefore Af =K, which is clearly absurd.

(5.12) says Af is the integral closure of Af in K f
∼= K. But in the previous paragraph we showed K was integral

over Af , so K =Af . To see this is impossible, see (5.18.1*) below.15

Hence x1 is algebraic over k, hence K (and therefore B) is a finite extension of k.

We take this opportunity to prove a more general result, the Zariski–Goldman–Krull theorem.16

Definition. A Goldman domain is a domain A containing some element a such that the localization Aa is a field.

Note that then Aa is the field of fractions of A. Note also that an iterated localization
�

(Aa)···
�

z =Aa···z , so we can
equivalently say a Goldman domain is a domain A whose field of fractions is a finitely generated A-algebra.

Lemma 5.18.1*. No polynomial ring A[x] is a Goldman domain.

Proof. Assume A is a domain: if not, neither would A[x] be Let K be the field of fractions of A. If A[x] were a
Goldman domain, then so would K[x] be, since K[x] = K ·A[x] and K(x) = K ·A(x). Cribbing from Euclid, note
that given any finite list of irreducible polynomials pi ∈ K[x], none divides 1+

∏

pi , so there are infinitely many
irreducibles in K[x]. Since K[x] is a UFD, there are then for any f ∈A[x] irreducible p not dividing any power f n ,
so that 1/p /∈K[x] f .17

Corollary 5.18.2*. If a field L contains a subfield K and there exist elementsβ ∈ L and b ∈K[β] such that K[β]b = L,
then β is integral over K; in this case, K[β] is a field, so b−1 ∈K[β] as well and L=K[β].

Lemma 5.18.3*. Suppose A⊆A[β] = B ⊆ Bb = L, where L is a field. Then there exists a ∈A such that Aa is a field and
L is a finite extension of Aa .

Proof. Write K for the field of fractions of A. Since L = Bb = A[β]b , we see L = K[β]b as well, so by (5.18.2*), β
is integral over K and L = K[β]. Thus [L : K] is finite and b ∈ L is integral over K . Multiplying denominators in
the equations witnessing integrality of b and β over K , we obtain an a ∈ A such that b and β are integral over Aa
and hence the field L=Aa[β]b is integral over Aa . But then, by (5.7) or [5.5.i], Aa must be a field, and hence, being
intermediate between A and its field of fractions, so must itself be K .

Zariski–Goldman–Krull Theorem. If a field L is a finitely generated algebra over a subring A, then there exists a ∈ A
such that Aa is a field and L is a finite extension field of Aa .

15 Alternately, find a non-zero proper ideal of Af . By (3.11.iv), any ideal of A not meeting S f = {1, f , f 2, . . .} yields a proper ideal of Af . But,
for example, (1− f ) does not meet S f , by unique factorization in k[ f ], so (1− f )ÃAf is a non-zero proper ideal.

16 This sequence of results is a mild reformulation of the proof given by Daniel J. Bernstein at http://cr.yp.to/zgk.html.
17 This proof is from Proposition 12.5 of Pete L. Clark’s http://math.uga.edu/~pete/integral.pdf.
Here is an alternate proof taken from Richard G. Swan, “On Munshi’s proof of the Nullstellensatz,” at http://www.math.uchicago.edu/

~swan/nss.pdf. Suppose for a contradiction there exists f ∈ A[x] such that A[x] f is a field. Then f /∈ A, for otherwise we would have
A[x] f =Af [x] a polynomial ring, so deg f ≥ 1, and in particular 1− f 6= 0. Since (1− f )−1 = g/ f n for some g ∈ A[x], clearing denomi-
nators yields f n = (1− f )g in A[x]. Modulo 1− f , we have 1≡ f , so 1≡ f n ≡ (1− f )g ≡ 0, meaning 1− f is a unit of A[x]; but deg(1− f )≥ 1
and A contains no nonzero nilpotents, so this is impossible by [1.2.i].
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Proof. The proof proceeds by induction on the number n of generators for L over A. For n = 0, the result is trivial,
since L = A= A1. Assume the result proved for n generators and let L′ = A[α1, . . . , αn+1] for some α j ∈ L′. Write
B = A[α1] and L for its field of fractions. The induction hypothesis, applied to the extension B ⊆ L′, yields b ∈ B
such that Bb (= L) is a field and [L′ : L] is finite; and (5.18.3*), applied to A⊆ L, yields a ∈ A such that Aa is a field
and [L : Aa] is finite. Then [L′ : Aa] = [L

′ : L][L : Aa] is finite, concluding the induction.

Zariski’s Lemma is an immediate corollary. We will also meet Jacobson rings in [5.23], and show in (5.23.5*)
that a ring is Jacobson if and only if its every quotient Goldman domain is a field.

Corollary 5.18.4*. If a field L is a finitely generated algebra over a quotient domain B of a Jacobson ring A, then B is a
field and L is a finite extension of B.

Proof. By the Zariski–Goldman–Krull Theorem, B is a Goldman domain and L is a finite extension of its field of
fractions. Since A is Jacobson, B is a field by (5.23.5*).

Note that this is also the direction i) =⇒ ii) of [5.25].

Generalized Nullstellensatz. If A is a Jacobson ring and C a finitely generated A-algebra, then C is a Jacobson ring. If
mÃC is a maximal ideal of C , then mc is a maximal ideal of A and C/m is a finite extension field of A/mc .18

Proof. The first statement is (ii) from [5.24]. For the second, write A′ = imA⊆C and p=m∩A′. Then L=C/m is
a field finitely generated over the domain B =A′/p, so by (5.18.4*), L is finite over B and B is a field. This means p is
maximal. By the correspondence (1.1) applied to A�A′, it follows mc ÃA is maximal and A/mc ∼=A′/p= B .

Note how the second clause generalizes (1.27.3*): the codomain is now allowed to be any Jacobson ring finitely
generated over the domain.

Deduce the result of Exercise 17 from Exercise 18.

Let k be an algebraically closed field. We prove (1.27.4*) from [1.27], namely that all maximal ideals m of k[t ] :=
k[t1, . . . , tn] come from points; the other results then follow as explained in [5.17]. B = k[t ]/m is a field finitely
generated as a k-algebra, so by [5.18] it is a finite extension of k. Since k is algebraically closed, this gives a k-algebra
isomorphism φ : B

∼−→ k. If ti 7→ xi under the composition k[t ]� B
∼−→ k, then ti − xi ∈ m, so mx ⊆ m. As mx is

maximal, the two are equal.

Let A be a subring of an integral domain B such that B is finitely generated over A. Show that there exists s 6= 0 in A and elements
y1, . . . , yn in B, algebraically independent over A and such that Bs is integral over B ′s , where B ′ =A[y1, . . . , yn].

Can we invoke ZGK?
Since B is an integral domain, so must A be. Let S =A\{0}, so that k = S−1A is a field. Since B is finitely generated

over A, S−1B is finitely generated over k. By Noether normalization ([5.16]), there exist elements y1/s1, . . . , yn/sn
of S−1B , with yi ∈ B and si ∈ S, which are algebraically independent over k and such that S−1B is integral over
C = k[y1/s1, . . . , yn/sn]. It follows that the y j are also algebraically independent over A. Let x1, . . . , xr generate B
over A; then the xi/1 generate S−1B over k, and a fortiori over C . Since S−1B is integral over C , each xi/1 satisfies
a monic polynomial pi (x) =

∑

ci , j (xi/1)
j in C [x]. Let s ∈ S be so large that s ci , j ∈ B ′ for all i , j (multiply all the

denominators). Then pi (x) ∈ B ′s [x] for each i , so each xi/1 is integral over B ′s . Since Bs = B ′s [x1/1, . . . , xr/1], we see
from (5.3) that Bs is integral over B ′s .

Let A, B be as in Exercise 20. Show that there exists s 6= 0 in A such that, if Ω is an algebraically closed field and f : A→ Ω is a
homomorphism for which f (s) 6= 0, then f can be extended to a homomorphism B→Ω.

Recall s ∈ A\{0} from the previous proof, and suppose f (s) 6= 0. Then by (3.1) f extends uniquely to a map
fs : As → Ω. Next, B ′s = As [y1, . . . , yn] is a polynomial ring over As , so we may pick any ωi ∈ Ω and extend fs to
f ′s : B ′s → Ω by yi 7→ωi . As Bs is integral over B ′s , by [5.2] we may extend f ′s to gs : Bs → Ω. Recalling the canonical
map φs : B→ Bs , define g = gs ◦φs : B→Ω. By our definitions, g |A= f .

18 This shows up for instance as Theorem 4.19 in Eisenbud.
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Let A, B be as in Exercise 20. If the Jacobson radical of A is zero, then so is the Jacobson radical of B.

Let 0 6= b ∈ B . Since the Jacobson radical is defined as the intersection of the maximal ideals, we want to find
a maximal ideal n of B not containing b . This is the same as finding a map g : B � B/n to a field with g (s) 6= 0.
As every field has an algebraic closure ([1.13]), it will suffice (WHY IS THIS ENOUGH? WHAT GUARANTEES
THE KERNEL IS MAXIMAL?) to find an algebraically closed field Ω and a map g : B → Ω such that g (b ) 6= 0.
If this map exists, by (3.1) it will have a unique extension gb : Bb → Ω. Now Bb = B[1/b ] is finitely generated as
a B -algebra, and B is finitely generated as an A-algebra, so Bb is finitely generated as an A-algebra. Let s ∈ A\{0},
as in the previous problems, correspond to the extension Bb ⊇ A. Since the Jacobson radical of A is 0, there is a
homomorphism f : A → Ω with f (s) 6= 0, and by [5.21] it extends to a homomorphism gb : Bb → Ω. Then the
restriction g = gb |B has g (b ) 6= 0 and is the map we were after.

Let A be a ring. Show that the following are equivalent:
i) Every prime ideal in Ais an intersection of maximal ideals.
ii) In every homomorphic image of Athe nilradical is equal to the Jacobson radical.
iii) Every prime ideal in Awhich is not maximal is equal to the intersection of the prime ideals which contain it strictly.

i) =⇒ ii): Let a Ã A and write M (a) = V (a)∩Max(A) for the set of maximal ideals containing a. The radical
r (a) =

⋂

V (a), and since each p ∈ V (a) is by assumption i) equal to
⋂

M (p), we also have r (a) =
⋂

M (a). In the
quotient A/a we then have N=R by the correspondence (1.1).

ii) =⇒ iii): Let p ∈ Spec(A) not be maximal. Then (0)ÃA/p is not maximal by the correspondence (1.1). Since
A/p is an integral domain, (0) is the nilradical, which by assumption ii) equals the Jacobson radical, the intersection
of Max(A/p). Then (0) is a fortiori the intersection of Spec(A/p)\

�

(0)
	

. That means that upstairs in A, p is the
intersection of V (p)\{p}, the set of primes that strictly contain p.

iii) =⇒ i): Two failed approaches are footnoted here.19 These failing, we follow the book’s hint. Assume pÃA is
a prime ideal that is not an intersection of maximal ideals, so that in B =A/p, the trivial ideal (0) is not an intersection
of maximal ideals. In particular, the Jacobson radical R(B) 6= (0), so there exists a non-zero f ∈R(B). Let Yf be the
set of primes of B not meeting S f = {1, f , f 2, . . .}. Yf is not empty, as it contains (0). By (1.3), B f contains a maximal
ideal B f q, and by the correspondence (3.11.iv) its contraction q is a prime ideal maximal with respect to not meeting
S f , hence a maximal element of Yf . But as assumption iii) continues to hold in B (whose prime and maximal ideals
are by (1.1) images of those in A), it follows that q is an intersection of prime ideals containing f . Then q contains f
as well, which is a contradiction.

A ring A with the three equivalent properties above is called a Jacobson ring.20

Lemma 5.23.1*. A homomorphic image of a Jacobson ring is Jacobson.

Proof. Let φ : A� B be a ring surjection, and q ∈ Spec(B). If A is Jacobson, we can write qc =
⋂

mα for some
mα ∈Max(A), and then q= qc e =

⋂

me
α; but by (1.1), the me

α Ã B are maximal, so by condition i), B is Jacobson.

A rephrasing of condition i) is that A is a Jacobson ring just if for every quotient domain B we have R(B) = 0.
We now relate Jacobson rings to the Goldman domains introduced in [5.18].

Definition. A prime ideal p ∈ Spec(A) is a Goldman ideal if A/p is a Goldman domain. For a Ã A, let G(a) denote
the set of Goldman ideals p containing a.

Lemma 5.23.2*. For any ring A and ideal aÃA, we have r (a) =
⋂

G(a).21

19 One approach would use an induction argument on the length of chains of primes containing p ∈ Spec(A). Suppose that each chain P ⊆
V (p)\{p} ([1.15]) of primes strictly containing p is well-ordered by⊇. Then assign to each P an ordinal α(P ) describing its order-type, and define
α(p) = supα(P ) as P ranges over chains in V (p)\{p}. If α(m) = 0, then m is maximal and trivially an intersection of maximal ideals. Suppose
α(q) = β and each p with α(p) < β is an intersection of maximal ideals. Then by iii) q is an intersection of primes p with α(p) < β and so is
itself an intersection of maximal ideals. This attempt fails because the relation ⊇ (resp. ⊆) on Spec(A) is not in general well-founded if A is not
Noetherian (resp. Artinian). In the ring A= k[x1, xn , . . .] of example 6) on p. 75, if we take an = (x1, . . . , xn) and bn = (xn , xn+1, . . .), then an
is an infinite ascending series of primes of A and bn an infinite decreasing series of primes.

The other approach was to let Σ be the set of prime ideals that are not intersections of maximal ideals and show Σ=∅. If p is maximal in Σ,
then all primes containing it are intersections of maximal ideals, so by iii), p is itself an intersection of maximal ideals; thus Σ cannot have any
maximal elements. If the assumption that Σ is non-empty leads to a proof Σ has a maximal element, then we will have shown Σ = ∅. I wanted
to assume Σ was nonempty and then use Zorn’s Lemma to show Σ has maximal elements; it’s not clear, however, that a chain in Σ has an upper
bound in Σ.

20 More on these rings can be found in Matthew Emerton’s notes http://www.math.uchicago.edu/~emerton/pdffiles/jacobson.pdf
and Pete L. Clark’s notes http://math.uga.edu/~pete/integral.pdf.

21 This statement and proof are from Proposition 12.9 in Pete L. Clark’s notes http://math.uga.edu/~pete/integral.pdf.
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Proof. Substituting A/a for a and using the correspondence (1.1), it is enough to show N =
⋂

G(0). The contain-
ment N ⊆

⋂

G(0) follows by (1.8). For the other direction, suppose a ∈ A\N. Then Aa 6= 0, and so by (3.11.iv), a
maximal ideal of Aa contracts to a prime ideal pÃA maximal with respect to the property of not containing a. Since
every larger prime contains a, by (1.1), every nonzero prime of the domain A/p contains ā. Therefore, by (3.11.iv)
again, no nonzero prime survives in (A/p)ā , which then must be a field. It follows that A/p is a Goldman domain,
so that p is a Goldman ideal not containing a.

Lemma 5.23.3*. If a ring A is such that every Goldman ideal is maximal, then A is Jacobson.

Proof. Each prime p= r (p)
(5.23.2*)
=

⋂

G(p) =
⋂

M (p), by assumption, so satisfying condition i).

Lemma 5.23.4*. If a Goldman domain A has zero Jacobson radical, then it is a field.

Proof. Suppose a domain A is not a field, but there exists an element a ∈ A such that Aa is a field. Then for every
element b of every maximal ideal m of A, there exists an inverse c/an in Aa , so that b · (c/an) = 1, or b c = an . Then
an ∈m, so a ∈m, and hence a ∈R(A).

Proposition 5.23.5*. A ring A is Jacobson if and only if every quotient which is a Goldman domain is a field.

Proof. =⇒: If pÃA is a Goldman ideal, then A/p is a domain, so 0=N(A/p) =R(A/p) by condition ii) for Jacobson
rings. By (5.23.4*), A/p is a field.
⇐=: This is (5.23.3*).

Let A be a Jacobson ring (Exercise 23) and B an A-algebra. Show that if B is either (i) integral over A or (ii) finitely generated as
an A-algebra, then B is Jacobson.

(ii): Let q ∈ Spec(B) and p = qc . Then B ′ = B/q is an integral domain finitely generated over A′ = A/p. Since
A was Jacobson, R(A′) = N(A′) = (0), so by [5.22], the Jacobson radical R(B ′) = (0). This shows that in q is the
intersection of the maximal ideals of B containing it.

(i): Let q ∈ Spec(B) and b ∈ b, the intersection of the maximal ideals containing q. Write f : A → B for the
homomorphism making B an A-algebra. Then B is integral over the subring f (A)[b ]. By (5.23.1*), f (A) is Jacobson,
and by (ii) above, so is f (A)[b ]. Thus we may assume A⊆ B and a := b ∈A∩b. Now B ′ = B/q is an integral domain,
integral over A′ = A/qc by (5.6.i), and b/q = R(B ′). Since A was Jacobson, by (5.23.1*) again, A′ is Jacobson, so
R(A′) = 0. But by [5.5.ii], R(B ′)∩A′ =R(A′), so b̄ ∈R(A′) = 0, meaning b ∈ q.

In particular, every finitely generated ring, and every finitely generated algebra over a field, is a Jacobson ring

A ring is finitely generated if it is finitely generated as a Z-algebra, so by (ii) above it will suffice to show that Z
and all fields are Jacobson. But the prime ideals of Z are all either maximal themselves or (0) =R, so Z is Jacobson
by condition i) of [5.23], and similarly fields are Jacobson because their prime ideal is (0).

Let A be a ring. Show that the following are equivalent:
i) A is a Jacobson ring;
ii) Every finitely generated A-algebra B which is a field is finite over A.

i) =⇒ ii): Write A′ for the image of the map A→ B ; as a quotient of A, it is Jacobson, and as a subset of B , it
is an integral domain; thus R(A′) =N(A′) = 0. Find an element s 6= 0 in A′ as in [5.20], [5.21]. Then there is some
maximal ideal m of A′ not containing s . If we let k =A′/m andΩ be the algebraic closure of k, then the composition
f : A′ � k ,→ Ω doesn’t send s to 0, so by the assumption of [5.21], f extends to a homomorphism g : B → Ω. As
a map of fields, g is injective, so B ∼= g (B). Since B is finitely generated over A′, say B = A′[y1, . . . , yn], the image
g (B) is generated over k by the g (yi ). But the g (yi ) are algebraic over k, so g (B) is a finitely generated k-module,
thus a finitely generated A′-module, and finally a finitely generated A-module. (Question: unless A′ is already a field,
doesn’t the fact that g : B→Ω extends A′→A′/m= k contradict g ’s being an injection?)

ii) =⇒ i): Let pÃA be a prime ideal, not maximal, and consider A′ =A/p. We want to show the intersection of
primes strictly containing p in A is p; downstairs in A′, we want to show the intersection of the non-zero primes is
0. Equivalently, for every nonzero s ∈A′, Ss = {1, s , s2, . . .}misses some non-zero prime ideal. Now A′s is a finitely
generated A′-algebra. If it is a field, then by assumption, it is finite over A, hence integral over A′, and (5.7) says that
A′ is a field, so p is maximal. So it is not a field, and it has a nonzero maximal ideal qs , whose contraction to A′ is a
prime q not meeting Ss by (3.11.iv).
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Note that the direction i) =⇒ ii) shows that Jacobson rings A are the furthest generalization of fields k for which
Zariski’s Lemma ((1.27.2*), (5.24), [5.18], (7.9)) still holds.

Let X be a topological space. A subset of X is locally closed if it is the intersection of an open set and a closed set, or equivalently
if it is open in its closure.

We prove these conditions are equivalent. Supposing C is closed and U is open in X, we want to show C ∩U is
open in its closure. LetC be the collection of all closed sets of X containing U ; then every closed set of X containing
C ∩U contains some member of C ′ = {K ∩C : K ∈C }, so C ∩U =

⋂

C ′ =C ∩U . Then C ∩U = U ∩ (C ∩U )
is indeed open in C ∩U .

On the other hand, if S ⊆X be given such that S is open in its closure C = S, then there is by definition an open
U ⊆X such that S =U ∩C .

The following conditions on a subset X0 of X are equivalent:
(1) Every non-empty locally closed subset of X meets X0;
(2) For every closed set E in X we have E ∩X0 = E;
(3) The mapping U 7→U ∩X0 of the collection of open sets of X onto the collection of open sets of X0 is bijective.

(1) =⇒ (2): If E is closed, x ∈ E , and U is any neighborhood of x, then U ∩ E is locally closed, so by (1),
U ∩E ∩X0 6=∅. Thus every neighborhood of x meets E ∩X0, so x ∈ E ∩X0. Thus E ⊆ E ∩X0. On the other hand,
E ∩X0 ⊆ E = E .

(2) =⇒ (3): By the definition of the subspace topology, the mapping U 7→U ∩X0 is surjective from the topology
of X to that of X0. To see injectivity, suppose U ∩X0 = V ∩X0; taking complements in X0, we get (X \U )∩X0 =
(X \V ) ∩ X0. Taking closures gives (X \U )∩X0 = (X \V )∩X0. Since X \U and X \V are closed in X, (2) gives
X \U =X \V ; and taking complements finally shows U =V .

(3) =⇒ (1): A locally closed subset of X is of the form C ∩U = U \V for C = X \V closed and U open. If
C ∩U doesn’t meet X0, then X0 ∩U ∩C = ∅, so X0 ∩U ⊆ X \C = V . Intersecting both sides with X0 ∩U gives
X0 ∩U ⊆ X0 ∩U ∩V , but on the other hand since U ∩V ⊆ U , intersecting with X0 gives X0 ∩U ∩V ⊆ X0 ∩U .
Thus U and U ∩V have the same image under the map of (3), so by assumption, U = U ∩V , or U ⊆ V . Then
C ∩U =U \V =∅.

A subset X0 satisfying these conditions is said to be very dense in X.
If A is a ring, show that the following are equivalent:

i) A is a Jacobson ring;
ii) The set of maximal ideals of A is very dense in Spec(A);
iii) Every locally closed subset of Spec(A) consisting of a single point is closed.

i) ⇐⇒ ii): Let a Ã A be an arbitrary ideal, so that V (a) ⊆ X = Spec(A) ([1.15]) is an arbitrary closed subset,
and let b=

⋂�

V (a)∩Max(A)
�

be the intersection of all maximal ideals containing a. Then by Eq. 1.1 from [1.18.i],
the closure of V (a)∩Max(A) is V (b). Since a is a subset of each prime in the set V (a)∩Max(A), we have a⊆ b, so
V (b) ⊆ V (a). By (2) above, Max(A) is very dense in X just if V (a) ⊆ V (b) for all a, so every prime containing a
contains b. This happens just if in in every quotient A/a, every prime contains the Jacobson radical, so the Jacobson
radical and the nilradical are equal. By [5.23.ii], this happens if and only if A is a Jacobson ring.

i) ⇐⇒ iii): A locally closed subset S ⊆X can be written as S =V (a)∩U with U open. If we write U =X\V (b),
then S =V (a)\V (b). If S is a singleton, there is exactly one prime ideal p containing a that does not contain b. Write
c= r (p+ b). By [1.15.i,iii], V (c) =V (p∪ b) =V (p)∩V (b)⊆V (p). Then S = {p}=V (a)\V (b) =V (p)\V (c), so
all primes strictly containing p contain c, and c=

⋂

(V (p)\{p}) is strictly bigger than p. Now [1.18.i] says that each
locally closed singleton S = {p} is closed if and only if each such p is maximal (and c= (1), V (c) =∅) if and only if
the only primes p that are not intersections of larger primes are maximal; but this last condition says A is Jacobson,
by [5.23.iii].

Valuation rings and valuations
Let A, B be two local rings. B is said to dominate A if A is a subring of B and the maximal ideal m of A is contained in the

maximal ideal n of B (or, equivalently, if m= n∩A). Let K be a field and let Σ be the set of all local subrings of K. If Σ is
ordered by the relation of domination, show that Σ has maximal elements and that A∈Σ is maximal if and only if A is
a valuation ring of K.

Given a chain (Aα, mα) in this ordering, the union A=
⋃

Aα is a subring of K and m=
⋃

mα is an ideal of A. If
kα = Aα/mα are the residue fields, then we have a natural embedding kα ,→ kβ for α ≤ β, and if α ≤ β ≤ γ , then
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the canonical embedding kα ,→ kγ is the composition kα ,→ kβ ,→ kγ . Thus the chain defines a direct system of field
homomorphisms with direct limit k. Since the diagrams of short exact sequences

0 // mα
� � //
� _

��

Aα� _

��

// // kα //
��
��

0

0 // mβ
� � // Aβ // // kβ // 0

are commutative, they give rise ([2.18,19]) to a short exact sequence 0→m ,→A� k→ 0 of direct limits, showing
m is a maximal ideal of A. Thus each chain has an upper bound, so Zorn’s Lemma gives maximal elements.22

Let (A, m) be a maximal element and Ω the algebraic closure of A/m. Then if f : A� A/m ,→ Ω is the expected
map, (A, f ) is an element of the set called Σ on p. 65. If we have (A, f ) ≤ (A, f ′) in this order, then A ⊆ A′ and
f ′|A= f , so ker( f ′)∩A= ker( f ) =m. By maximality of (A, m), this means A′ =A and f ′ = f , so (A, f ) is a maximal
element in its ordering, and (5.21) says that (A, m) is a valuation ring of K .

If on the other hand (A, m) is a valuation ring dominated by (B , n), we show they are equal. By (5.18.ii), B is a
valuation ring as well. Write m− =m\{0}=

�

K\A
�−1 and n− = n\{0}=

�

K\B
�−1. As (B , n) dominates (A, m), we

have m− ⊆ n− and m−1
− ⊆ n−1

− . By definition, B\A⊆ B , but by what we’ve shown, B\A⊆K\A=m−1
− ⊆ n−1

− =K\B ,
so we conclude B\A=∅ and B =A.

Let A be an integral domain, K its field of fractions. Show that the following are equivalent:
(1) A is a valuation ring of K;
(2) If a, b are any two ideals of A, then either a⊆ b or b⊆ a.

(1) =⇒ (2): Suppose a 6⊆ b, so there is a ∈ a\b. Obviously a 6= 0. If b= 0, then b⊆ a; otherwise there is a nonzero
b ∈ b. Then a/b 6= 0, so either a/b ∈ A or b/a ∈ A. It it were the former, we would have a = (a/b )b ∈ Ab = b,
contrary to assumption, so b/a ∈A. Thus b = (b/a)a ∈Aa= a. Since b ∈ b\{0} was arbitrary, b⊆ a.

(2) =⇒ (1): Let a/b ∈ K× for a, b ∈ A and b 6= 0. Then a ∈ (a) ⊆ (b ) or b ∈ (b ) ⊆ (a) in A. In the former
case, write a = x b with x ∈ A; then a/b = x b/b = x ∈ A. In the latter case, write b = ya with y ∈ A; then
a/b = a/ya = 1/y, so (a/b )−1 = y ∈A.

Deduce that if A is a valuation ring and p is a prime ideal of A, then Ap and A/p are valuation rings of their fields of
fractions.

Since the containment relation on ideals of Ap or A/p is inherited from A, and both rings are still integral domains,
they are also valuation rings.

Let A be a valuation ring of a field K. Show that every subring of K which contains A is a local ring of A.
Let A⊆ B ⊆ K be rings. By (5.18.ii), B is a valuation ring, so by (5.18.i) it is local with maximal ideal p. If m is

the maximal ideal of A, we have p ⊆ m, for if 0 6= x ∈ B with x−1 /∈ B , since A⊆ B we have x−1 /∈ A, and as A is a
valuation ring, x ∈A. Then p= p∩A is a prime ideal of A. We claim B =Ap.

Slightly contrary to our usual notation, write S−1 = {x ∈K : x−1 ∈ S} for S ⊆K . Since for each x ∈K× we have
that x ∈A or x−1 ∈A, or both, and similarly for B , we get decompositions K =mqA×qm−1 and K = pqB×qp−1,
as in the figure below.

m A× m−1

p B× p−1

Since obviously A⊆Ap, it remains to show B\A⊆Ap, but it is evident from the figure that B\A⊆ (m\p)−1 (actually,
they are equal). To prove it without reference to the figure, note that since A=A×∪m⊆ B , the first decomposition
implies B\A⊆m−1, and since B ∩ p−1 =∅, we have B\A⊆m−1\p−1 = (m\p)−1 ⊆ (A\p)−1 ⊆Ap.

Note that this result does not contradict [5.27], since p⊆m and therefore B does not dominate A.

Let A be a valuation ring of a field K. The group U of units of A is a subgroup of the multiplicative group K× of K.
Let Γ =K×/U . If ξ , η ∈ Γ are represented by x, y ∈K, define ξ ≥ η to mean xy−1 ∈A. Show that this defines a total

ordering on Γ which is compatible with the group structure (i.e., ξ ≥ η =⇒ ξω ≥ ηω for all ω ∈ Γ ). In other words, Γ
is a totally ordered abelian group. It is called the value group of A.

22 My first inclination was to try to use the theorem as suggested, but the set Σ on p. 65 depends on choosing an algebraically closed field Ω
and it’s not immediate apparent what field to choose to be codomain for an entire chain. Moreover, depending what valuation ring one chooses,
the target field changes. For example, for each nonzero (p) ∈ Spec(Z), the residue field of Z(p) (Q is Fp .
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Well-definedness: Let x, x ′ ∈K× represent ξ ∈ Γ and y, y ′ ∈K× represent η ∈ Γ . We show that the relation ξ ≥ η
is independent of the representatives chosen. ξ = U x = U x ′, so U x ′x−1 = U , meaning x ′x−1 ∈ U , and similarly
y(y ′)−1 ∈ U . The x, y version of ξ ≥ η gives xy−1 ∈ A. Then x ′(y ′)−1 = [x ′x−1][xy−1][y(y ′)−1] ∈ U−1AU = A,
giving the x ′, y ′ version of ξ ≥ η.

Reflexivity: If x ∈K× represents ξ ∈ Γ , then x x−1 = 1 ∈A, showing ξ ≥ ξ .
Antisymmetry: Let x, y ∈ K× respectively represent ξ , η ∈ Γ . If ξ ≥ η and η≥ ξ , then xy−1 ∈A and y x−1 ∈A.

Since (xy−1)(y x−1) = 1, this shows xy−1 ∈U , so ξ =U x =U y = η.
Transitivity: Let x, y, z ∈K× respectively represent ξ , η, ζ ∈ Γ . If ξ ≥ η and η≥ ζ , then xy−1 ∈A and y z−1 ∈A,

so multiplying them, x z−1 = (xy−1)(y z−1) ∈A, and ξ ≥ ζ .
Compatibility: Let x, y, w ∈ K× respectively represent ξ , η,ω ∈ Γ . If ξ ≥ η, then xy−1 ∈ A. But xy−1 =

x(ww−1)y−1 = (xw)(yw)−1, showing ξω ≥ ηω.

Let v : K×→ Γ be the canonical homomorphism. Show that v(x + y)≥min
�

v(x), v(y)
�

for all x, y ∈K×.
Without loss of generality, let v(x)≥ v(y), so that xy−1 ∈A. Then A3 xy−1+1= (x+y)y−1, so v(x+y)≥ v(y).

Note also that v(xy) = xyU = xU · yU = v(x)v(y), so v is a valuation with values in Γ , in the terminology of the
following exercise.

Conversely, let Γ be a totally ordered abelian group (written additively), and K a field. A valuation of K with values in Γ is a
mapping v : K×→ Γ such that
(1) v(xy) = v(x)+ v(y),
(2) v(x + y)≥min

�

v(x), v(y)
�

,
for all x, y ∈K×. Show that the set of elements x ∈K× such that v(x)≥ 0 is a valuation ring of K. This ring is called the
valuation ring of v, and the subgroup v(K×) of Γ is the value group of v.

The book’s statement needs to be corrected mildly: the ring surely needs 0 ∈ K as well. The traditional way to
fix this is to add a new element∞ to Γ , and let ∆= Γ ∪ {∞} be a monoid with subgroup Γ such that ξ +∞=∞
for all ξ ∈∆.23 One extends the order on Γ by∞≥ ξ for all ξ ∈∆ and defines v(0) :=∞. This extended valuation
v satisfies (1) since v(0 · x) = v(0) =∞=∞+ v(x) = v(0)+ v(x) and (2) since v(0+ x) = v(x) =min

�

∞, v(x)
�

=
min

�

v(0), v(x)
�

.
Now let A := {x ∈ K : v(x) ≥ 0}; we verify A is a valuation ring. We also verify m = {x ∈ K : v(x) > 0} is the

unique maximal ideal of A. Since associativity, commutativity, distributivity, and identities are inherited from K , we
have only to check closure properties of A.

• 0 ∈A: Note v(0) =∞≥ 0.

• 1 ∈A: Note v(1) = v(1 · 1) = v(1)+ v(1), so subtracting off v(1) gives v(1) = 0.

• −1 ∈A: Note 0= v(1) = v(−1 ·−1) = v(−1)+ v(−1) = 2v(−1). If v(−1)> 0, then 0= 2v(−1)> 0, which is
false; similarly, v(−1)< 0 would imply 0= 2v(−1)< 0, which is false; so v(−1) = 0.

• x ∈A =⇒ −x ∈A: If x ∈A, then v(−x) = v(−1 · x) = v(−1)+ v(x) = 0+ v(x) = v(x)≥ 0.

• x, y ∈A =⇒ x + y ∈A: If v(x), v(y)≥ 0, then v(x + y)≥min
�

v(x), v(y)
�

≥ 0.

• x, y ∈A =⇒ xy ∈A: If v(x), v(y)≥ 0, then v(xy) = v(x)+ v(y)≥ 0.

• v(x−1) =−v(x): 0= v(1) = v(x x−1) = v(x)+ v(x−1); subtract v(x) from both sides.

• x /∈A =⇒ x−1 ∈A: If x /∈A, then v(x)< 0, so v(x−1)≥ 0 and x−1 ∈A.

• x ∈A\m =⇒ x ∈A×: If v(x) = 0, then v(x−1) = 0, so x−1 ∈A and x ∈A×.

Thus the concepts of valuation ring and valuation are essentially equivalent.
To prove this statement, we should verify that these correspondences are inverse. Let A be a valuation ring of

a field K , and let v : K× � K×/A× =: Γ be the canonical map. [5.30] shows it is a valuation. Its valuation ring is
A′ := {0} ∪ {x ∈ K× : v(x)≥ 0}. Now by the definition of ≥ on Γ , we have v(x)≥ 0= v(1) just if x = x1−1 ∈ A, so
A′ =A.

23 In multiplicative notation, this would be called a “group with zero,” with the absorbing element∞ playing the role of “zero.”
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Suppose on the other hand v : K× � Γ is a valuation, with valuation ring A = {0} ∪ {x ∈ K× : v(x) ≥ 0} and
value group Γ . Writing U = ker(v), and π : K× � K×/U for the natural map, there is a canonical isomorphism
φ : K×/U

∼−→ Γ such that v = φ ◦π. The field of fractions of A is K , so [5.30] gives a valuation v ′ : K× � K×/A×.
Now A× =

�

x ∈ A\{0} : x−1 ∈ A
	

= {x ∈ K× : v(x) ≥ 0 & − v(x) = v(x−1) ≥ 0} = {x ∈ K× : v(x) = 0} = U ,
so v ′ = π. Thus v = φ ◦π = φ ◦ v ′, so v ′ is canonically equivalent to v. Finally, v(x) ≤ v(y) ⇐⇒ 0 = v(1) =
v(x x−1) = v(x)− v(x)≤ v(y)− v(x) = v(y x−1) ⇐⇒ y x−1 ∈ A\{0} ⇐⇒ v ′(x)≤ v ′(y) by the definition of v ′ in
[5.30], so the order is preserved.

Let Γ be a totally ordered abelian group. A subgroup∆ of Γ is isolated in Γ if, whenever 0≤β≤ α and α ∈∆, we have β ∈∆.
Let A be a valuation ring of a field K, with value group Γ (Exercise 31). If p is a prime ideal of A, show that v(A\p) is
the set of elements ≥ 0 of an isolated subgroup ∆ of Γ , and that the mapping so defined of Spec(A) into the set of isolated
subgroups of Γ is bijective.

Write∆+ = v(A\p). Obviously 1 /∈ p, so v(1) = 0 ∈∆+. If α= v(a) andβ= v(b ) are in∆+, with a, b /∈ p, then
since p is prime ab /∈ p, and so α+β= v(a)+v(b ) = v(ab ) ∈∆+. Thus∆+ is a submonoid of Γ and∆=∆+ ∪−∆+
is a subgroup whose elements ≥ 0 are∆+

Suppose 0 ≤ β ≤ α in Γ with α ∈ ∆+. If β = 0 or α, then β ∈ ∆+, so assume not. Let α = v(a) for a ∈ A\p
and α−β = v(c) for c ∈ A. If c /∈ p, then α−β ∈∆+, so β−α ∈∆ and β ∈∆+, since ∆ is a subgroup. If c ∈ p,
consider b = ac−1. Now v(b ) = α− (α−β) =β> 0, so b ∈ A, but b /∈ p, since otherwise b c = a ∈ p, contrary to
assumption. Thus β ∈∆+.

The correspondence is injective, for assume p, q in Spec(A) are such that ∆(p) =∆(q). Then for every x ∈ A\p
there is y ∈A\qwith v(x) = v(y). Then 0= v(x)−v(y) = v(xy−1), so xy−1 ∈A× and x = (xy−1)y ∈A×(A\q) =A\q,
so A\p⊆A\q. Symmetrically, A\q⊆A\p, so p= q.

For surjectivity, let an isolated subgroup ∆ be given. The natural candidate for ∆ = v(A\p) is p = A\v−1(∆).
Certainly it has the right image. Since∞ /∈∆ we get 0 ∈ p. If x ∈ p, then v(−x) = v(x) /∈∆, so −x ∈ p. If x, y ∈ p,
then v(x+y)≥min

�

v(x), v(y)
�

>∆, so x+y ∈ p. Finally, if x, y /∈ p, then v(x), v(y) ∈∆, so v(xy) = v(x)+v(y) ∈
∆, and xy /∈ p.

If p is a prime ideal of A, what are the value groups of the valuation rings A/p, Ap?

For A/p, define v̄ : A/p→ Γ ∪{∞} by v̄(x̄) =
¨

v(x), x /∈ p,
∞, x ∈ p.

Assuming it is well defined, it inherits axioms (1)

and (2) of [5.31] from v. To see it is well defined, assume x − y ∈ p. Then

v̄(x̄) =min
�

v̄(x̄),∞
�

=min
�

v̄(x̄), v̄(ȳ − x̄)
�

≤ v̄
�

x̄ +(ȳ − x̄)
�

= v̄(ȳ),

and similarly v̄(ȳ)≤ v̄(x̄). Then we can extend v̄ to the fraction field k of A/p, and it gives a valuation v̄ : k×→∆.
Since units of A/p are images of units of A (since in the quotient m 7→ m/p are the maximal ideals) and only these
are taken to 0 by v̄, we see A/p is the valuation ring of v̄, and∆ is the valuation group of A/p.

For Ap, the group K× is unchanged. Since A is local, p⊆m, meaning U =A\m⊆A\p⊆Ap\pAp =: Up, the units
of Ap. Thus the value group is a further quotient of Γ =K×/U . We can write an element of Up as a/b for a, b ∈A\p,
so∆= v(A\p) = v(Up). By the third isomorphism theorem (2.1.i), K×/Up

∼= (K×/U )/(Up/U ) = Γ/v(Up) = Γ/∆.

Let Γ be a totally ordered abelian group. We shall show how to construct a field K and a valuation v of K with Γ as value group.
Let k be any field and let A= k[Γ ] be the group algebra of Γ over k. By definition, A is freely generated as a k-vector space
by elements xα (α ∈ Γ ) such that xαxβ = xα+β. Show that A is an integral domain.

This will follow from our proof of (1) in the next paragraph.

If u = λ1xα1
+ · · ·+λn xαn

is any non-zero element of A, where the λi are all 6= 0 and α1 < · · ·< αn , define v0(u) to
be α1. Show that the mapping v0 : A\{0}→ Γ satisfies conditions (1) and (2) of Exercise 31.

(1) Let f =
∑

aαxα and g =
∑

bβxβ be non-zero elements of A, with v0( f ) = α0 and v0(g ) = β0. Then in f g ,
the non-zero coefficient of lowest index is that of xα0+β0

, which is aα0
bβ0

, since for all other pairs α, β of indices we
have α+β>α0+β0. As k is a field, aα0

bβ0
6= 0, so f g 6= 0 and v( f g ) = α0+β0.

(2) Let f =
∑

aαxα and g =
∑

bβxβ be nonzero elements of A, with v0( f ) = α0 and v0(g ) = β0; then the
lowest potentially nonzero coefficient index of f + g is α0 +β0. (Of course, there could be cancellation.) Thus
v0( f + g )≥min

�

v0( f ), v0(g )
�

.
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Let K be the field of fractions of A. Show that v0 can be uniquely extended to a valuation v of K, and that the value
group of v is precisely Γ .

Axiom (1) requires that 0= v( f / f ) = v0( f )+ v(1/ f ), so that v( f −1) =−v0( f ) for all nonzero f ∈A. Then for
f /g ∈K with f , g ∈A we must have v( f /g ) = v0( f )− v0(g ), so the extension v is unique, if the definition defines
a valuation. Suppose f /g = f ′/g ′ in K , for f , f ′, g , g ′ ∈ A. Then by the definition of localization, f g ′ = f ′ g , so
v0( f ) + v0(g

′) = v0( f
′) + v0(g ), and v( f /g ) = v0( f )− v0(g ) = v0( f

′)− v0(g
′) = v( f ′/g ′), so v is well defined.

Evidently v(K) = v(A)− v(A) = Γ − Γ = Γ . It remains to verify axiom (2). Again let f /g , f ′/g ′ ∈ K be given, for
some f , f ′, g , g ′ ∈A. Then h := f

g +
f ′

g ′ =
f g ′+ f ′ g

g g ′ , and

v(h) = v( f g ′+ f ′ g )− v(g g ′)≥min
�

v( f )+ v(g ′), v( f ′)+ v(g )
�

−
�

v(g )+ v(g ′)
�

=min
�

v( f )− v(g ), v( f ′)− v(g ′)
�

=min
�

v( f /g ), v( f ′/g ′)
�

.

It should be pointed out that v(A) = v
�

k(Γ )
�

= Γ already, so A is not the valuation ring of K . Rather, B =
{0} ∪ {x ∈K : v(x)≥ 0} is, by [5.31].

Let A be a valuation ring and K its field of fractions. Let f : A→ B be a ring homomorphism such that f ∗ : Spec(B)→ Spec(A)
is a closed mapping. Then if g : B→K is any A-algebra homomorphism (i.e., if g ◦ f is the embedding of A in K) we have
g (B) =A.

Since A = g
�

f (A)
�

⊆ K we have A ⊆ g (B) =: C . Then C is a valuation ring, by (5.18.ii). Let o be a maximal
ideal of C ; since g |C : B � C is surjective, g ∗(o) = n is a maximal ideal of B . By [1.18.i], {n} ⊆ Spec(B) is closed;
as f ∗ is a closed mapping, f ∗({n}) is closed, so by [1.18.i] again it must be a singleton containing a maximal ideal.
As A is local, that ideal is the unique maximal ideal m Ã A. Since g ◦ f : A ,→ K is the inclusion, this means that
m= f ∗(n) = f ∗

�

g ∗(o)
�

= (g ◦ f )∗(o) = o∩A, so o dominates m. By [5.27] (valuation rings are domination-maximal),
this shows A=C and m= o.

From Exercises 1 and 3 it follows that, if f : A→ B is integral and C is any A-algebra, then the mapping ( f ⊗1)∗ : Spec(B⊗AC )→
Spec(C ) is a closed map.

Conversely, suppose that f : A→ B has this property and that B is an integral domain. Then f is integral.
Write A′ = f (A) ⊆ B , and K for the field of fractions of B . To show B is integral over A′, it is enough to show

B is in the integral closure of A′ in K . By (5.22) it is enough to show B is in each valuation ring of K containing
A′. Let C be one such. Then A′ ⊆ B , C ⊆ K . Multiplication B ×C → K is A-bilinear (equivalently, A′-bilinear), so
induces a map g : B ⊗AC →K . Now f ⊗ idC : A⊗AC → B ⊗AC , and (2.14) gives an isomorphism φ : C

∼−→A⊗AC .
Write F = ( f ⊗ idC )◦φ, so that F ∗ : Spec(B⊗AC )→ Spec(C ) is closed, by assumption. The composition g ◦F takes
c 7→ 1A⊗ c 7→ 1B ⊗ c 7→ c , and so is the inclusion C ,→ K . The preceding [5.34] then says that g (B ⊗AC ) = C . In
particular, for each b ∈ B we have b = g (b ⊗ 1C ) ∈C , so B ⊆C .

Show that the result just proved remains valid if B is a ring with only finitely many minimal prime ideals (e.g., if B
is Noetherian).

First, if B is Noetherian, (7.13) says the (0) ideal has a primary decomposition, and (4.6) says the finitely many
isolated primes of this decomposition are precisely the minimal ideals of B .

Second, the statement needs some clarification. The hypothesis being replaced (by B only having finitely many
minimal prime ideals) is that B is integral, not the closed mapping assumption.

Now suppose f : A→ B satisfies the assumption. and B has only finitely many minimal prime ideals p1, . . . , pn .
The surjections πi : B � B/pi give rise to compositions πi ◦ f : A → B � B/pi . Let an A-algebra C be given.
Since tensor is left exact and B � B/pi is a surjection, gi : B ⊗AC → (B/pi ) ⊗AC is a surjection. By [1.21.iv],
g ∗i : Spec

�

(B/pi )⊗AC
�

→ Spec(B ⊗AC ) is a closed map, and by assumption, Spec(B ⊗AC )→ Spec(C ) is a closed
map, so composing, Spec

�

(B/pi )⊗AC
�

→ Spec(C ) is closed. As C was arbitrary, πi ◦ f has the property above, and
since B/pi is an integral domain,πi ◦ f is integral. By [5.6], the map (π1◦ f , . . . , πn ◦ f ) : A→

∏

B/pi is integral; this
map factors as (π1, . . . , πn) ◦ f : A→ B→

∏

B/pi . The kernel of the homomorphism (π1, . . . , πn) : B→
∏

B/pi is
the nilradical N=

⋂

pi of B , so we have a factorization A→ B� B/N�
∏

B/pi . Since
∏

B/pi is integral over the
image of A, so is the embedded subring B/N. Now let x ∈ B ; then its image x̄ ∈ B/N satisfies a monic polynomial
equation x̄ m +

∑

j<m b̄ j x̄ j = 0̄ for some b j ∈ f (A); lifting, this means p(x) = x m +
∑

j<m b j x j ∈N. Then there is
an integer l large enough that p(x)l = 0 in B ; but p(x)l is a monic polynomial in f (A)[x], so x is integral over f (A).
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Chain Conditions

Jordan–Hölder Theorem. Consider an A-module M of finite length. (6.7) says that every composition series of M
has the same length, and the book claims (p. 77) that the multiset of isomorphism classes of quotients of successive
terms is the same for any choice of composition series. The proof, it goes on, is the same as for finite groups. We
recall it here.1

The proof proceeds by induction on the length l (M ) of M . If l (M ) = 0 or 1, we are done. Assume inductively
that the result holds for all modules of length n, and let l (M ) = n+ 1. Assume M has the two composition series

M =M0 )M1 ) · · ·)Mn+1 = 0, M =N0 )N1 ) · · ·)Nn+1 = 0.

If M1 = N1, then by the inductive hypotheses the multisets S = {Mi/Mi+1}ni=1 and T = {Ni/Ni+1}ni=1 of quotients
are equal so since M/M1 =M/N1, the quotient multisets of the two composition series for M are equal.

If M1 6=N1, let P1 = M1 ∩N1. Note that M1 ( M1+N1 ⊆ M , so since M/M1 was assumed simple, M1+N1 = M .
Now M1/P1 =M1/(M1∩N1)∼= (M1+N1)/N1 =M/N1 by the second isomorphism theorem (2.1.ii), and this quotient
is simple. Symmetrically, N1/P1

∼=M/M1. By the proof of (6.7), l (P1)≤ l (M1) = n is finite, so P1 has a composition
series P1 ) P2 ) · · · ) Pp = 0. Write U for the quotient multiset. M1 ) P1 ) · · · ) Pp = 0 is a composition
series for M1. Since l (M1) = n, we have p = n, and by the induction hypothesis, the multiset {M1/P1} ∪ U =
{M/N1} ∪ U is the same as the multiset S = {Mi/Mi+1}ni=1. Then the quotient multiset for the Mi composition
series of M is {M/M1} ∪ S = {M/M1, M/N1} ∪U . Similarly N1 ) Pi is a composition series for N1 with quotient
multiset {N1/P1} ∪U = {M/M1} ∪U , by inductive assumption equal to the multiset T = {Ni/Ni+1}ni=1. Then the
Ni composition series for M yields the quotient multiset {M/N1} ∪T = {M/N1, M/M1} ∪U as well.

EXERCISES
i) Let M be a Noetherian A-module and u : M →M a module homomorphism. If u is surjective, then u is an isomorphism.

For all n ≥ 0, we have ker(un) a submodule of M and ker(un) ⊆ ker(un+1); as M is Noetherian, we eventually
have ker(un) = ker(un+1). Any element y ∈ im(un) is un(x) for some x ∈M , and if 0= u(y) = u

�

un(x)
�

= un+1(x),
then x ∈ ker(un+1) = ker(un), so y = un(x) = 0 already. Thus u is injective on im(un). But since u is surjective,
im(un) =M , so u is injective, hence an isomorphism.

ii) If M is Artinian and u is injective, then again u is an isomorphism.
For all n ≥ 0, we have im(un) a submodule of M and im(un) ⊇ im(un+1); as M is Artinian, we eventually

have im(un) = im(un+1). For each element x ∈ M we have un(x) ∈ im(un) = im(un+1), so there is y ∈ M with
un(x) = un+1(y) = un

�

u(y)
�

. As u is injective, un is also injective, so x = u(y). As x was arbitrary, u is surjective,
hence an isomorphism.

Let M be an A-module. If every non-empty set of finitely generated submodules of M has a maximal element, then M is Noetherian.
By (6.2), it will suffice to show any submodule N of M is finitely generated. Let Σ be the set of finitely generated

submodules of N . By assumption,Σ has a maximal element N0. If N0 (N , there is x ∈N\N0, and then N0+Ax )N0
is a finitely generated submodule of N , contradicting maximality of N0. Thus N0 =N is finitely generated.

Let M be an A-module and let N1, N2 be submodules of M . If M/N1 and M/N2 are Noetherian, so is M/(N1 ∩N2). Similarly
with Artinian in place of Noetherian.

By the second isomorphism theorem (2.1.ii), N1/(N1 ∩N2)∼= (N1+N2)/N2. Since (N1+N2)/N2 is a submodule
of the Noetherian (resp. Artinian) M/N2, (6.3.i) (resp. (6.3.ii)) shows N1/(N1 ∩N2) is Noetherian (resp. Artinian).
Now the third isomorphism theorem (2.1.i) gives an exact sequence 0→N1/(N1∩N2)→M/(N1∩N2)→M/N1→ 0.

1 http://planetmath.org/encyclopedia/ProofOfTheJordanHolderDecompositionTheorem.html
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Chapter 6: Chain Conditions Ex. 6.4

The outside terms are Noetherian (resp. Artinian), so another use of (6.3.i) (resp. (6.3.ii)) shows that M/(N1∩N2) is
Noetherian (resp. Artinian).

Let M be a Noetherian A-module and let a be the annihilator of M in A. Prove that A/a is a Noetherian ring.
M is finitely generated by (6.2), say by x1, . . . , xn . Then if ai =Ann(xi ), we have A/ai

∼=Axi ; as a submodule of
a Noetherian module, it is, by (6.3.i), also Noetherian. Since a=

⋂

ai , by [6.3] and induction, A/a is a Noetherian
A-module, hence a Noetherian A/a-module.

If we replace “Noetherian” by “Artinian” in this result, is it still true?
No. Let p ∈N be a non-zero prime and consider Example 3) of p. 74, the p-quasicyclic group G =Z/p∞Z.2 It is

an abelian group, so aZ-module, and the book states that it is Artinian.3 It is generated by the elements xn =Z+1/pn ,
and AnnZ(xn) = (p

n), so AnnZ(G) = (0). Now Z∼=Z/(0) is not an Artinian ring by Example 2) of p. 74.
Our proof for the Noetherian case above fails precisely because there are infinitely many xn ; we do have each

Z/(pn) =Z/AnnZ(xn)Artinian, being isomorphic to the submodule Gn of G, but the result of [6.3] does not extend
to infinite intersections.

A topological space X is said to be Noetherian if the open subsets of X satisfy the ascending chain condition (or, equivalently, the
maximal condition). Since closed subsets are complements of open subsets, it comes to the same thing to say that the closed
subsets of X satisfy the descending chain condition (or, equivalently, the minimal condition). Show that, if X is Noetherian,
then every subspace of X is Noetherian, and that X is compact.

Let Y ⊆ X be a subspace; in the subspace topology, the open sets of Y are precisely the intersections with Y of
open sets of X. If 〈Vn〉 is an ascending chain of open subsets of Y , let Un ⊆ X be open and such that Vn = Un ∩Y .
Then there is some n such that Un = Un+1 = · · · , so intersecting with Y , we get Vn =Vn+1 = · · · . This shows Y is
Noetherian.

LetU be an open cover of X, and let Σ be the collection of all finite unions of elements ofU . By the maximal
condition on opens, Σ has a maximal element V . If there is x ∈ X \V , there is some U ∈U containing x sinceU
is an open cover, and then U ∪V ∈ Σ strictly contains V , contradicting maximality. Thus X =V is a finite union
of elements ofU . This shows X is compact.

Prove that the following are equivalent:
i) X is Noetherian.
ii) Every open subspace of X is compact.
iii) Every subspace of X is compact.

i) =⇒ iii): This follows from [6.5]: each Y ⊆X is itself Noetherian, and each Noetherian space is compact.
iii) =⇒ ii): This is trivial: each open subspace is a subspace.
ii) =⇒ i): Let U1 ⊆U2 ⊆ · · · be an ascending chain of open subsets of X, and U =

⋃

n∈NUn . Since U is compact,
U is a union of a finite set {Un1

, . . . , Unm
}. But then if n =max j n j , we see U =Un .

A Noetherian space is a finite union of irreducible closed subspaces. Hence the set of irreducible components of a Noetherian space
is finite.

Recall from [1.19] that a topological space C is irreducible if for every pair of nonempty open subsets U1, U2,
we have U1 ∩U2 6= ∅. Taking complements Fi = C \Ui , this means for every pair of closed subsets F1, F2 ( C , we
have C 6=C \(U1 ∩U2) = (C \U1)∪ (C \U2) = F1 ∪ F2. That is, C is not a union of proper closed subspaces.

Suppose, for a contradiction, that the result is false. Then there is a Noetherian space X such that X is an element
of the set Σ of closed subsets of X that are not unions of finitely many irreducible closed subspaces. Since Σ is
nonempty and X is Noetherian,Σ has a minimal element C . Since C is not a finite union of irreducible sets, it is not

2 See http://planetmath.org/encyclopedia/QuasicyclicGroup.html. G is the group of elements of Q/Z with denominator a p-
power, or equivalently Z[1/p]/Z. Taking its image under x̄ 7→ e2πi x gives an isomorphism to the subgroup {z : ∃n ≥ 0 (z pn

= 1)} of C×. Thus
it is an increasing union of the groups of (pn)th roots of unity, or equivalently the direct limit of the system (Z/pnZ, πmn), where for m ≤ n we
have πmn : Z/p mZ→Z/pnZ taking 1 7→ pn−m .

3 are its only proper subgroups. First, we claim that if x ∈ Gn \Gn−1, then 〈x〉 = Gn . Since x = Z+ a/pn for some a ∈ Z\(p), we have
(a)+(p) = (1) in Z. By (1.16), (a)+(pn) = 1, so there are b , m ∈Z such that ba+m pn = 1. Thus (ba/pn) = m+(1/pn) in Z[1/p], so b x = xn
and 〈x〉 = Gn . Now suppose H is a proper subgroup of G. Since G =

⋃

Gn , we see H fails to contain some Gn+1. Let n + 1 be minimal such
that this happens. Then H contains no element of Gn+1\Gn by the work above, but by assumption contains all of Gn , so H = Gn . Now G is
Artinian, for given a strictly descending chain of submodules starting with G, the second module is some Gn , and Gn properly contains only
n− 1 submodules.
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itself an irreducible set. Thus it is reducible, and so a union of two proper closed subspaces F1 and F2. But F1 and F2
are both finite unions of irreducible closed sets, so C is as well, a contradiction.

Recall from [1.20.iii] that the irreducible components of a space X are the maximal irreducible subsets of X, and
that they are closed and cover X. Since a Noetherian space X is a union of finitely many irreducible closed subspaces,
it is a fortiori a union of finitely many maximal such, so it is a union of finitely many irreducible components. Let n
be the minimal possible number needed to cover X, and let C1, . . . , Cn be irreducible components covering X. If F is
any other irreducible closed set, then F =

⋃n
j=1(F ∩C j ) expresses F as a union of closed subsets; as F is irreducible,

F ⊆C j for some j . Thus C1, . . . , Cn are the only irreducible components of X.

If A is a Noetherian ring, then Spec(A) is a Noetherian topological space. Is the converse true?
Every closed subset of Spec(A) is ([1.15]) of the form V (a) for some radical ideal a Ã A. Let

�

V (a j )
�

j∈N be
an infinite descending chain collection of closed subsets of Spec(A). Since V (a j+1) ⊆ V (a j ), taking intersections
of these sets of primes (recalling the a j are radical; see (1.14)) gives a j ⊆ a j+1. Since A is Noetherian, eventually
an = an+1 = · · · , and so V (an) =V (an+1) = · · · ; thus Spec(A) is Noetherian.

The converse is not true. Let k be a field, and A = k[x1, x2, . . .] a polynomial ring over k in countably many
indeterminates. Let any sequence (mn)

∞
n=1 of integers> 1 be given. Let b be the ideal generated by x m1

1 and xn−x mn+1
n+1

for all n ≥ 1. Write yn = x̄n in B = A/b. Then y m1
1 = 0 and yn = y mn+1

n+1 for all n ≥ 1. If p = (y1, y2, . . .), we have
B/p∼= k, so p is maximal. Now yn+1 ∈ r (yn) and y1 ∈ r (0), so p⊆N(B)⊆ p, showing p is the unique minimal prime
as well. Since all primes then contain p, which is maximal, p is the only prime of B . Thus Spec(B) = {p} is obviously
Noetherian. But (y1)( (y2)( (y3)( · · · is an infinite ascending chain of ideals, so B is not Noetherian.

Relatedly4, but using material from earlier in the book, let k be a field and Γ a non-zero totally ordered group
with only finitely many isolated subgroups and such that Γ>0 := {γ ∈ Γ : γ > 0} has no least element (for example
take Z[1/p] ⊆ Γ ⊆ R for p ≥ 2). Let K be the field of fractions of the group algebra k[Γ ]. Then [5.33] gives a
surjective valuation v : K×→ Γ , and A= {0} ∪ {x ∈ K : v(x)≥ 0} is the associated valuation ring. [5.32] shows that
A has only finitely many prime ideals. For any γ ∈ Γ+, there exists x ∈ k[Γ ] with v(x) = γ . Elements y ∈ (x) have
value v(y)≥ v(x) by axiom (1) of [5.31], so if x, y ∈A have v(x)< v(y), it is impossible that x ∈ (y), and by [5.28]
we have (y) ( (x). Now any infinite decreasing sequence γ1 > γ2 > · · · > 0 in Γ gives rise to an infinite increasing
sequence of ideals of A.

Simpler5, let k be a field, A = k[x1, x2, . . .] a polynomial ring over k in countably many indeterminates, c =
(x2

1 , x2
2 , · · · ), and C =A/c. Write z j = x̄ j and q= (z1, z2, . . .). Then C/q∼= k, so q is maximal, and q⊆N(C )⊆ q, so

q is minimal, and thus Spec(C ) = {q}. But (z1)( (z1, z2)( (z1, z2, z3)( · · · is an infinite ascending chain of ideals.

Deduce from Exercise 8 that the set of minimal prime ideals in a Noetherian ring is finite.
Let A be a Noetherian ring. By [6.8], X is a Noetherian space. By [6.7], X has only finitely many irreducible

components. By [1.20.iv], the irreducible components of X = Spec(A) are the closed sets V (p) for p a minimal
prime; thus there are only finitely many minimal primes of A.

If M is a Noetherian module (over an arbitrary ring A) then Supp(M ) is a closed Noetherian subspace of Spec(A).
Recall ([3.19]) that Supp(M ) is the set of prime ideals p Ã A such that Mp 6= 0. Write a = Ann(M ). By [3.19.v],

Supp(M ) =V (a) is closed. [1.21.iv] gives a homeomorphism V (a)≈ Spec(A/a). But by [6.4], A/a is a Noetherian
ring, so [6.8] shows Spec(A/a)≈V (a) is a Noetherian space.

Let f : A→ B be a ring homomorphism and suppose that Spec(B) is a Noetherian space (Exercise 5). Prove that f ∗ : Spec(B)→
Spec(A) is a closed mapping if and only if f has the going-up property (Chapter 5, Exercise 10).

In [5.10.i]we showed that f ∗ being closed implies f has the going-up property. Now suppose Spec(B) is Noethe-
rian and f has the going-up property. Let V (b), for bÃ B radical, be an arbitrary closed set of Spec(B). Then by [6.5],
V (b) is itself Noetherian, By [1.21.iv], V (b)≈ Spec(B/b), so by [6.7], Spec(B/b) has only finitely many irreducible
components. By [1.20.iv], these correspond to minimal primes of B/b, and hence minimal elements q j of V (b). Let
p j = qc

j . Now (1.18) shows a := bc =
�⋂

q j

�c =
⋂

qc
j =

⋂

p j . Now if p ∈ V (a) we have
⋂

p j ⊆ p, so by (1.10.ii),

4 http://pitt.edu/~yimuyin/research/AandM/exercises06.pdf
5 [KarpukSol]
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p j ⊆ p for some j . Thus V (a) =
⋃

V (p j ). [5.10.i] shows that f ∗
�

V (q j )
�

= V (p j ), so f ∗
�

V (b)
�

= f ∗
�⋃

V (q j )
�

=
⋃

f ∗
�

V (q j )
�

=
⋃

V (p j ) =V (a) is closed.

Let A be a ring such that Spec(A) is a Noetherian space. Show that the set of prime ideals of A satisfies the ascending chain condition.
Is the converse true?

Let p1 ⊆ p2 ⊆ · · · be an ascending chain of prime ideals of A. Then V (p1)⊇V (p2)⊇ · · · is a descending chain of
closed subsets of Spec(A). Since Spec(A) is Noetherian, the descending chain terminates in some V (pn) =V (pn+1).
Then pn ∈V (pn) =V (pn+1), so pn+1 ⊆ pn ⊆ pn+1 and the chain stabilizes.

The converse is untrue. Let X be an infinite set; its power setP (X )with the partial order given by⊆ is a Boolean
algebra by the proof of [1.25]. Let A be the associated Boolean ring ([1.24]). (Note that in fact A∼=

∏

X F2.) If a ∈A,
then the principal ideal (a) Ã A is the set of ba = b ∩ a for b ∈ P (X ), which is the set of subsets b ⊆ a. Let
x1, x2, . . . be an infinite sequence of distinct elements of X, and for each n let pn be the principal ideal generated by
the element X \{xn} of A. Each pn is prime, for if a, b ∈A\pn , then xn ∈ a and xn ∈ b , so xn ∈ a∩ b = ab , meaning
ab /∈ pn . If we let Sn = {s1, . . . , sn} for each n ≥ 1, then Sn ( Sn+1 for each n, so if an is the principal ideal (Sn), then
an ( an+1 for each n, so any prime containing the latter contains the former, and V (an)⊇V (an+1) in Spec(A). But
xn+1 ∈ Sn+1 ∈ an+1, so an+1 6⊆ pn+1, while for a ∈ an we have xn+1 /∈ Sn ⊇ a, so that an ⊆ pn+1. Thus we have a
strict containment V (an))V (an+1) for each n, so the V (an) are an infinite descending sequence of closed subsets of
Spec(A), which is then not Noetherian. But by [1.11.ii], every prime of A is maximal, so each chain of prime ideals
of A has length zero, and the set of prime ideals of A satisfies the ascending chain condition.

For another demonstration the converse is untrue,6 let k be a field, B =
∏∞

j=1 k the product of countably many
copies of k, and A= k · 1+

⊕

k the subring of B consisting of all eventually constant sequences of elements of k.
Write e j ∈ A for the element with a 1 at the j th place and 0 elsewhere, and fn = 1−

∑

j≤n e j . For each n ≥ 0 the
subring An =

∑

j<n ke j + k fn ( A is the set of sequences of elements of k constant from the (n+ 1)th element on,
and we have a natural isomorphism Bn

∼−→ kn+1 taking e j 7→ e j for j ≤ n and fn 7→ en+1. If b j =
∑

i 6= j (ei ), the proof
of [1.22], shows that Spec(kn+1) is a disjoint union of sets of ideals b j + pe j for p a prime of k; since k is a field,
Spec(kn+1) = {b1, . . . , bn+1}. For the corresponding primes of Bn write pn, j =

∑

i 6= j (ei ) + ( fn) for j = 1, . . . , n and
qn =

∑

j≤n(e j ). Let p ∈ Spec(B). Then p∩An is a prime. One possibility is that this prime is qn for each n. Since
B =

⋃

Bn , then p0 := p =
⋃

qn =
⊕

k, and B/p0 = B/
⊕

k ∼= k, so p0 is maximal.7 Otherwise there is some An
with p ∩An = pn, m , and it follows p ∩Aj = p j , m for all j ≥ n. Thus e j ∈ p for j > m and fm ∈ p, so p contains
p j =

∑

n 6= j (e j )+( f j ). As p j is the kernel of the projection of A onto the j th coordinate, it follows again p j is maximal,
so p= p j . All primes of A being maximal, It follows any ascending sequence of prime ideals of A is constant. On the
other hand qn =

∑

j≤n(e j ) gives an infinite ascending sequence of ideals of A. Evidently V (qn)⊇V (qn+1), and since
qn ⊆ pn+1 but qn+1 6⊆ pn+1, the inclusion is strict. Thus Spec(A) is not Noetherian.

6 http://pitt.edu/~yimuyin/research/AandM/exercises06.pdf
7 In case this wasn’t clear, since the diagram

0 // qn
� � //
� _

��

An� _

��

// // k // 0

0 // qn+1
� � // An+1

// // k // 0
is commutative, [2.18] and [2.19] give a short exact sequence 0→ p0 ,→A� k→ 0 of direct limits.
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Noetherian Rings

Theorem 7.5*. If A is Noetherian, then the formal power series ring A[[x]] is Noetherian.
If f = ax m+(deg> m) is an element of A[[x]], define ord( f ) = m. Let a be an ideal of A[[x]], and let l be the set of

trailing coefficients of series in a. This is an ideal of A, for if a, b ∈ l and c ∈A, there are elements f = ax m+(deg> m)
and g = bx p+(deg> p) of a; without loss of generality, assume p ≥ m; then the trailing coefficient of x p−m f −g ∈ a
is a− b , and the trailing coefficient of c f ∈ a is ca. Since A is Noetherian, l is finitely generated, say by a1, . . . , an . By
the definition of l, for i = 1, . . . , n there is a series fi ∈A[[x]] of the form fi = ai x ri +(deg> ri ). Let r =maxn

i=1 ri .
The fi generate an ideal a′ ⊆ a in A[[x]].

Let f be an arbitrary element of a, with m = ord( f ) ≥ r . If gi , 0 = 0 for all i , we have f = f −
∑

gi , 0 fi of
order m. Let p ≥ m, and assume inductively that there are polynomials gi , p ∈ A[x] with deg(gi , p ) ≤ m − ri

such that f ′ = f −
∑

gi fi has ord( f ′) = p. If f ′ = ax p + (deg > p) write a =
∑n

i=1 ui ai , where ui ∈ A; then
f ′ −

∑

(ui x p−ri ) fi = f −
∑

(gi , p + ui x p−ri ) fi is in a and has degree > p. Then gi , p+1 = gi , p + ui x p−ri has degree
≤ p − ri . Since any terms we might add in transforming gi , p to gi , p+1 are of strictly higher degree, as p →∞, the
polynomials gi , p ∈A[x] converge to some gi ∈A[[x]], and f −

∑

gi fi = 0, so f ∈ a′.
If we write M =A+Ax+ · · ·+Ax r−1, then this shows that for any f ∈ a, there is g ∈ a′ such that f − g ∈ a∩M .

Now M is a finitely generated A-module, so it is Noetherian by (6.5), and thus a∩M is a finitely generated A-module
by (6.2). Therefore a= (a∩M )+ a′ is finitely generated.

EXERCISES
Let A be a non-Noetherian ring and let Σ be the set of ideals in A which are not finitely generated. Show that Σ has maximal

elements and that the maximal elements of Σ are prime ideals.
Hence a ring in which every prime ideal is finitely generated is Noetherian (I. S. Cohen).
This result has actually be vastly generalized: there is a metatheorem giving results of the form “any ideal maximal

with respect to not having property P is prime” for large natural classes of properties P of ideals.1 For example, for
any infinite cardinal κ, any ideal maximal with respect to not being generated by < κ elements is prime (it is not
however guaranteed that such ideals exist); the result we prove here is the κ=ℵ0 case.

Since A is not Noetherian, Σ is not empty. Let 〈aα〉α be a chain in Σ, and a its union. If a was finitely generated,
say by xi ∈ aαi

(1 ≤ i ≤ n) with α1 ≤ · · · ≤ αn , then we would have a = (x1, . . . , xn) ⊆ aαn
⊆ a, showing aαn

/∈ Σ, a
contradiction. Then Zorn’s Lemma furnishes maximal elements of Σ.

It is not harder to prove the next part for ideals generated by <κ elements than <ℵ0 elements, so redefine Σ to
be the set of ideals not generated by < κ elements. Let p be a maximal element of Σ; by the last paragraph, Σ has
maximal elements if κ = ℵ0. Suppose a /∈ p and b ∈ A are such that ab ∈ p; we show b ∈ p. Now (a) + p ∈ Σ. If
it is generated by the elements (bα + xα) for bα ∈ A and xα ∈ p (α < κ), then (a) + p = (a) + (xα). Write a = (xα).
Now if y ∈ p\a, then y ∈ p∩ (a), so there is z ∈ A, such that az = y ∈ p. It follows that z ∈ (p : a), so y ∈ a(p : a).
Thus a+ a(p : a) = p). If (p : a) /∈Σ, we would have a(p : a) /∈Σ and hence p /∈Σ, so it follows that (p : a) ∈Σ. Now
p⊆ (p : a), and if the containment were strict, we would have (p : a) /∈Σ, so b ∈ (p : a) = p.

Let A be a Noetherian ring and let f =
∑∞

n=0 an xn ∈A[[x]]. Prove that f is nilpotent if and only if each an is nilpotent.
By [1.5.ii], if f is nilpotent, then all an are nilpotent. On the other hand, suppose all an are nilpotent. By (7.15), the

nilradical N of A is nilpotent, meaning there is m ≥ 1 such that Nm = 0. That means any product aI =
∏m

i=1 ani
= 0.

In f m , each term is divisible by some aI , so f m = 0.

1 Tsit Yuen Lam and Manuel L. Reyes: http://bowdoin.edu/~reyes/oka1.pdf
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Let a be an irreducible ideal in a ring A. Then the following are equivalent:
i) a is primary;
ii) for every multiplicatively closed subset S of A we have (S−1a)c = (a : x) for some x ∈ S;
iii) the sequence (a : xn) is stationary, for every x ∈A.

i) =⇒ ii): Let a be primary and a ∈ a. (4.8) says that either (S−1a)c = a= (a : 1) or (S−1A)c =A= (a : a).
ii) =⇒ iii): Let x ∈A, and Sx = {1, x, x2, . . .}. Recall from [4.12] that Sx (a) := (S

−1
x a)c = {y ∈A : Sx y ∩ a 6=∅}.

But this is
⋃

s∈Sx
(a : s) =

⋃

n≥0(a : xn). By assumption, this is also equal to (a : s) for some s = xn ∈ S. Then
(a : xn)⊆ (a : xn+m)⊆ Sx (a) = (a : xn) for all m ≥ 0, so the chain of ideals (a : xn) is stationary.

iii) =⇒ i): Since a is irreducible in A, we have (0) irreducible in A′ = A/a. Suppose exey ∈ a with ex, ey ∈ A
and y /∈ a. Let x, y be their images in A′. The increasing chain (a : exn) in A is stationary, and its image in A′ is
(0 : xn) = Ann(xn), so for some n we have Ann(xn) = Ann(xn+1). If a ∈ (y) ∩ (xn), write a = b y = c xn . Then
0= b xy = c xn+1, so c ∈Ann(xn+1) =Ann(xn), meaning a = c xn = 0. Thus (0) = (y)∩(xn). Since (0) is irreducible,
it follows that (xn) = (0), so exn ∈ a. Thus a is primary.

Which of the following rings are Noetherian? In all cases the coefficients are complex numbers.
i) The ring of rational functions of z having no pole on the circle |z |= 1.

This ring A is Noetherian. Any element of A can be written in least terms as p(z)/q(z) ∈C(z), for p(z), q(z) ∈
C[z] such that q(z) has no root on the circle |z | = 1. Put another way, q(z) can be any polynomial in the multi-
plicatively closed set S = C[z]\

⋃

|a|=1(z − a). Thus A= S−1C[z]. Since C[z] is Noetherian (for example by (7.5)),
its localization A is Noetherian by (7.3).

ii) The ring of power series in z with a positive radius of convergence.
This ring A is Noetherian. Let B be an arbitrary ring, and z an indeterminate. Recall ([1.5]) that f ∈ B[[z]] is

a unit just if f ∈ B× + (z), that is, the constant term of f is a unit. If B = k is a field, this just means the constant
term is nonzero. Each nonzero element f ∈ k[[z]] has some order ord( f ) (the least m such that the coefficient of
z m in f is non-zero), and thus f = zord( f ) g for some g ∈ k×+ (z). Since g is a unit, it follows f g−1 = zord( f ) ∈ ( f ),
and so ( f ) = (zord( f )). Thus the ideals of k[[z]] are (0) and (zn) for n ≥ 0. But the non-trivial ideals of k[[z]] are
well-ordered by ⊇, so we see (as in (7.5*)) that k[[z]] is Noetherian.

We show that each ideal of A is the contraction of an ideal of C[[z]], so A is Noetherian. Let f ∈ A ( C[[z]]
be nonzero, and write f = z m g for g a unit of C[[z]]. The radius of convergence of g is the same as that of f , so
g ∈A.2 The inverse g−1 of g in C[[z]] is also in A,3 so g−1 f = z m in A, showing ( f ) = (z m) again.

iii) The ring of power series in z with an infinite radius of convergence.
This ring A is not Noetherian. Let fn =

∏∞
j=n

�

1− z2

n2

�

for each n ≥ 1. It can be shown that fn ∈ A; in fact

πz f1 = sinπz. (If you like, replace the factors by 1− z2

22n , whose product more obviously converges.) Note that

the roots of 1− z2

n2 are z = ±n. Now each element of ( fn) vanishes at ±n, for limz→n | fn(z)| = 0, and if we have
g fn(n) 6= 0 for some g ∈ C[[z]], it follows limz→n |g (z)| =∞, and hence g has radius of convergence ≤ n and is
not in A. Now since fn+1| fn for each n, we have ( fn)⊆ ( fn+1), but fn+1 /∈ ( fn) since fn+1 does not vanish at±n. Thus
( fn) is an infinite ascending series of ideals in A.

iv) The ring of polynomials in z whose first n derivatives vanish at the origin (n being a fixed integer).
This ring A is Noetherian. We claim it is actually the subring A=C+ (zn+1)(C[z].4 Now C[zn+1]∼=C[z] is

Noetherian by (7.5), and the inclusionC[zn+1] ,→A makes A aC[zn+1]-module, finitely generated by {1, z, . . . , zn}.
Then (7.2) says A is Noetherian as well.

2 Write f (z) =
∑

an zn+m and set c = limsupn→∞
n+m
p

|an | and R = 1/c . If |z | < R, then for some ε > 0, we have |z | < 1/(c + ε), which
implies that for all sufficiently large n we have |an zn+m |< |an |(c+ε)−(n+m) ≤ c

c+ε
n+m . It follows that |an zn | ≤ 1

|z |m
c

c+ε
n+m for n large enough,

so by comparison with the geometric series, g (z) converges.
3 See the footnote to [10.8].
4 Note first that the definition must be interpreted to involve the derivatives d

d z , . . . , d n

d zn ; the requirement specifically can’t include that
f = (d/d z)0( f )|z=0 = 0, because we want 1 in our ring. A really is a ring (actually a C-algebra), because derivatives are linear, and because by the

generalized Leibniz formula (see http://planetmath.org/encyclopedia/GeneralizedLeibnizRule.html) d n

d zn ( f g ) =
∑n

j=0

�n
j

� d n− j

d zn− j f ·
d j

d z j g , so if the first n derivatives of f and g vanish at z = 0, then so do those of f g . Now d n

d zn (z m) = m · · · (m− n+ 1)z m−n , which is zero for

m ≤ n. If f =
∑m

j=0 am z m , then d n

d zn

�

�

�

z=0
( f ) =

∑m
j=n a j j · · · ( j − n+ 1)0 j−n = n!an , which is zero just when an = 0. Thus the first n derivatives

of f vanish at 0 just if the coefficients a1, . . . , an are zero.
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v) The ring of polynomials in z, w all of whose partial derivatives with respect to w vanish for z = 0.
This ring A is not Noetherian. As in iv), the requirement must be on ∂ n

∂ wn

�

�

�

z=0
for n strictly greater than 0 in

order that 1 ∈ A. The linearity of partial derivatives and the generalized Leibniz formula again show A really is a
ring. Let f ∈ A, and write f =

∑m
j=0 p j (z)w

j for p j ∈ C[z]. If a j = p j (0) is the constant term, then ∂ n

∂ wn f
�

�

�

z=0
=

∑m
j=n a j j · · · ( j−n+1)w j−n , which vanishes identically in w just if all coefficients are zero. Then a j j · · · ( j−n+1) = 0

for all n > 0 and j ≥ n, so a j = 0 for all j > 0. Thus A=C[z]+ (z)C[w]. In particular, wn /∈ A, so we do not have
zwn |zw m for m > n. Now let an = (zw, zw2, . . . , zwn) Ã A. Then an ( an+1 since zwn+1 /∈ an , so (an) is an
infinite ascending chain of ideals of A.

Let A be a Noetherian ring, B a finitely generated A-algebra, G a finite group of automorphisms of B, and BG the set of all elements
of B which are left fixed by every element of G. Show that BG is a finitely generated A-algebra.

Recall from [5.12] that B is integral over BG . Then (7.8) applied to the chain A⊆ BG ⊆ B says that BG is finitely
generated as an A-algebra.

If a finitely generated ring is a field, then it is a finite field.
[CAN THIS BE IMPROVED BY USING DGK, etc.?]
Let k be our finitely generated field. We can without loss of generality assume 1 is part of the finite generating

set; then k is finitely generated over the subring A=Z · 1. Since k is a field, A must be Z or Fp . If A∼= Fp , then A is
a field, and Zariski’s Lemma ((1.27.2*), (5.24), [5.18], (7.9)) shows k is a finite extension of Fp , so a finite field.

Otherwise A∼=Z, and we will derive a contradiction. k being a field, there is a subfield of k isomorphic toQ. As
k is finitely generated over this subfield, Zariski’s Lemma shows k is a finite (hence integral) extension of Q. Then
(5.8) applied to the chain Z(Q⊆ k givesQ finitely generated over Z. ButQ is not finitely generated over Z.5

Let X be an affine algebraic variety given by a family of equations fα(t1, . . . , tn) = 0 (a ∈ I ) (Chapter 1, Exercise 27). Show that
there exists a finite subset I0 of I such that X is given by the equations fα(t1, . . . , tn) = 0 for a ∈ I0.

By (7.6) A= k[t1, . . . , tn] is Noetherian, so by (6.2) the ideal aÃ k[t1, . . . , tn] generated by { fα : α ∈ I } is finitely
generated. Say its generators are g1, . . . , gn ∈ a. Then each gi is an A-linear combination of finitely many fαi , j

. Now
I0 = {αi , j : i = 1, . . . , n, j = 1, . . . , mi} ⊆ I is a finite set, and { fα : α ∈ I0} generates a. A point x ∈ kn satisfies
fα(x) = 0 for all α ∈ I0 just if f (x) = 0 for all f ∈ a just if fα(x) = 0 for all α ∈ I , so X is given by the vanishing of the
finite subset { fα : α ∈ I0}.

If A[x] is Noetherian, is A necessarily Noetherian?
Yes. There is a canonical surjection A[x]�A, so by (7.1), the quotient A is Noetherian if A[x] is.

Let A be a ring such that
(1) for each maximal ideal m of A, the local ring Am is Noetherian;
(2) for each x 6= 0 in A, the set of maximal ideals of A which contain x is finite.
Show that A is Noetherian.

Let a Ã A be a non-zero ideal. By (2), for each x ∈ A the set Mx of maximal ideals m 3 x is finite, so the set
M =

⋂

x∈a Mx of maximal ideals containing a is finite. For each m ∈ M , the extension S−1
m a of a in Am is finitely

generated by (6.2) since (1) says Am is Noetherian. We may without loss of generality take these generators to be
of the form x/1 for x ∈ a. Let am ⊆ a be the ideal of A finitely generated by these x. Now let z be an arbitrary
non-zero element of a, and let Nz be the finite set Mz \M . No n ∈ Nz contains a, so there is yn ∈ a\n. Now
let b =

∑

m∈M am + (z) +
∑

n∈Nz
(yn) ⊆ a. This ideal is finitely generated. For m ∈ M , we have S−1

m a ⊆ S−1
m b by

construction, so the two are equal. For maximal ideals m /∈ Mz , we have z ∈ Sm, so S−1
m b = (1), and for n ∈ Nz we

have yn ∈ Sn, so S−1
n b= (1). But if m /∈M , then S−1

m a= (1), and Max(A)\M = (Max(A)\Mz )∪Nz , so the localizations
of a and b are equal at all maximal ideals. This means the canonical injections (see (3.3)) Smb → Sma induced by
b ,→ a are all surjective. (3.9) then says that the inclusion b ,→ a is surjective, so that b= a is finitely generated.

5 Suppose it were, say by a1/b1, . . . , an/bn for a j , b j ∈Z, or without loss of generality by 1/b j . Then if b =
∏n

j=1 b j , thenQ=Z[1/b ]. But
then if p ∈N is a prime not dividing b , we would have 1/p /∈Q, a contradiction.
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Let M be a Noetherian A-module. Show that M [x] (Chapter 2, Exercise 6) is a Noetherian A[x]-module.
This should be possible to prove in a way that specializes into the proof of Hilbert Basis Theorem (7.5) in the

case M =A. Let N be a submodule of M [x]; by (6.2), it will be enough to show N is finitely generated over A[x]. Let
P ⊆M be the A-module consisting of its leading coefficients. As M is a Noetherian A-module, P is finitely generated,
say by m1, . . . , mn . Let p1(x), . . . , pn(x) be elements of M [x] with leading coefficients mi , and let N ′ ⊆ N be the
A[x]-submodule finitely generated by the pi (x). Say ri = deg(pi ) and r =maxn

i=1 ri .
Suppose f (x) ∈ N has deg( f ) = p ≥ r and leading coefficient m ∈ P . Then there are ai in A such that m =

∑

ai mi , so
∑

ai pi (x)x
p−ri ∈N ′ is such that f ′(x) = f (x)−

∑

ai gi (x)x
p−ri has deg( f ′)< m. By induction, there is

g ∈N ′ such that deg( f − g )< r .
Write N ′′ =M +M x+ · · ·+M x r−1; then we have just shown N = (N ∩N ′′)+N ′. Now N ′′ is a finitely generated

A-module, so it is a Noetherian A-module by (6.5). Thus its submodule N ∩N ′′ is finitely generated over A by (6.2),
and hence a fortiori finitely generated over A[x]. This shows N is finitely generated.

Let A be a ring such that each local ring Ap is Noetherian. Is A necessarily Noetherian?
No. Let X be an infinite set and A=P (X ) the power set, viewed as a Boolean ring. We showed in [6.12] that A

is not Noetherian. Let p ∈ Spec(A), and a/s ∈Ap, for a ∈A and s ∈A\p. By the definition of a Boolean ring, a2 = a
and s2 = s , so (a/s)2 = a2/s2 = a/s is idempotent. But Ap is a local ring, so by [1.12], a/s = 0 or 1. Thus Ap

∼= F2 is
a field, hence surely Noetherian.

The other counterexample in [6.12] also works here. Recall that it is the subring A= k ·1+
⊕

k of the countable
direct product

∏∞
j=1 k, and it is not Noetherian. We claim that each localization at a prime is k, and hence Noetherian

(cf. [3.5]). Write kn for the nth direct summand of p0 :=
⊕

kn ( A, and k0 := k · 1 ⊆ A. Recall that we defined en ∈
kn ( B be the image of the 1 of kn and fn = 1−

∑

j≤n en , and the prime ideals of A are just p0 and pn := ( fn)+
⊕

j 6=n k j

for n > 0. Their complements are Sn :=A\pn = pn+k×n . To find S−1
n A, recall that for each n ≥ 0, A is generated as an

A-module by { fn} ∪ {e j : j ≥ 1}; thus there is an A-module surjection Mn =Afn ×
⊕

j≥1 ke j →A. Since localization
is exact (3.3), S−1

n A is the image of the localization of the left-hand side under the induced map. For n ≥ 0, write
Dn =Afn×

⊕

j 6=n ke j for the submodule of M mapping onto pn . It was shown in the course of proving [3.19.iv] that
localization distributes over arbitrary exact sums, so to compute S−1

n Mn , it will suffice to compute S−1
n ke j for j 6= n,

S−1
n ken , and S−1

n Afn . Since S0 contains each fn , and fn e j = 0 for j ≤ n, by [3.1] each S−1
0 e j = 0; on the other hand,

S−1
0 Af0 = (k

×
0 )
−1k0

∼= k0. Thus S−1
0 M ∼= k0

∼= k. For n > 0, since Sn contains each e j for j 6= n and e j el = 0 for j 6= l ,
we have S−1

n ke j = 0, by [3.1], for j 6= n; since Sn contains en and en fn = 0, S−1
n Afn = 0; but S−1

n kn = (k
×
n )
−1kn

∼= kn ;
so S−1

n M ∼= kn
∼= k. Now for all n ≥ 0, S−1

n A is a quotient of S−1
n A, so it is also isomorphic to k.

Let A be a ring and B a faithfully flat A-algebra (Chapter 3, Exercise 16). If B is Noetherian, show that A is Noetherian.
Since B is faithfully flat over A we have aec = a for all aÃ A, so a 7→ ae is injective. Thus any infinite ascending

chain 〈an〉n∈N of ideals of A would give rise to an infinite ascending chain 〈ae
n〉n∈N of ideals of B .

Let f : A→ B be a ring homomorphism of finite type and let f ∗ : Spec(B)→ Spec(A) be the mapping associated with f. Show
that the fibers of f ∗ are Noetherian subspaces of B [Spec(B), rather].

Recall (p. 30) that the homomorphism being of finite type means that B is finitely generated as an A-algebra (or
equivalently, f (A)-algebra). Then B is a quotient of some polynomial ring C = A[t1, . . . , tm] (in particular, a C -
algebra). Now recall from [3.21.iv] that the fiber ( f ∗)−1({p})≈ Spec

�

k(p)⊗AB
�

, where k(p) is the field Ap/pAp. By
(2.14.iv) and (2.15), k(p)⊗AB ∼= k(p)⊗AC ⊗C B . But by [2.6] and induction,6 k(p)⊗AC = k(p)⊗AA[t1, . . . , tm]∼=
k(p)[t1, . . . , tm], so the fiber is Spec

�

k(p)[t1, . . . , tm]⊗C B
�

. But C � B is surjective, and (2.18) says tensor is right
exact, so k(p)[t1, . . . , tm]∼= k(p)⊗AC → k(p)⊗AB is surjective. (7.6) says k(p)[t1, . . . , tm] is Noetherian, so by (7.1),
its quotient k(p)⊗AB is Noetherian, and by [6.8], this then has Noetherian spectrum.

Nullstellensatz, strong form

6 Assume M is an A-module, and inductively, M [x1, . . . , xn]∼=A[x1, . . . , xn]⊗AM . Pretty clearly A[x1, . . . , xn][y]∼=A[x1, . . . , xn , y]. Then

M [x1, . . . , xn , y]
[2.6]∼= A[y]⊗AM [x1, . . . , xn]

(2.14)∼= A[y]⊗AA[x1, . . . , xn]⊗AM
[2.6]∼= A[x1, . . . , xn , y]⊗AM .
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Let k be an algebraically closed field, let A denote the polynomial ring k[t1, . . . , tn] and let a be an ideal in A. Let V be the variety
in kn defined by the ideal a, so that V is the set of all x = 〈x1, . . . , xn〉 ∈ kn such that f (x) = 0 for all f ∈ a. Let I (V ) be
the ideal of V, i.e. the ideal of all polynomials g ∈A such that g (x) = 0 for all x ∈V. Then I (V ) = r (a).

Note that if we write V = Z(a), our goal is to show I Z(a) = r (a).
By item 4 of [1.29], a⊆ I Z(a), and by item 9, I Z(a) = r

�

I Z(a)
�

, so r (a)⊆ I Z(a).
On the other hand, suppose f /∈ r (a); we show f /∈ I Z(a). As f /∈ r (a), there is a prime p containing a but not

f , so g := f̄ 6= 0 in the integral domain B = A/p. If C = Bg = B[1/g ], then by (1.3) C contains a maximal ideal n,
and C/n is a field. Now C/n is a k-algebra, finitely generated over k by 1/g and the images of the ti . By Zariski’s
Lemma ((1.27.2*), (5.24), [5.18], (7.9)) C/n is a finite algebraic extension of k, and thus, since k is algebraically closed,
isomorphic to k. Then the surjective k-algebra homomorphism

φ : A�A/a�A/p= B� Bg =C �C/n
∼−→ k

has kernel m a maximal ideal of A containing a. By [1.27], m is of the form mx = (t1 − x1, . . . , tn − xn) for some
x = 〈x1, . . . , xn〉 ∈ kn , so φ(t j ) = x j and φ : A→ k is the “evaluate at x” map h 7→ h(x). Since φ(a) = 0, we have
x ∈ Z(a). Since g = f̄ is a unit in C , its image remains a unit in k, so g (x) =φ(g ) 6= 0. It follows that g /∈ I Z(a).

Here is the classic proof of the Strong Nullstellensatz from the Weak ([5.17], cf. [5.18], [1.27], (5.24), (7.9)) by
what is called the “Rabinowitsch trick.”7

Let k, A, and aÃA be as above, and suppose g ∈ I Z(a). If y now is a new indeterminate, consider the polynomial
ring A[y]. The polynomial 1− yg is 1 on the set Z(ae ) ⊆ kn+1, so that ae + (1− yg ) vanishes nowhere and hence
by the Weak Nullstellensatz is the ideal (1) of A[y]. Then there are finitely many fi ∈ a and hi (y), h ′(y) ∈A[y] such
that

1=
∑

fi hi (y)+ (1− yg )h ′(y).

Under the A-algebra homomorphism A[y]→Ag ( k(t ) taking y 7→ 1/g , this equation is mapped to

1=
∑

fi hi (1/g )+
�

1−
g
g

�

h ′(1/g ) =
∑

fi
Hi

g m
,

for some Hi ∈A and m =maxi{degy hi}. Multiplying through by g m shows g ∈ r (a).

To use the theory of Jacobson rings instead to prove the Strong Nullstellensatz, detouring past the Weak Null-
stellensatz but not Zariski’s Lemma, proceed as follows.

Recall from [5.24] that A= k[t ] is a Jacobson ring and from [5.23] that a prime of A is an intersection of maximal
ideals. Since by [1.9] a radical ideal is an intersection of the primes containing it, it follows that a radical ideal in A
is the intersection of the maximal ideals containing it. Since I Z(a) is radical by item 9 of [1.29], it follows it is the
intersection of the maximal ideals containing it, so it only remains to show each maximal ideal containing a also
contains I Z(a). Taking X = {x} in item 0 of [1.27], we have x ∈ Z(a) ⇐⇒ a ⊆ mx , and taking X = Z(a) in
item 8, we have x ∈ Z(a) ⇐⇒ I Z(a) ⊆ mx . But by the result of [1.27], these are the only maximal ideals of A, so
r (a) = I Z(a).

For further proofs of the Nullstellensatz, see this discussion: http://mathoverflow.net/questions/15226/
elementary-interesting-proofs-of-the-nullstellensatz. For numerous relatives, see Chapter 11 of Pete
L. Clark’s notes http://math.uga.edu/~pete/integral.pdf.

Let A be a Noetherian local ring, m its maximal ideal and k its residue field, and let M be a finitely generated A-module. Then the
following are equivalent:
i) M is free;
ii) M is flat;
iii) the mapping of m⊗M into A⊗M is injective;
iv) TorA

1 (k , M ) = 0.
i) =⇒ ii): By (2.14.iv), A is a flat A-module. By [2.4], a direct sum of flat modules is flat, so a free A-module is

flat.
7 This originated in the influential one-page paper [Rabinowitsch]. Just who Rabinowitsch was is an interesting question; it appears that he

later moved to the United States and became the influential mathematical physicist George Yuri Rainich. See also [MOPseud], [Mollin, p. 154],
[Nark, p. 38].
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ii) =⇒ iii): This follows from (2.19) defining flatness.
iii) =⇒ iv): We have a short exact sequence 0→m⊗M → A⊗M → k ⊗M → 0, implying Tor1(k , M ) = 0 by

the Tor exact sequence.
iv) =⇒ i): Let x1, . . . , xn be such that their images form a basis of the finite-dimensional k-vector space k⊗AM ∼=

M/mM ; by (2.8), they generate M . Then there is an A-linear surjection An� M taking e j 7→ x j , say with kernel N ,
yielding a short exact sequence 0→ N → An → M → 0 of A-modules. Tensoring with k we have a Tor sequence
(using “ii) ⇐⇒ iv)”) Tor1(k , M ) = 0→ k⊗N → kn→ k⊗M → 0. Since dimk kn = n = dimk (k⊗M ), linear algebra
(or (6.9)) gives dimk (k⊗N ) = 0, so k⊗N = 0. As A is Noetherian, An is a Noetherian A-module by (6.5), and since
N ⊆ An , by (6.2) N is finitely generated. k being finitely generated as well, [2.3] shows either k = 0 or N = 0. By
assumption, A 6=m, so k 6= 0. Therefore N = 0, and the map An→M is an isomorphism.8

Let A be a Noetherian ring, M a finitely generated A-module. Then the following are equivalent:
i) M is a flat A-module;
ii) Mp is a free Ap-module, for all prime ideals p;
iii) Mm is a free Am-module, for all maximal ideals m.

In other words, flat = locally free.
Since each Ap is local and each Mp finitely generated over Ap, [7.15] says Mp is free if and only if it is flat. The

equivalence then follows from (3.10).

Let A be a ring and M a Noetherian A-module. Show (by imitating the proofs of (7.11) and (7.12)) that every submodule N of M
has a primary decomposition.

Call a submodule M ⊆N irreducible if it is not an intersection of two proper supermodules; that is, for P1, P2 ⊆M
submodules, we have N = P1 ∩ P2 =⇒ P1 =N or P2 =N .

If a submodule N ⊆M can be written as a finite intersection
⋂n

j=1 P j of irreducible modules P j ⊆M , we call this
expression an irreducible decomposition of N .

Lemma 7.11*. In a Noetherian A-module M , every submodule has an irreducible decomposition.
SupposeΣ is the set of submodules of M not admitting an irreducible decomposition, and suppose for a contradic-

tion that Σ 6=∅. Then as M is Noetherian, Σ contains a maximal element N . Then N =
⋂

{N} is not an irreducible
decomposition, by assumption, so N is not irreducible, and we can write it as N = P ∩ P ′, where P, P ′ ⊆ M are
submodules strictly containing N . Then P and P ′ do admit irreducible decompositions P =

⋂

Q j and P ′ =
⋂

Q ′j ,
so N =

⋂

Q j ∩
⋂

Q ′j is an irreducible decomposition, contradicting N ∈Σ. Thus Σ=∅.

Lemma 7.12*. In a Noetherian A-module M , every irreducible submodule is primary.
If Q ⊆ M is a submodule, then N = M/Q is also Noetherian by Prop. 6.3. If Q were irreducible, then by the

correspondence of p. 18, the zero submodule of N = M/Q would be irreducible. We will show that if Q is not
primary, then 0⊆M/Q is reducible, so Q is reducible.

Let x ∈ A be a zero-divisor of N that is not nilpotent on N . The submodules 0 ⊆ (0 : x) ⊆ (0 : x2) ⊆ · · · ⊆ N
form an increasing chain; since N is Noetherian, the chain stabilizes at some P = (0 : x p ) = (0 : x p+1). Since x is
not nilpotent on N , we have P 6= N , so there is some n ∈ N \P . Then x p n 6= 0, so (x p )n 6= 0. If n′ ∈ (x p )n ∩ P ,
we have an expression n′ = ax p n ∈ P , and multiplying by x gives 0 = ax p+1n. Then an ∈ (0 : x p+1) = (0 : x p ), so
n′ = ax p n = 0. Thus (x p )n ∩ P = 0. Since x is a zero-divisor of N , we have P 6= 0, showing 0⊆N is reducible.

Thus in an Noetherian A-module M , every submodule has an irreducible decomposition, and this is a primary
decomposition.

8 Here are two extra implications we don’t need.
iv) =⇒ iii): We have a short exact sequence 0→ m→ A→ k → 0, giving a Tor exact sequence containing the fragment 0 = Tor1(k , M )→

m⊗M →A⊗M . This shows m⊗M →A⊗M is injective.
iii) =⇒ ii): Let a be a finitely generated ideal of A. We have a short exact sequence 0→ a→ m→ m/a→ 0 of A-modules, whose Tor exact

sequence includes Tor1(k , M )→ a⊗M →m⊗M . Since iii) ⇐⇒ iv), the first term is zero; it follows that a⊗M �m⊗M �A⊗M is injective.
Now the short exact sequence 0→ a→ A→ A/a→ 0 gives rise to a Tor exact sequence containing Tor1(A/a, M )→ a⊗M → A⊗M ; but we’ve
just seen the kernel of the second map is zero, so Tor1(A/a, M ) = 0. By [2.26], then, M is flat.
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Let A be a Noetherian ring, p a prime ideal of A, and M a finitely generated A-module. Show that the following are equivalent:
i) p belongs to 0 in M ;
ii) there exists x ∈M such that Ann(x) = p;
iii) there exists a submodule of M isomorphic to A/p.

ii) ⇐⇒ iii): Let x ∈M . Then the map A�Ax : a 7→ ax has kernel Ann(x), so induces an A-module isomorphism
A/Ann(x) ∼−→ Ax ⊆ M . Then for any ideal a Ã A, there is a (cyclic) submodule isomorphic to A/a if and only if
a=Ann(x) for some x ∈M .

ii) =⇒ i): By [7.17], 0⊆M is decomposable. The primes belonging to 0 are those among the r (0 : y) = r
�

Ann(y)
�

for y ∈M by (4.5*) in [4.22]. Thus p=Ann(x) belongs to 0.
i) =⇒ ii):9 By [7.17], 0 ⊆ M is decomposable, so let N1 ∩ · · · ∩Nn be an irredundant primary decomposition.

Let N be one of the N j , and N ′ the intersection of all the others. We will show will suffice to show p = rM (N ) =
Ann(x) for some x ∈ M . Since the decomposition is irredundant, N ′ 6⊆ N , so we may find (and fix) a y ∈ N ′\N . If
a1, . . . , am generate p j (possible by (6.2) since A is Noetherian) then there is for each a j some minimal p j ≥ 1 such

that a
p j
p y ∈N . If p =max j p j , then we see pp y ⊆N and pp−1y 6⊆N . Let x ∈ pp−1y\N then. Since y ∈N ′, we then

have px ⊆ pp y ⊆N ∩N ′ = 0, so p⊆Ann(x). On the other hand, if a ∈A is such that ax ∈N (hence = 0), then a is
a zero-divisor of M/N ; as N is primary, this means a is nilpotent on M/N . But this says exactly that a ∈ rM (N ) = p.
Thus p=Ann(x).10

Deduce that there exists a chain of submodules

0=M0 (M1 ( · · ·(Mr =M

such that each quotient Mi/Mi−1 is of the form A/pi , where pi is a prime ideal of A.
Since M is Noetherian, 0 is decomposable by [7.17], so some p1 ∈ Spec(A) belongs to 0, and the above gives a

submodule M1
∼= A/p1 of M . Assume inductively that we’ve found a chain 0= M0 ( · · ·( Mn ⊆ M . If Mn = M , we

are done; otherwise, M/Mn is Noetherian, so its submodule 0 is decomposable by [7.17]. Let pn+1 belong to it; then
there is a submodule Nn+1 ⊆ M/Mn such that Nn+1

∼= A/pn+1. If Mn+1 ⊆ M is its pre-image under M � M/Mn , we
have Mn+1/Mn

∼= Nn+1
∼= A/pn+1. Since M is Noetherian, this process cannot create an infinite ascending chain, so

there is some Mr such that we cannot find an Mr+1. But we have shown that this only happens if Mr =M .

Let a be an ideal in a Noetherian ring A. Let

a=
r
⋂

i=1

bi =
s
⋂

j=1

c j

be two minimal decompositions of a as intersections of irreducible ideals. Prove that r = s and that (possibly after
re-indexing the c j ) r (bi ) = r (ci ) for all i .

State and prove an analogous result for modules.
Since an ideal of A is just an A-submodule of A, a primary ideal of A is exactly a primary submodule of A (p.

50), an irreducible ideal of A is an irreducible submodule of A, rA(a) = r (a), and A is a Noetherian ring just if it is
Noetherian as an A-module, it will be enough to prove the result in the more general case of a submodule N of a
Noetherian A-module M .

We first prove the book’s hint: if
⋂r

i=1 Pi =
⋂s

j=1 Q j are minimal irreducible decompositions of N ⊆ M , and
P ′k :=

⋂

i 6=k Pi for each k ∈ {1, . . . , r }, then N equals one of the N j := P ′k ∩Q j . Note that all these modules contain
N , so it will be enough to show some N j ⊆ N .11 Surely since

⋂s
j=1 Q j = N in M , we also have

⋂

j N j = N . Write
πi : M �M/Pi for the natural map, andφ= (π1, . . . , πr ) : M →

⊕

i M/Pi for the induced map to the product. Now
ker(φ) =

⋂

i Pi = N . For each j and each i 6= k, we have N j ⊆ P ′k ⊆ Pi , so πi (N j ) = 0. Thus the only potentially
non-zero coordinate of an element of the module φ(N j ) is the j th, and it follows that these j th coordinates make up

9 Stolen from http://math.uiuc.edu/~r-ash/ComAlg/ComAlg1.pdf
10 I worked for a while on another approach to this problem before turning to the experts, and this aborted effort went like this. By (4.5*) from

[4.22], p ∈ Spec(A) belongs to 0 just if {(0 : x) : x ∈A & r (0 : x) = p} is nonempty. A being Noetherian, this set contains some maximal element
q = (0 : x) = Ann(x). We suppose q 6= p and contradict maximality. If there is a ∈ p\q, then there is some minimal n ≥ 2 such that an x = 0,

but ax 6= 0. Consider (q : a) =
�

(0 : x) : a
� (1.12.iii)
= (0 : ax). It contains (0 : x), properly since an−1 ∈ (0 : ax)\(0 : x). The proof will be concluded

if we can show r (0 : ax) = p. Unfortunately, I seem unable to do this. I wanted to say “Since a /∈ q, (4.4) says r (q : a) = r (q) = p, contradicting
maximality of q”; however, (4.4) requires as a hypothesis that q is primary, and it’s not clear to me this must be the case.

11 http://mathoverflow.net/questions/12322/atiyah-macdonald-exercise-7-19-decomposition-using-irreducible-ideals
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a submodule O j = πk (N j ) of M/Pk . Then 0 = φ
�⋂

N j

�

=
⋂

O j ×
∏

i 6=k{0}, so
⋂

O j = 0 ⊆ M/Pk . As Pk ⊆ M
is irreducible, 0 ⊆ M/Pk is irreducible, meaning for some j = j (k) we have O j = 0. Then πi (N j (k)) = 0 for all i ,
including k, so N j (k) ⊆N .12

If we define 1Pi = Pi for i 6= k and 1Pk =Q j (k), we have another irreducible decomposition of N . Applying the
previous result to the 1Pi and the Q j , we can then replace another of the Pi by another Q j . Repeating this process
for k = 1, . . . , r , we eventually get an expression Q j (1)∩· · ·∩Q j (r ) = 0. Since we postulated irredundancy for the Q j
decomposition, it follows i 7→ j (i) is surjective and s ≤ r . A symmetric argument switching the roles of Pi and Q j
will then show r ≤ s , so we see r and s are equal.

Fact 7.A*. Any two minimal irreducible decompositions of a submodule have the same number of components.

It remains to show we may reorder the Qi so that rM (Qi ) = rM (Pi ) for all i ∈ {1, . . . , s}. Recall from Lemma
7.12* of [7.17] that, since M is Noetherian, each irreducible module is primary, and from (4.3*) of [4.21], that an in-
tersection of p-primary modules is p-primary; thus by collecting terms with the same radical, we obtain irredundant
primary decompositions M1∩ · · ·∩Mm =N1∩ · · ·∩Nn of N ⊆M . By (4.5*) of [4.22], the sets {rM (M1), . . . , r (Mm)}
and {rM (N1), . . . , r (Nm)} ⊆ Spec(A) are equal, and so we may renumber them so that pi = r (Mi ) = r (Ni ). We may
further reorder them, since there are only finitely many, so that each set S j := {p1, p2, . . . , p j } ⊆ Spec(A) is isolated.
Suppose that Mi is the intersection of mi different P j , and Ni is the intersection of ni different Q j . It will then
suffice to show that mi = ni for each i . By Thm. 4.10* of [4.23], applied to the isolated set S1, we see M1 = N1.
Irredundancy of the irreducible decompositions of N show the relevant P j and Q j each give a minimal irreducible
decomposition of M1, and then Fact 7.A above shows that m1 = n1. Assume inductively that we have shown m j = n j

for all j < i . Thm. 4.10* of [4.23], applied to the isolated set Si , shows that N ′i :=
⋂i

j=1 M j =
⋂i

j=1 N j . Irredundancy
of the irreducible decompositions of N again show the relevant P j and Q j give a minimal irreducible decomposition
of N ′i , and Fact 7.A shows that

∑i
j=1 m j =

∑i
j=1 n j . By inductive assumption m j = n j for all j < i , so subtracting

these off, mi = ni , and we are done.

Let X be a topological space and letF be the smallest collection of subsets of X which contains all open subsets of X and is closed
with respect to the formation of finite intersections and complements.
i) Show that a subset E of X belongs toF if and only if E is a finite union of sets of the form U ∩C , where U is open and
C is closed.

Let G be the collection of finite unions of sets U ∩C , for U open and C closed.
First we show G ⊆ F . Each open set is in F , and taking complements, each closed set is in F . Taking inter-

sections, each U ∩C ∈ G for U open and C closed. ButF is closed under finite unions, for by De Morgan’s laws,
⋃

Si =X \
⋂

(X \Si ), andF is assumed to be closed under complement and finite intersection.
Now we showF ⊆G by showing G satisfies the properties (except “smallest”) postulated ofF .

• Taking C =X, each open U ⊆X is in G .

• Finite intersections: It suffices to prove this for binary intersections. Let S =
⋃

(Ui ∩Ci ) and S ′ =
⋃

(U ′j ∩C ′j )
be inG . Then S∩S ′ =

⋃

i (Ui∩Ci )∩
⋃

j (U
′
j ∩C ′j ) =

⋃

i , j Ui∩U ′j ∩Ci∩C ′j by distributivity; since each Ui∩U ′j
is open and each Ci ∩C ′j is closed, S ∩ S ′ ∈G .

• Complements: If S =
⋃n

i=1(Ui ∩ Ci ) ∈ G , then De Morgan’s laws give X \S = X \
⋃

(Ui ∩ Ci ) =
⋂

X \
(Ui ∩Ci ) =

⋂

[(X \Ui )∪ (X \Ci )]. Now Si1 = X \Ci is open and Si2 = X \Ui is closed. Let F be the set of
all functions {1, . . . , n} → {1, 2}, and for f ∈ F write S f =

⋂n
i=1 Si , f (i). Then each S f is a finite intersection

of open and closed sets, hence an intersection of one closed set and one open set. Distributivity then gives
X \S =

⋂

[(X \Ui )∪ (X \Ci )] =
⋃

f∈F S f ∈G .

ii) Suppose that X is irreducible and let E ∈ F . Show that E is dense in X (i.e., that E = X ) if and only if E contains a
non-empty open set in X.

12 I initially attempted a simpler argument as follows. Consider the projection π : M → M/Pk . Since
⋂

Q j =N , we have π
�⋂

Q j
�

= 0. Since
Pk ⊆ M is irreducible, 0 ⊆ M/Pk is irreducible, and one of the π(Q j ) = Q j /Pk = 0. This doesn’t seem to work as stated, because there’s no
guarantee that Q j ⊇ Pk , so that π(Q j ) is a submodule.
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If E contains a non-empty open set U ⊆ X, then X = U ⊆ E by [1.19]. Now suppose E =
⋃

(Ui ∩Ci ) ∈ F is
dense in X. Recalling that closure distributes over finite unions,13 we see X = E =

⋃

Ui ∩Ci . Recalling from [6.7]
that an irreducible space is not a union of finitely many proper closed subspaces, for some i we have Ui ∩Ci = X.
Now Ui ∩Ci ⊆Ui ∩Ci so Ui =X =Ci =Ci . Then E contains the open set Ui =Ui ∩Ci , which is non-empty since
it is dense.

Let X be a Noetherian topological space (Chapter 6, Exercise 5) and let E ⊆X. Show that E ∈F if and only if, for each irreducible
closed set X0 ⊆X, either E ∩X0 6=X0 or else E ∩X0 contains a non-empty open subset of X0. The sets belonging toF are
called the constructible subsets of X.

If E ∈ F , then the previous [7.20] says that either E ∩X0 contains a non-empty open set of X0 or is not dense.
But it is not dense precisely if its closure in X0 is not all of X0.

We prove the other direction by contraposition. Suppose E /∈F . Then trivially X ∩ E /∈F , so the set of closed
C ⊆X with C∩E /∈F is non-empty. Since X is Noetherian, there are minimal such sets; let X0 be one. If C , C ′ (X0
are closed, then by minimality, C ∩E and C ′∩E are inF , soF also contains their union (C ∪C ′)∩E . Apparently,
then, we cannot have C ∪C ′ =X0, showing X0 is irreducible. We will show that E ∩X0 is dense in X0, yet contains
no nonempty open subset of X0.

Write F for the closure of E ∩X0 in X0. If F is a proper subset of X0, then by minimality, E ∩ F ∈ F . Now
F = E ∩X0,14 so E ∩X0 = E ∩ E ∩X0 = E ∩ F ∈F , contrary to assumption. Therefore F =X0.

If E ∩X0 contained a nonempty open subset U of X0, then either X0 = U = E ∩X0, contradicting E ∩X0 /∈F ,
or ∅ 6= C := X0\U ( X0. By the definition of the subspace topology, C is closed in X and U = V ∩X0 for some
open V ⊆ X. Then E ∩U = U = V ∩X0 ∈ F , and by minimality of X0 we have C ∩ E ∈ F . Since U ∪C = X0,
we then have E ∩X0 = (E ∩C )∪ (E ∩U ) a union of elements of F , hence in F itself, contrary to assumption. It
follows that E ∩X0 contains no nonempty open subset of X0.

Let X be a Noetherian topological space and let E be a subset of X. Show that E is open in X if and only if, for each irreducible
closed subset X0 in X, either E ∩X0 =∅ or else E ∩X0 contains a non-empty open subset of X0.

Suppose first E ⊆X is open. Then for any subspace X0 ⊆X, by definition E ∩X0 is an open subset of X0; either
it is empty, or it is not.

We prove the other direction by contraposition. Now suppose E ⊆ X is not open; then E ∩X is trivially not
open, so the collection of closed subsets C ⊆ X with C ∩ E not open in C is non-empty. As X is Noetherian, there
are minimal elements of this collection; let X0 be one. If C , C ′ (X0, then by minimality C ∩E and C ′∩E are open
in X0, so their union (C ∪C ′) ∩ E is open in X0. It follows that C ∪C ′ 6= X0, so X0 is irreducible. We will show
E ∩X0 is non-empty, yet contains no non-empty open subset of X0.

If E ∩X0 were ∅, this intersection would be open, contrary to assumption, so the two sets do meet. Suppose for
a contradiction that we can find a non-empty open subset U ⊆X0∩E of X0. Write C =X0\U ; since U is nonempty,
C (X0, so by minimality of X0 we have C ∩E open in C . By the definition of the subspace topology, then, there is
an open V ⊆X with C ∩ E =V ∩X0. Then X0 ∩ E = (U ∩ E)∪ (C ∩ E) =U ∪ (V ∩X0) is a union of open subsets
of X0, hence open in X0, contrary to assumption.

Let Abe a Noetherian ring, f : A→ B a ring homomorphism of finite type (so that B is Noetherian). Let X = Spec(A), Y = Spec(B)
and let f ∗ : Y → X be the mapping associated with f . Then the image under f ∗ of a constructible subset E of Y is a
constructible subset of X .

To see B is Noetherian, recall from p. 30 that being of finite type means that B is finitely generated as an A-algebra,
hence a quotient of a polynomial ring over A. Then (7.5) and (7.1) show B is Noetherian.

Since f ∗
�⋃

Si

�

=
⋃

f ∗(Si ), it will suffice to consider E of the form U ∩C for U ⊆ Y open and C ⊆ Y closed.
An open subset U ⊆ Y is a union of basic open sets Yg for g ∈ B ([1.17]). By [6.6], U is compact, so it is a union of
finitely many Ygi

. Then U ∩C =
⋃

(Ygi
∩C ), so it will suffice to verify the statement for E = Yg ∩C . Since a closed

subset C ⊆ Y is V (b) for some ideal bÃ B ([1.15]), we may assume E = Yg ∩V (b).
Now by [1.21.iv], V (b) ≈ Spec(B/b). Writing π : B � B/b and Spec(B/b) = Z , [1.21.i] says for q ∈ V (b) we

have q= π∗(q/b) ∈ Yg ⇐⇒ π(q) = q/b ∈ (π∗)−1(Yg ) = Zπ(g ), so E =V (b)∩Yg = π
∗(Zπ(g )). Replacing f : A→ B

13 A⊆A∪B , so A⊆A∪B , and similarly B ⊆A∪B , so A∪B ⊆A∪B . On the other hand, A∪B ⊆A∪B , and the latter is closed, so A∪B ⊆A∪B .
14 In general, if A⊆ Y ⊆X, the closure B of A in Y is equal to A∩Y . On the one hand, the latter is closed in Y and contains A, so B ⊆A∩Y .

On the other hand, if x ∈A∩Y , then x ∈ Y and every neighborhood U 3 x contains some point of A⊆ Y , so every neighborhood U ∩Y ⊆ Y
of x meets A, and thus x ∈ B .
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by A→ B� B/b, B by B/b, and Yg by Zπ(g ), and noting B/b is also of finite type over A, we may assume that E ⊆ B
is a basic open set.

If φg : B → Bg is the canonical map, then E = Yg =φ
∗
g

�

Spec(Bg )
�

. Since we have a B -algebra surjection B[t ]�
Bg taking t 7→ 1/g , it follows Bg is of finite type over A, and we may replace B by Bg , f byφg ◦ f , and E by Spec(Bg ).
Now we have only to show that given a map f : A→ B of finite type, with A Noetherian, f ∗(Y ) is constructible.15

We will attempt to use [7.21]. Let an irreducible closed set X0 ⊆ X be given. By the proof of [1.20.iv], X0 is of
the form V (p) for some prime p ∈ X .16 Write F = f ∗(Y )∩X0 for the set we want to prove constructible. We have
p′ ∈ f ∗(Y )∩X0 if and only if there is q′ ∈ Y∩( f ∗)−1(X0) = ( f

∗)−1(X0) such that p′ = f ∗(q′); then p′ ∈ f ∗
�

( f ∗)−1(X0)
�

.
Thus F = f ∗

�

( f ∗)−1(X0)
�

. By [1.21.ii], ( f ∗)−1
�

V (p)
�

=V (pB) is the pre-image of F and by [3.21.iii], f ∗ “restricts”
to a map (which we call f ∗ again) Spec(B/pB) → Spec(A/p), whose image we want to show is constructible; the
rings are still Noetherian, with the map still of finite type. So we may assume A is a Noetherian integral domain and
f : A→ B is of finite type, and we want to show f ∗(Y ) is constructible. Since B is then Noetherian, Y is a Noetherian
space, so by [6.7], it is a union of finitely many irreducible components Y1, . . . , Yn . Now by [7.21], it is enough to
show either f ∗(Y ) is not dense or contains a non-empty open set. If f ∗(Y ) is dense, then X = f ∗(Y ) =

⋃

f ∗(Yj ),
so by irreducibility of X , we have some f ∗(Yj ) dense17; we want to show this f ∗(Yj ) contains a non-empty open
set. Write Yj = V (q) for a prime ideal q Ã B ([1.20.iv]); then f ∗(Yj ) is the image of the map on spectra induced
by the composition A→ B � B/q. Replacing B with B/q and f with this composition, we may assume A and B
are Noetherian integral domains. Since f ∗(Y ) is dense in X , by [1.21.v], we must have ker( f ) ⊆N(A) = 0, so f is
injective. Now we are in the situation of [5.21]. There exists a nonzero s ∈A such that given an algebraically closed
field Ω and homomorphism φ : A→ Ω such that φ(s) 6= 0, we can extend φ to a homomorphism B → Ω. Since the
images of these maps are subrings of a field, hence integral domains, it follows that their kernels p, q are prime, with
p= A∩ q= f ∗(q). We have φ(s) 6= 0 ⇐⇒ s /∈ ker(φ) = p, so for all p ∈ Xs we have p ∈ f ∗(Y ), so that Xs ⊆ f ∗(Y )
is an open subset. But since A is an integral domain, s is not nilpotent, and thus by [1.17.ii], Xs 6=∅.

The previous solution followed the book’s breadcrumb trail; the following one is adapted from another solution
set online.18 We want to prove f ∗(Y ) is constructible, assuming only that f is of finite type and A Noetherian. Given

15 This following paragraph is an approach I once thought would work, but does not. I include it because I spent a good deal of time on it and
its failure, at least to me, seemed somewhat subtle.

Since f is of finite type, it can be factored as π ◦ ι, where ι : A ,→ A[x1, . . . , xn] is the canonical inclusion into a polynomial ring and
π : A[x1, . . . , xn]� B is a quotient map. Now f ∗(Y ) = ι∗

�

π∗(Y )
�

, where π∗(Y ) =V
�

ker(π)
�

by [1.21.iv]. If we vary B and f , this set varies over
all closed subsets of Spec(A[x1, . . . , xn]); thus we may assume f : A ,→ B =A[x1, . . . , xn] and E =V (b) for some bÃ B .

By [1.21.iii], we have f ∗(E) = V (bc ), so certainly f ∗(E) ⊆ V (bc ). It would be nice if we could prove the reverse inclusion. (If that were
so, however, it would follow that Spec(A[x1, . . . , xn])→ Spec(A) is always a closed map, which we show below is not the case. By [6.11], this
is equivalent to f having the going-up property, which we also show is not so in general.) To attempt this, let p ∈ V (bc ) be given; we wish
to find a prime q ∈ V (b) such that A∩ q = p. By [3.21.iii], f ∗ “restricts” to a map Spec(B/pe ) → Spec(A/p) that we will also call f ∗. Since
pe = p[x1, . . . , xn], the domain of the new f ∗ is the integral domain (A/p)[x1, . . . , xn]; what we now need is a prime q of (A/p)[x1, . . . , xn]
containing the extension

c := be Ã (A/p)[x1, . . . , xn]. (7.1)

Replacing A with A/p and b with c, we may assume A is a Noetherian integral domain, b is an ideal of B =A[x1, . . . , xn] such that A∩b= 0, and
we need a prime q ∈V (b) such that A∩ q = 0. Write S = A\{0} and K = S−1A for the field of fractions of A. Then S−1B = K[x1, . . . , xn], and
[3.21.ii] gives a commutative diagram

{(0)}= Spec(K)
��
��

Spec
�

K[x1, . . . , xn]
�oooo

��
��

Spec(A) Spec
�

A[x1, . . . , xn]
�

.oooo

In K[x1, . . . , xn] there is certainly a maximal ideal n containing the extension S−1b = be , since b∩ S = ∅ implies, by (3.11.ii), that S−1b 6= (1).
Then using (1.17.i), b⊆ bec ⊆ nc =: q, and following n both ways around the diagram, we see q∩A= n∩A= (0).

Now we have a “proof” that never requires the Noetherian hypothesis on A (or the finite type, either, seemingly). The argument breaks down
at Eq. 7.1; it can easily happen that be = p, so there is no prime containing it. For an example, consider A = Z(p) and the ideal q = (p x − 1)
in Z(p)[x] (http://bit.ly/S9wGoP). Then Z(p)[x]/q∼= Z(p)[1/p]∼=Q, so q is maximal, and hence {q}( Spec

�

Z(p)[x]
�

is closed by [1.18.i].
But q ∩Z(p) = (0), and {(0)} is not closed in Spec

�

Z(p)
�

, since its closure is V
�

(0)
�

= {(0), (p)} ([1.8.ii]). Also, the extension (c above) of q in
Z(p)/(p)Z(p) ∼=Z/pZ is (−1) = (1), so no prime contains it.

16 The next thing I wanted to do is as follows. I leave it to posterity to rescue it, if possible. Eq. 1.1, (1.18), and (1.8) give f ∗(Y ) =V
�⋂

f ∗(Y )
�

=

V
�

f
�⋂

Y )
�

=V
�

N(B)c
�

. Then the closure of f ∗(Y )∩V (p) in V (p) is f ∗(Y )∩V (p) =V
�

N(B)c
�

∩V (p) by the footnote to [7.21]. If it equals

V (p); then each prime p′ Ã A containing p also contains N(B)c ; in particular, p contains N(B)c . This should hypothetically help us find a basic
open subset Xh contained in f ∗(Y )∩V (p), but I do not know how.

17 This line from Yimu Yin’s solution: http://pitt.edu/~yimuyin/research/AandM/exercises07.pdf
18 http://pitt.edu/~yimuyin/research/AandM/exercises07.pdf
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that Y is Noetherian, and by [6.7] a union of finitely many irreducible components Y1, it will be enough to show each
f ∗(Y1) is constructible. Let q1 be a minimal prime of B such that V (q1) = Y1 ([1.20.iv]); then the image F = f ∗(Y1)
is contained in V (qc ) by [1.21.iii], so f ∗ restricts to a map ([3.21.iii]) B1 = Spec(B/q1) → Spec(A/qc

1) = A1. If
f ∗(Y1) is constructible in X1 = Spec(A/qc

1), it will also be in X : if f ∗(Y ) is a union of sets U ′ ∩ C ′ for U ′ open
and C ′ closed in X1, then there are U open and C closed in X such that U ′ = X1 ∩U and C ′ = X1 ∩C , and then
U ′∩C ′ =U∩(C∩X1). Note that A1 and B1 are integral domains and f1 : A1→ B1 is injective. As in the previous proof,
by [5.21] there is s1 ∈A1 such that s1 /∈ p1 ∈X1 implies p1 ∈ f ∗1 (Y1); thus Xs1

⊆ f ∗1 (Y1) = F . Now s1 is in each prime
in V (s1) = X1\Xs1

, so we may consider ([3.21.iii] again) the restriction of f ∗1 to the map ( f ∗1 )
−1
�

V (s1B)
�

→ V (s1)
as induced by the homomorphism A′1 = A1/(s1) → B1/(s1)B1 = B ′1. By [6.5], Y1 is Noetherian, so by [6.7], it has
finitely many irreducible components. Let Y2 be one, and q2 such that ([1.20.iv]) V (q2) = Y2. The image ( f ′1 )

∗(Y2)
induced by f ′1 : A′1→ B ′1 is the same as (making identifications) the image f ∗2 (Y2) induced by f2 : A′1/q

c
2→ B ′1/q. Again

this is an injection of integral domains, so we can find an open subset Xs2
⊆ X2 contained in f ∗2 (Y2). Iterating, we

get a sequence of sets Xs j
⊆ F , where each Xs j+1

is open in the closed set X j \Xs j
. That means that there is an open

Uj+1 ⊆X j such that Uj+1 ∩ (X j \Xs j
) =Xs j+1

. Thus Xs j+1
∪Xs j

=Uj ∪Xs j
is open in X j . Therefore Wn =

⋃n
j=1 Xs j

is
an increasing chain of open sets in F ; since X is Noetherian, so is F by [2.5], so this chain terminates in some Wn .

At each point where we chose an irreducible component in the above process, we could have instead chosen a
different irreducible component, and obtained a different open subset W ⊆ F . If we do this for each possible chain
of irreducible components, and take the union, we have obtained F as an open set, which is certainly constructible.

With the notation and hypotheses of Exercise 23, f ∗ is an open mapping ⇐⇒ f has the going-down-property (Chapter 5, Exercise
10).

By [5.10.ii], if f : A→ B is any ring homomorphism such that f ∗ is open, then f has the going-down property.
Conversely, suppose f has the going-down property, and let Ys be a basic open set ([1.17]) in Y = Spec(B);

it is enough to show f ∗(Ys ) is open. By (3.11.iv), the canonical map B → Bs has the going-down property, and
A→ B→ Bs is still of finite type, so replacing B with Bs and f with the composition, it is enough to show f ∗(Y ) is
open. Let X0 be an arbitrary irreducible closed subset of X . By [7.22], to show f ∗(Y ) is open it will suffice to show
that either it does not meet X0 or F = f ∗(Y )∩X0 contains a non-empty open subset of X0. Assume that q ∈ F . Then
if p′ ⊆ q is another prime, we also have p′ ∈ f ∗(Y ), by going-down. But [1.20.iv] tells us there is a prime p such that
X0 =V (p), and thus p ∈ F . Since {p}=V (p) =X0 ([1.18.ii]), we then have F dense in X0. By the previous problem,
f ∗(Y ) is constructible, and so F is as well. [7.20.ii] then says that F contains a non-empty open set in X0.

Let A be Noetherian, f : A→ B of finite type and flat (i.e., B is flat as an A-module). Then f ∗ : Spec(B)→ Spec(A) is an open
mapping.

By [5.11], since f is flat, it has the going-down property. By [7.24], then, f ∗ is an open mapping.

Grothendieck groups

Let A be a Noetherian ring and let F (A) denote the set of all isomorphism classes of finitely generated A-modules. Let C be the free
abelian group generated by F (A). With each short exact sequence 0→M ′→M →M ′′→ 0 of finitely generated A-modules
we associate the element [M ′]− [M ]+[M ′′] of C , where [M ] is the isomorphism class of M , etc. Let D be the subgroup of
C generated by these elements, for all short exact sequences. The quotient group C/D is called the Grothendieck group of
A, and is denoted by K(A). If M is a finitely generated A-module, let γ (M ), or γA(M ), denote the image of [M ] in K(A).

Before proceeding, we establish some additional notation. Let F (A) be the class of all finitely generated A-
modules, [−]A :F (A)� F (A) the function taking a module to its isomorphism class, iA : F (A) ,→C (A) the canonical
inclusion of generators, and πA : C (A)�K(A) =C (A)/D(A) the quotient map. Note that γA=πA ◦ iA ◦ [−]A.

Since only one ring occurs in the discussion up to part iv), we will until then mostly suppress mention of A.19

19 As an aside, note, although it’s not strictly necessary for us to do so, that if 0→ N → M → P → 0 is a short exact sequence of A-modules
and N and P are finitely generated, then so is M , by [2.9]. It’s also true that if M is finitely generated, then it is Noetherian by (6.5), so N and P
are finitely generated. Again, generators of D are defined to be linear combinations of finitely generated classes, but these closure properties are
somehow reassuring.
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Show that K(A) has the following universal property: for each additive function λ on the (proper) class of finitely generated
A-modules, with values in an abelian group G, there exists a unique homomorphism λ0 : K(A)→G such that λ(M ) =
λ0

�

γ (M )
�

for all M .
Since for any short exact sequence 0→N → M → P → 0 of finitely generated A-modules we have [N ]− [M ]+

[P ] ∈D = ker(π), its image under π is 0=π
�

[N ]
�

−π
�

[M ]
�

+π
�

[P ]
�

= γ (N )−γ (M )+γ (P ), so γ :F →K is itself
an additive function (p. 23). We will show a little more than the claim: not only is it the case that for each additive
function λ :F →G is there a unique homomorphism λ0 : K→G such that λ= λ0 ◦γ , but to each homomorphism
λ0 : K →G corresponds a unique additive function λ= λ0 ◦ γ :F →G, so the correspondence λ↔ λ0 is bijective.
In other words, γ is a universal additive function onF .

For the correspondence λ0 7→ λ, recall that γ is additive, so for any short exact sequence 0→N →M → P → 0 of
finitely generated A-modules we have γ (N )− γ (M )+ γ (P ) = 0. It follows that for any homomorphism λ0 : K→G,
if we define λ= λ0 ◦ γ , then λ(N )−λ(M )+λ(P ) = λ0

�

γ (N )− γ (M )+ γ (P )
�

= λ0(0) = 0, so that λ is additive.

For the correspondence λ 7→ λ0, given an additive map F → G, we find a homomorphism
λ0 : K → G such that λ0 ◦ γ = λ, then show it is unique. First, to see λ descends (uniquely) to a
well defined function on F , consider the very boring short exact sequence 0→ 0→ 0→ 0→ 0.
By additivity, λ(0) = λ(0)− λ(0) + λ(0) = 0. If M ∼= N ∈ F , then there exists a short exact
sequence 0→ M → N → 0→ 0, so by additivity, λ(M )− λ(N ) = λ(M )− λ(N ) + λ(0) = 0, and
λ(M ) = λ(N ). Thus λ(M ) depends only on the isomorphism class of M and λ descends to a well
defined function λF : F →G with λF ◦ [−] = λ. Second, as C is the free abelian group on F , we
have a unique homomorphism λC : C →G such that λC ◦ i = λF . Third, given any short exact
sequence 0→N →M → P → 0, we haveλC

�

[N ]−[M ]+[P ]
�

= λC

�

[N ]
�

−λC

�

[M ]
�

+λC

�

[P ]
�

=
λ(N )−λ(M )+λ(P ) = 0, so D ⊆ ker(λC ) and λC descends to a homomorphism λ0 : K =C/D→
G, with λ0 ◦π= λC . As requested, λ0 ◦ γ = λ0 ◦π ◦ i ◦ [−] = λC ◦ i ◦ [−] = λF ◦ [−] = λ.

F (A)

γ

��

[−]����

λ

��

F (A)� _
i
��

λF

��

C (A)

π
����

λC

!!
K(A)

λ0

// G

To see uniqueness, note that the [M ] ∈ C for M ∈ F are generators for C , so their images γ (M ) = π
�

[M ]
�

generate K = C/D . Thus if a partially defined function l0 : K → G satisfies l0
�

γ (M )
�

= λ(M ), there is at most one
way to extend l0 to a totally defined homomorphism λ0 : K→G.

Show that K(A) is generated by the elements γ (A/p), where p is a prime ideal of A.
Let M ∈ F , and recall from [7.18] (this is the first time we use that A is Noetherian) that there exists a chain

0= M0 ( M1 ( · · ·( Mr = M of submodules with successive quotients of the form A/p j for p j ∈ Spec(A). Thus we
have for 1≤ j ≤ r short exact sequences 0→ M j−1→ M j → A/p j → 0, showing that [M j−1]− [M j ]+ [A/p j ] ∈ D ,
and so γ (M j ) = γ (M j−1)+ γ (A/p j ). Since γ (M0) = γ (0) = 0, it follows by induction that γ (Mn) =

∑

j≤n γ (A/p j ); in
particular, γ (M ) =

∑r
j=1 γ (A/p j ).

If A is a field, or more generally if A is a principal ideal domain, then K(A)∼=Z.
First note that a field is a principal ideal domain (henceforth “PID”), with only the two ideals (0) and (1). Second,

note that a principal ideal domain A is Noetherian by (6.2), since every ideal is by definition principal, so a fortiori
finitely generated. By ii) above K is then generated by the elements γ (A/p)with p ∈ Spec(A). Let (a) 6= (0) be any ideal
of A; since A is an integral domain, x 7→ ax is injective, so we have a short exact sequence 0→ A→ A→ A/(a)→ 0
of A-modules, meaning γ

�

A/(a)
�

= γ (A)−γ (A)+γ
�

A/(a)
�

= 0 in K . Since A is an integral domain, (0) is prime, and
so γ

�

A/(0)
�

= γ (A) generates K . Thus K is a quotient of Z, and it remains to show it isn’t a proper quotient. To do
this, it suffices to define a surjective homomorphism K�Z, and by i), it is enough to produce an additive function
F →Z with image N.20

Recall21 that any finitely generated module M over a PID A can be written as a finite direct sum Ar ⊕T (M ) for
some uniquely determined rank r = rkA M ∈ N, where T (M ) is the torsion submodule of M ([2.12]). λ := rkA has
image N since λ(An) = n for all n ∈N. Write L for the field of fractions of A. For any nonzero m ∈ T (M ), say with
a ∈Ann(m)\{0}, we have 1⊗m = (a/a)⊗m = (1/a)⊗am = (1/a)⊗0= 0 in L⊗M , so L⊗M ∼= L⊗Aλ(M ) ∼= Lλ(M )

by (2.14.iii,iv). Since by (3.6) L is a flat A-module, tensoring a short exact sequence 0→N →M → P → 0 of finitely
generated A-modules with L gives rise to a short exact sequence 0→ Lλ(N )→ Lλ(M )→ Lλ(P )→ 0 of L-vector spaces.
We know from linear algebra that λ(N )−λ(M )+λ(P ) = 0, so λ is additive.

20 I am not pleased with this proof; it seems intuitively obvious γ (A) is not torsion, so I think there should be a quicker argument.
21 http://planetmath.org/encyclopedia/FinitelyGeneratedModulesOverAPrincipalIdealDomain.html
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Ex. 7.27 Chapter 7: Noetherian Rings

Let f : A→ B be a finite ring homomorphism. Show that restriction of scalars gives rise to a homomorphism f! : K(B)→
K(A) such that f!

�

γB (N )
�

= γA(N ) for a B-module N . If g : B → C is another finite ring homomorphism, show that
(g ◦ f )! = f! ◦ g!.
If N is a finitely generated B -module, write N | f for the A-module obtained therefrom by restriction of scalars.

(2.16) says that then N | f is a finitely generated A-module, so we have a function | f :F (B)→F (A). An short exact
sequence 0→N →M → P → 0 of B -modules remains exact viewed as a sequence of A-modules, so γA◦| f is an additive
map F (B)→ K(A). By the universal property of i), there is then a unique homomorphism f! : K(B)→ K(A) such
that f! ◦ γB = γA ◦ | f .

Let M be a C -module, a ∈ A, and x ∈ M . Note that M |g ,
�

M |g
��

�

f , and M |g◦ f have the same underlying abelian

group, so the last two will be equal A-modules if they have the same A-action. The element a · x of
�

M |g
��

�

f , by

definition, is the element f (a) · x in M |g , which in turn is g
�

f (a)
�

· x = (g ◦ f )(a) · x in M , which is a · x in M |g◦ f .
Thus

�

M |g
��

�

f =M |g◦ f . Abstracting, we can write |g◦ f = |g ◦ | f :F (C )→F (A). Now consider the diagram

F (A)

γA

��

F (B)
| f
oo

γB

��

F (C )
|g
oo

γC

��
K(A) K(B)

f!
oo K(C ).g!

oo

Commutativity of the two squares implies commutativity of the outer rectangle: f!◦ g!◦γC = f!◦γB ◦|g = γA◦| f ◦|g =
γA ◦ |g◦ f . Then f! ◦ g! is a homomorphism φ : K(C )→ K(A) satisfying φ ◦ γC = γA ◦ |g◦ f . As (g ◦ f )! was defined to
be the unique homomorphism with this property, it follows that (g ◦ f )! = f! ◦ g!.

Let A be a Noetherian ring and let F1(A) be the set of all isomorphism classes of finitely generated flat A-modules. Repeating the
construction of Exercise 26 we obtain a group K1(A). Let γ1(M ) denote the image of [M ] in K1(A).

Two asides follow.2223

Show that tensor product of modules over A induces a commutative ring structure on K1(A), such that γ1(M ) · γ1(N ) =
γ1(M ⊗N ). The identity element of this ring is γ1(A).
First recall the notation we introduced in the proof of [7.26]. Let F1 ⊆ F be the class of all finitely generated

flat A-modules. Note F1 ⊆ F , so the map [−] : F � F restricts to a map F1 � F1. Let C1 be the free group on
F1. Since F1 ⊆ F , there is a natural embedding C1 � C , which we view as an inclusion. Write D1 ⊆ C1 for the
subgroup generated by [N ]− [M ] + [P ] for short exact sequences 0 → N → M → P → 0 of objects in F1, and
π1 : C1�K1 =C1/D1 for the quotient map.

A tensor product of finitely generated modules is finitely generated for if M , N are generated by some finitely
many xi ∈M and y j ∈N , then M ⊗AN is generated by the finitely many xi ⊗ y j . Thus−⊗− is a mapF ×F →F .
By [2.8.i], a tensor product of flat modules is flat, so −⊗− restricts to a mapF1×F1→F1. Given isomorphisms
φ : M

∼−→M ′ and ψ : N
∼−→N ′, we have an isomorphism φ⊗ψ : M ⊗N

∼−→M ′⊗N ′ (see p. 27), so tensor descends to
a function t : F × F → F taking

�

[M ], [N ]
�

7→ [M ⊗N ], which in turn restricts to a function t1 : F1× F1 → F1. By
(2.14.i,ii,iv), t and t1 are commutative, associative binary operations on F , F1 with identity element [A], and so make
F a monoid with submonoid F1. Writing Z[F ] and Z[F1] for the monoid rings ([5.33]), the bijections C ↔ Z[F ]
and C1 ↔ Z[F1] (hereafter taken as identifications) define ring structures on these groups; write τ and τ1 for the
multiplications.

If M ∈ F1 and 0 → N ′ → N → N ′′ → 0 is a a short exact sequence of A-modules, then by flatness of M
this induces a short exact sequence 0 → M ⊗N ′ → M ⊗N → M ⊗N ′′ → 0, so τ1

�

[M ], [N ′]− [N ] + [N ′′]
�

=
[M ⊗N ′]− [M ⊗N ]+ [N ⊗N ′′] ∈D1 for any generator [N ′]− [N ]+ [N ′′] of D1, showing D1 is an ideal, and thus
giving a ring structure on K1 =C1/D1.24 Now γ1(M ) · γ1(N ) = (π1 ◦τ1)(M , N ) =π1

�

[M ⊗N ]
�

= γ1(M ⊗N ). Since

22 If 0→ N → M → P → 0 is an exact sequence of finitely generated A-modules and N and P are flat, so is M by [2.25]. This isn’t strictly
necessary for the definition, which only requires those sequences such that all terms are flat, but it’s somehow comforting anyway.

23 It is tempting, in order to do i) and ii), to consider K1 as a subset of K and argue the desired multiplication on K1 is a restriction of the map
µ : K1 ×K → K making K a K1-module. In general, it is not; the map ε : K1 → K defined in the remark by ε

�

γ1(M )
�

= γ (M ) is not in general
injective. The problem is that, while C1 ⊆ C naturally, we don’t necessarily have D1 = C1 ∩D . Indeed, D1 is generated by [N ]− [M ]+ [P ] for
short exact sequences 0→N →M → P → 0 of objects inF1, but it is entirely possible that there are elements of C1 ∩D not generated by these
sequences.

24 It’s worth noting that K generally fails to be a ring precisely because D is not generally an ideal, which is in turn the case because modules
are not flat in general.
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[A] is the neutral element of F1 (which shows A is flat, hence inF1), it becomes a unity in the monoid ring C1, and
its image γ1(A) ∈K1 is the unity of K1.

Show that tensor product induces a K1(A)-module structure on the group K(A), such that γ1(M ) · γ (N ) = γ (M ⊗N ).
Note that the (restricted) multiplication τ : C1×C →C makes the group C a C1-module. A slight modification

of the proof in the preceding paragraph that D1 ÃC1 is an ideal, assuming N ′, N , N ′′ ∈F and not necessarily inF1,
shows that τ(C1×D)⊆D , so K =C/D is naturally a C1-module. If D1 ⊆AnnC1

(K), then (p. 19) we may naturally
regard K as a K1-module. Indeed, for any N ∈F and short exact sequence 0→ M ′→ M → M ′′→ 0 inF1 we have
a Tor exact sequence ([2.24]) Tor1(M

′′, N )→ M ′⊗N → M ⊗N → M ′′⊗N → 0, and Tor1(M
′′, N ) = 0 by flatness

of M ′′ ([2.24]), so τ
�

[M ′]− [M ]+ [M ′′], [N ]
�

∈ D ; since these [M ′]− [M ]+ [M ′′] are generators for D1, it follows
D1 ·K = 0. Now γ1(M ) · γ (N ) = (π ◦τ)(M , N ) =π

�

[M ⊗N ]
�

= γ (M ⊗N ).

If A is a (Noetherian) local ring, then K1(A)∼=Z.
Note that the proof of [7.26.i] transfers verbatim to show that K1 satisfies an analogous universal property:

namely for any abelian group G, there is a bijective correspondence between additive functions λ : F1 → G and
group homomorphisms λ0 : K1→G given by λ= λ0 ◦ γ1. Then as in [7.26.iii], the additive function rkA :F1→ Z,
with range N, induces a surjective homomorphism K1→Z, and so K1 contains an infinite cyclic additive subgroup.
Recall from [7.15] that if A is Noetherian and local, then M ∈ F1 if and only if M ∼= An for some n ∈ N. Since the
γ1(M ) generate K1, it follows the additive group of K1 is cyclic; hence K1

∼=Z.

Let f : A→ B be a ring homomorphism, B being Noetherian. Show that extension of scalars gives rise to a ring homomor-
phism f ! : K1(A)→ K1(B) such that f !

�

γ1(M )
�

= γ1(B ⊗AM ). If g : B → C is another ring homomorphism (with C
Noetherian), then (g ◦ f )! = g ! ◦ f !.
(2.20) states that for M a flat A-module, M | f := B⊗AM is a flat B -module, and (2.17) that if M is finitely generated,

so is M | f . Thus we have a map | f :F1(A)→F1(B). Set λ = γ1,B ◦ | f :F1(A)→F1(B)→ K1(B). If 0→ N → M →
P → 0 is a short exact sequence in F1(A), then the proof of parts i,ii) shows that 0→ N | f → M | f → P | f → 0 is
exact, so

�

N | f
�

−
�

M | f
�

+
�

P | f
�

∈D1(B), showing λ is additive. By the universal property in the proof of part iii), it
follows there is a unique group homomorphism f! : K1(A)→K1(B) such that f!◦γ1,A= γ1,B ◦| f . Further, this is a ring
homomorphism, for B⊗AA∼= B by (2.14.iv), and (B⊗AM )⊗B (B⊗AN )∼=M ⊗AB⊗B B⊗AN ∼=M ⊗A(B⊗B B)⊗AN ∼=
M ⊗AB ⊗AN ∼= B ⊗A(M ⊗AN ) by (2.14.i,ii,iv) and (2.15) (viewing B as a (B , A)-bimodule).

For M ∈ F1(A) we have
�

M | f
��

�

g = C ⊗B M | f = C ⊗B (B ⊗AM ) ∼= (C ⊗
B B)⊗AM ∼= C ⊗AM = M |g◦ f by (2.15) (viewing B as a (B , A)-bimodule) and
(2.14.iv). If we write α f for the map F1(A) → F1(B) induced by | f , and so on,
then we’ve shown αg◦ f = αg ◦ α f : F1(A) → F1(C ). Now (g ◦ f )! is the unique
homomorphism ν : K1(A)→K1(C ) such that ν◦γ1,A= γ1,C ◦|g◦ f , and so is unique
such that ν ◦π1,A = π1,C ◦ αg◦ f . On the other hand, the diagram at right shows
ν = g ! ◦ f ! also satisfies this equality, so (g ◦ f )! = g ! ◦ f !

F1(A)

����

| f
// F1(B)

����

|g
// F1(C )

����
F1(A)

π1,A

��

α f

// F1(B)

π1,B

��

αg

// F1(C )

π1,C

��
K1(A) f !

// K1(B) g !
// K1(C ).

If f : A→ B is a finite ring homomorphism then

f!
�

f !(x)y
�

= x f!(y)

for x ∈K1(A), y ∈K(B). In other words, regarding K(B) as a K1(A)-module by restriction of scalars, the homomorphism
f ! is a K1(A)-module homomorphism

By bi-additivity of the module multiplication, since f ! and f! are homomorphisms, and since elements x =
γ1,A(M ) and y = γB (N ) generate K1(A) and K(B), it will suffice to check the equality for these elements:

f!
�

f !�γ1,A(M )
�

· γB (N )
�

iv)
= f!

�

γ1,B (B ⊗AM ) · γB (N )
� ii)
= f!

�

γB

�

(M ⊗AB)⊗B N
�

�

(2.15)
=

(2.14.iv)
f!
�

γB (M ⊗AN )
� [7.26.iv]
= γA

�

(M ⊗AN )| f
�

= γA(M ⊗AN | f )
ii)
= γ1,A(M ) · γA(N | f )

[7.26]
= γ1,A(M ) · f!

�

γB (N )
�

.

107



Ex. 7.27 Chapter 7: Noetherian Rings

It doesn’t make sense to consider f ! to be a K1(A)-module homomorphism K(A) → K(B); we defined f ! as
a map K1(A) → K1(B) because a short exact sequence in F (A) has no reason to remain exact under B ⊗A− for
arbitrary finite A-algebras B . So assume instead that the book actually meant to ask about the homomorphism
f! : K(B) → K(A).25 One can define a map t ′ : F1(A)×F (B) → F (B) by t ′(M , N ) = M ⊗AN | f , first restricting
scalars along f and then regarding the result as a B -module by b (m ⊗ n) = m ⊗ b n. This then induces a bilinear
map τ′ : C1(A)×C (B)→ C (B) making C (B) a C1(A)-module. Thinking of B -modules as A-modules by restriction
of scalars, our proof of part ii) above gives an induced map µ′ : K1(A)×K(B)→K(B)making K(B) a K1(A)-module.
We claim µ′(x, y) =µB

�

f !(x), y); it again suffices to check for generators x = γ1,A(M ) and y = γB (N ). Now

µB

�

f !(x), y) =µB

�

γ1,B (B ⊗AM ), γB (N )
�

= γB

�

(B ⊗AM )⊗B N
�

= γB (M ⊗AN ) =µ′(x, y).

Remark. Since F1(A) is a subset of F (A)we have a group homomorphism ε : K1(A)→K(A) given by ε
�

γ1(M )
�

= γ (M ).
If the ring A is finite-dimensional and regular, i.e., if all its local rings Ap are regular (Chapter 11) it can be shown
that ε is an isomorphism.

25 To regard K(B) as a K1(A)-module by restriction of scalars, one’s first inclination is to set x · y = x · f!(y), but the former is supposed to be
in K(B) and the latter is in K(A); apparently this is not what the book means by “restriction of scalars.”
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Artin Rings

Example. (p. 91, top) If A = k[x1, x2, . . .] is a polynomial ring in countably many indeterminates over a field k,
the ideal a is (x1, x2

2, x3
3, . . .), and B = A/a, then writing yn = x̄n , the book claims that m = (y1, y2, . . .) is the only

prime ideal of B . Evidently m is maximal, since k[y1, y2, . . .]/(y1, y2, . . .) ∼= k. Since each yn ∈ N(B) is nilpotent,
we have m ⊆ N(B), so by (1.8) every prime of B contains m, which is then minimal, hence the only prime. But
(y1)( (y1, y2)( · · · is an infinite ascending sequence of ideals, so B is not Noetherian. Three other examples can be
found in the solution to [7.8].

EXERCISES
Let q1 ∩ · · · ∩ qn = 0 be a minimal primary decomposition of the zero ideal in a Noetherian ring [A], and let qi be

pi -primary. Let p(m)i be the mth symbolic power of pi (Chapter 4, Exercise 13). Show that for each i = 1, . . . , n there

exists an integer mi such that p(mi )
i ⊆ qi .

Set q= qi , p= pi , and Sp =A\p. From (7.14), since the radical r (q) = p, it follows from (7.14) that there is m ∈N
such that pm ⊆ q. Then p(m) = Sp(p

m)⊆ Sp(q) = q by (4.12*.iv,iii).

Suppose qi is an isolated primary component. Then Api
is an Artin local ring, hence if mi is its maximal ideal we will

have mr
i = 0 for all sufficiently large r, hence qi = p(r )i

Since p(r ) ⊆ q for sufficiently large r, and p(r ) is p-primary by [7.13.i], we have another primary decomposition
p(r ) ∩

⋂

j 6=i q j = 0. By the uniqueness (4.11) of isolated primary components, it follows q= p(r ).1

Now we claim Ap is a local Artinian ring with nilpotent maximal ideal m := pe . By (3.13), Ap is local with
maximal ideal m, and by (7.3) it is Noetherian. By (4.6), p is minimal in V (0) = Spec(A); it follows from (3.13) that
m is also minimal in Ap, hence the only prime, so dim(Ap) = 0 and Ap is Artinian by (8.5). Further, m=N(Ap) by
(1.8), so by (7.15) or (8.4) there is r ∈N such that mr = 0.2

If qi is an embedded primary component, then Api
is not Artinian, hence the powers mr

i are all distinct, and so the
p(r )i are all distinct. Hence in the given primary decomposition we can replace qi by any of the infinite set of pi -primary

ideals p(r )i where r ≥ ri , and so there are infinitely many minimal primary decompositions of 0 which differ only in the
pi component.

If we have p j ( p with q j another primary component, then pe
j ( pe in Ai , so dim(Ai )≥ 1 and Ai is not Artinian

by (8.5). It follows from (8.6) (using contraposition to exclude case ii)) that all the powersmr are distinct. If pr = pr+1

for some r, then taking extensions and using (3.11.v) we have mr = (pe )r = (pr )e = (pr+1)e = (pe )r+1 = mr+1, so
it follows the pr are all distinct. Since A is Noetherian, pr has a primary decomposition by (7.13); by our proof of
[4.13.ii], p(r ) is the smallest primary ideal containing pr . It follows that since the pr are distinct, so are the p(r ). Now
if r ≥ ri , we have 0 6= p(r ) ( p(ri ), so any of these p(r ) can be substituted in the primary decomposition of (0).

1 Despite the utter triviality of this two-line argument, I had to poach it from
http://scribd.com/doc/47338424/atiyah-macdonald-solutions.

2 I was unable to prove the “hence” of the problem; while I’ve proven the nilpotence of m and that q= p(r ) separately, I still don’t know why
the latter follows from the former.

109

http://scribd.com/doc/47338424/atiyah-macdonald-solutions


Ex. 8.2 Chapter 8: Artin Rings

Let A be a Noetherian ring. Prove that the following are equivalent:
A is Artinian;
Spec(A) is discrete and finite;
Spec(A) is discrete.

ii) =⇒ iii): Trivial.
iii) =⇒ i): If Spec(A) is discrete, then in particular each point is closed. By [1.18.i], the closed points correspond

to maximal ideals, so every prime in A is maximal. Then dim(A) = 0, so by (8.5), A is Artinian.
i) =⇒ ii): If A is Artinian, every prime ideal of A is maximal by (8.1), so by [1.18.i] or [3.11], each point of

X = Spec(A) is closed. By (8.3) it only has a finite number of maximal (hence prime ideals), so it is finite. But then
every subset of X is a finite union of closed sets, hence closed, and X is discrete.

Let k be a field and A a finitely generated k-algebra. Prove that the following are equivalent:
A is Artinian;
A is a finite k-algebra.

i) =⇒ ii): By (8.7), A is a finite direct product of local Artinian rings Aj , which are quotients of A under the
projection, and hence again finitely generated (by the images of the generators of A, for instance). Thus if we can
prove each of the finitely many Aj is a finite k-algebra, so will A be.

So without loss of generality assume A is local Artinian ring finitely generated over k, with lone prime m. Then
B =A/m is a field, again finitely generated over k, so by Zariski’s Lemma ((1.27.2*), (5.24), [5.18], (7.9)), B is a finite
algebraic extension of k, and hence a finite k-vector space. Since primary decompositions exist in the Noetherian
ring A and Spec(A) = {m}, we see m belongs to (0). Then as A is finitely generated as an A-module, [7.18] gives
us a chain 0 = M0 ( M1 ( · · · ( Mn = A of A-submodules whose successive quotients are of the form A/pi for
pi ∈ Spec(A) = {m} — that is to say, all isomorphic to B . Thus we have a finite collection of short exact sequences
0 → Mi → Mi+1 → B → 0 of A-modules, which we may view as k-modules. Since dimk is an additive function,
this gives us dimk Mi+1 = dimk Mi + dimk B , and taking i = 0 shows dimk M1 = dimk B is finite. By induction,
dimk A= n dimk B is finite.

ii) =⇒ i): A finite k-algebra (p. 30) is finitely generated as a k-module. By (6.10), it follows A satisfies the d.c.c.
on k-submodules. Since each A-module is naturally also a k-module, it follows A satisfies the d.c.c. on ideals as well,
and so is an Artinian ring.

Let f : A→ B be a ring homomorphism of finite type. Consider the following statements:
f is finite;
the fibres of f ∗ are discrete subspaces of Spec(B);
for each prime ideal p of A, the ring B ⊗Ak(p) is a finite k(p)-algebra ( k(p) is the residue field of Ap);
the fibres of f ∗ are finite.
Prove that i) =⇒ ii) ⇐⇒ iii) =⇒ iv).

If f is integral and the fibres of f ∗ are finite, is f necessarily finite?
For the last question, it is important to realize we are not assuming finite type; otherwise, (5.2) and the Remark

on p. 60 show the answer is yes. Consider the algebraic closure K of a field K , constructed for example in [1.13].3

The fibers of the inclusion K ,→K will be finite, for both spectra are one-point spaces. However, this extension will
not be finite unless dimK K is finite, which is not the case, for example, if K is a finite algebraic extension of any
member of {Fp ,Q,Qp , k(S)}, where k is any field and S 6=∅ any set of indeterminates.

For the implications, fix p ∈ Spec(A) and let k = k(p) =Ap/pAp be the residue field of the localization Ap. Recall
from (2.14.i) that C := B ⊗Ak ∼= k ⊗AB and from [3.21.iv] that Spec(C ) ≈ ( f ∗)−1(p). Note further, using (2.14.iv)
and (2.15), that

C := B ⊗Ak ∼= B ⊗A(Ap⊗Ap
k)∼= (B ⊗AAp)⊗Ap

k . (8.1)

i) =⇒ iii): Assume B is generated as an A-module by n elements. It follows from the proof of (2.17) that B⊗AAp

is generated by n elements as an Ap-module and by (2.17) again and Eq. 8.1 that C is a ≤ n-dimensional k-vector
space. Since C is a k-algebra, it is then a finite k-algebra.

iii) =⇒ ii): By the assumption and [8.3], C is an Artinian ring. Then by [8.2], its spectrum ( f ∗)−1(p) is discrete.

3 We defined K as the subset of elements of L =
⋃∞

n=0 Kn algebraic over K = K0, where each Kn+1 is the smallest algebraic extension of Kn

in which each irreducible monic polynomial p(x) ∈ Kn[x] has a root. But it turns out K1 = K = L. By (5.4) and induction, each Kn is integral
over K , and each α ∈ K ⊆ L is in some Kn , so K is integral over K . Since, each Kn is integral over K , each member thereof satisfies a polynomial
equation p(x) ∈K[x]; but that shows that p(x) already has a root in K1, which then must be itself algebraically closed.
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ii) =⇒ iii): We first show C is a finitely generated k-algebra (and hence, by (7.7), Noetherian).4 Since f is of finite
type, there is a surjective ring homomorphism A[x1, . . . , xn]→ B . Recalling from (2.18) that tensor is right exact,
we apply Ap ⊗A− to both sides and use [2.6] (see the footnote to [7.13]) to get a surjective ring homomorphism
Ap[x1, . . . , xn] → Ap ⊗A B . Applying k ⊗Ap

− to both sides, the same argument, followed by (2.15), (2.14.i), and

Eq. 8.1, yields a surjective ring homomorphism k[x1, . . . , xn]→ k ⊗Ap

�

Ap ⊗AB
� ∼= C , so C is a finitely generated

k-algebra. By (7.7), C is a Noetherian ring, and by assumption, ( f ∗)−1(p)≈ Spec(C ) is discrete, so [8.2] shows C is
Artinian. Because of this and because C is a finitely generated k-algebra, [8.3] shows C is a finite k-algebra.

ii) & iii) =⇒ iv): By iii), C is a finite k-algebra, hence a fortiori finitely generated, and hence by (7.7) a Noetherian
ring; and by ii), ( f ∗)−1(p)≈ Spec(C ) is discrete; so from [7.2] it follows Spec(C ) = ( f ∗)−1(p) is also finite.

In Chapter 5, Exercise 16, show that X is a finite covering of L (i.e., the number of points of X lying over a given point of L is
finite and bounded.)

Refer back to our solution to [5.16] for notation. In summary, we were given an affine subvariety X ⊆ kn and
from it constructed a linear surjection π : kn � k r = L such that π|X is already surjective. The coordinate rings
([1.27]) of X and L were written, respectively, as A and A′, and r and π were chosen in such a way that the injection
$ = (π|X )# : A′ � A was integral of finite type. View it as an inclusion. Recalling from [1.27] and [5.16] that we
may identify X with Max(A) and the map X → L with its induced map Max(A)→Max(A′), we now want to show
only finitely many maximal ideals of A lie over any maximal ideal of A′. Using (5.2) again, $ is finite, so by [8.4] it
follows the fibers of$∗ are finite.

However, we still want to uniformly bound the size of these fibers. Since $ is integral of finite type, by the
Remark on p. 60, $ is finite; say A is generated as an A′-module by n elements. Then n is a uniform bound on the
k-dimension of B = A⊗A′k(p) for p ∈ Spec(A′), and by [3.21.iv] it is enough to show Spec(B) has ≤ n points. Let
p1, . . . , pm be distinct primes of B . Since they are coprime, the canonical map B→

∏

B/pi is surjective. Since B is a
k(p)-algebra, the pi and hence the B/pi are k(p)-vector spaces as well. We have n ≥ dimk B ≥

∑m
i=1 dimk (B/pi )≥ m,

so Spec(B) is finite.5

Let A be a Noetherian ring and qa p-primary ideal in A. Consider chains of primary ideals from q to p. Show that all such chains
are of finite bounded length, and that all maximal chains have the same length.

We have a bijection, by (1.1) and (3.9), between the set Σ = {a Ã A : q ⊆ a ⊆ p} and the ideals (a/q)p/q of
B = (A/q)p/q, which we claim preserves and reflects being (p-)primary. By (4.8), extension along A/q→ B preserves
being primary (for ā ⊆ p/q), and by p. 50, contraction along A→ B preserves being primary, so it remains to see
extension a 7→ a/q along A� A/q does, for a⊇ q. But for x, y ∈ A, x̄ ȳ ∈ a/q implies xy ∈ a, so that x ∈ a or some
yn ∈ q, meaning x̄ ∈ a/q or yn = ȳn ∈ a/q.

Note that as a localization of a quotient of a Noetherian ring, B is also Noetherian, by (7.1) and (7.4). Since A is
Noetherian and r (q) = p, (7.14) gives an n ≥ 1 such that pn ⊆ q, so the maximal ideal m of the local ring B satisfies
mn = 0. By (8.6), B is Artinian. Also, for any bÃ B we have mn ⊆ b⊆m, so by (7.16), b is m-primary.6

Thus our question boils down to arbitrary chains of ideals in an Artinian ring B . By the definition of the word,
these must all have finite length. A maximal chain is a composition series (p. 76), and by (6.7), these all have the same
length.

4 It feels like this should have been proven in the book somewhere already, but I don’t see where, so I’m doing it here.
5 A slightly different proof, from [Milne, Prop. 8.5], is as follows. Let m′ ∈Max(A′) and K = A′/m′; then by (1.17.i), each m ∈Max(A) with

mc =m′ has (m′)e =mc e ⊆m, so m descends to a maximal ideal of A/(m′)e . Since A is a finite A′-module, with n generators for some n, by (2.8)
C = A/(m′)e is a ≤ n-dimensional K -algebra. If Spec(C ) contains m primes, then the same proof as above, with C replacing B , shows n ≥ m,
and this limits the number of maximal m lying over m′.

6 Amusingly, this seems to show the ideals of Σ were all p-primary. Can that be right?
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EXERCISES
Let A be a Dedekind domain, S a multiplicatively closed subset of A. Show that S−1A is either a Dedekind domain or the field of

fractions of A.
By (9.3), A is an integrally closed Noetherian domain of dimension one. (5.12) implies that S−1A is also integrally

closed and (7.3) that it is Noetherian. S−1A is a domain since it is contained in the field of fractions K of A. By
(3.11.iv), the longest possible chain of prime ideals in S−1A is (0) = S−1(0)⊆ S−1p for a prime pÃA not meeting S.
Since p 6= 0 and S−1 are contained in a field, S−1p 6= (0). It follows from the definition (9.3) that S−1A is a Dedekind
domain if there is some prime p disjoint from S. If there is none, then (0) is maximal in S−1A, which is then a field.
Since it contains A, it then is K .

Suppose that S 6= A\{0}, and let H , H ′ be the ideal class groups of A and S−1A respectively. Show that extension of
ideals induces a surjective homomorphism H →H ′.

First we show a 7→ S−1a is a homomorphism of fractional ideal groups I (A)→ I (S−1A). Since A is Noetherian,
each fractional ideal a of A is finitely generated; it follows from (3.15) then that S−1(A : a) = (S−1A : S−1a), so
S−1a−1 = (S−1a)−1. For multiplication, S−1S−1 = S−1 since 1 ∈ S, so S−1(ab) = S−1S−1ab= (S−1a)(S−1b).

This map is surjective because a 7→ S−1a is surjective on integral ideals (3.11.i) and fractional ideals of a Noethe-
rian ring are of the form x−1a for x ∈A and aÃA (p. 96). For x ∈K , we have xA 7→ S−1(xA) = x(S−1A), so principal
fractional ideals are mapped to principal fractional ideals, and the surjective homomorphism I (A) → I (S−1A) de-
scends to a surjective homomorphism H →H ′.

Let A be a Dedekind domain. If f = a0 + a1x + · · ·+ an xn is a polynomial with coefficients in A, the content of f is the ideal
c( f ) = (a0, . . . , an) in A.

Prove Gauss’s lemma that c( f g ) = c( f )c(g ).
Let f =

∑

ai x i , g =
∑

b j x j , and f g =
∑

ck xk , where ck =
∑

i+ j=k ai b j . We will have c( f g ) ⊆ c( f )c(g ) just if
for each prime pÃA, c( f g )p =

�

c( f )c(g )
�

p
.1 But

�

c( f )c(g )
�

p
= c( f )pc(g )p by (3.11.v), and c( f )p is the content of

the image of f in Ap. Thus, by the definition (9.3), we may assume A is a discrete valuation ring (henceforth “DVR”).
Finitely generated ideals of A are principal2, so we can write c( f ) = (a′) and c(g ) = (b ′) and we know a′b ′ divides

f g in A[x]. Note that if d is a divisor of each coefficient of h ∈A[x], so that h/d ∈A[x], we have c(h) = d · c(h/d ).
Thus (a′) = c( f ) = a′ · c( f/a′), so c( f/a′) = (1), and similarly c(g/b ′) = (1). In the terminology of [1.2.iv], f/a′ and
g/b ′ are primitive, by the result of that exercise, the same holds of f g/a′b ′, which then has content (1). It follows
that c( f )c(g ) = (a′b ′) = a′b ′ · c( f g/a′b ′) = c( f g ).

1 Let N , P ⊆ M be A- modules. To show N = P it is enough to show that the inclusions N ,→N + P and P ,→N + P are surjective. By (3.9)
and (3.4.i), this happens if and only if for all primes p Ã A, Np ,→ (N + P )p = Np + Pp and Pp ,→ Np + Pp are surjective; but this happens just
when Np = Pp.

2 Such a ring is called a Bézout domain because it satisfies Bézout’s lemma that if d is a common divisor of a, b ∈A, there exist y, z ∈A such that
d = ay+b z; see http://en.wikipedia.org/wiki/Bézout_domain and http://planetmath.org/encyclopedia/BezoutDomain.html.

A ring satisfying Gauß’s lemma is called a Gaussian ring, and the Gaussian rings that are domains turn out (see e.g. http://arxiv.org/
abs/1107.0440) to be exactly the Prüfer domains (see http://en.wikipedia.org/wiki/Prüfer_domain). These rings have many charac-
terizations, one of which is that all their localizations at primes are valuation rings, others being that the nonzero finitely generated ideals are all
invertible and that all their ideals are flat. Cf. also http://planetmath.org/encyclopedia/PruferRing.html.

If one instead defines the content of a polynomial as the greatest common divisor of its coefficients (which will generate the ideal we called
the content before, in the event this ideal is principal) one can extend the result to integral domains such that any two elements have greatest
common divisors, and in particular to unique factorization domains. This is easily proved, e.g., at http://en.wikipedia.org/wiki/Gauss%
27s_lemma_(polynomial)#A_proof_valid_over_any_GCD_domain. See also http://planetmath.org/GcdDomain.html and http://
planetmath.org/encyclopedia/PropertiesOfAGcdDomain.html.
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A valuation ring (other than a field) is Noetherian if and only if it is a discrete valuation ring.
The argument on p. 94 shows a DVR is a Noetherian valuation ring (and not a field).
For the other direction, by (5.18), a Noetherian valuation ring A is local. It is an integral domain by the definition

on p. 65. It now will be enough, by (9.7), to show the non-zero fractional ideals of A are invertible, or by (9.2), to
show the maximal ideal m is principal and A has dimension one. First we show A is a PID. Any ideal a of A is finitely
generated as (x1, . . . , xn) for some x j ∈A since A is Noetherian. By [5.28], the ideals (x j ) are totally ordered, so one
contains all the others, and hence a is principal.

To use (9.7), just note that since A is a Noetherian PID, any fractional ideal of A is of of the form x−1(y) for some
x, y ∈A (p. 96) and so has an inverse y−1(x).

To use (9.2), set m= (m). Any prime ideal (p) satisfies (p)⊆ (m), so for some a ∈A we have am = p and hence,
since (p) is prime, either m ∈ (p) or a ∈ (p). If the former holds, p=m. If the latter holds, we have b ∈A such that
p = am = b pm, or (1− bm)p = 0. As m is not a unit 1− bm 6= 0, so since A is an integral domain, p = 0. It follows
that the only chain of prime ideals in A is (0)(m, meaning A has dimension one.

Let A be a local domain which is not a field and in which the maximal ideal m is principal and
⋂∞

n=1m
n = 0. Prove that A is a

discrete valuation ring.
Let p be a generator for m, so for each n ≥ 0 we have mn = (pn). Since

⋂∞
n=1m

n = 0, it follows there is no n
with mn = mn+1, and every x ∈ A\{0} fails to be in some mn , so there is a greatest number v(x) ∈ N such that
pv(x) divides x (taking p0 = 1). If v(x) = n, we can write x = upn for some u ∈ A; since pn+16 | x, it follows that
u ∈ A\m= A×. Thus A\{0} ∼= A×× pN as a multiplicative monoid. It follows that for every pair x, y ∈ A we have
v(x)≤ v(y) ⇐⇒ x|y. Therefore any ideal a is generated by an element x ∈ a with v(x)minimal, so that the ideals
of A are (0) and the (pn). This shows A is Noetherian of dimension one. By any of the implications iii), v), vi) =⇒
i) of (9.2), A is a DVR.

Let M be a finitely-generated module over a Dedekind domain. Prove that M is flat ⇐⇒ M is torsion-free.
Let the Dedekind domain be A. Since A is an integral domain, by [3.13], M is torsion-free just if for each prime

p Ã A we have Mp torsion-free over the DVR Ap. Now each Mp is finitely generated over a PID, and so3 can be
written as the direct sum of the torsion submodule and a free module. Thus each Mp is torsion-free if and only if it
is free. Since A is Noetherian and M is finitely generated, by [7.16], M is flat just if each of the Mp is free. It follows
that M is flat if and only if it is torsion-free.

Let M be a finitely generated torsion module (T (M ) =M) over a Dedekind domain A. Prove that M is uniquely representable as
a finite direct sum of modules A/pni

i , where pi are nonzero prime ideals of A.
For each prime ideal p of A we have Ap a DVR. Since Mp is finitely generated and torsion, and Ap a PID (p. 94),

the structure theorem for finitely generated modules shows4 Mp is isomorphic to a direct sum of modules Ap/(d j )
for d j ∈Ap, where the (d j ) are primary and unique up to order. But since Ap is a DVR, each (d j ) = (pAp)

n j for some
n j ≥ 1. So Mp

∼=
⊕

j Ap/p
n j Ap. By exactness of localization (3.3) and [1.21.iv], since p is the only prime ideal of A

containing pn j we have Ap/p
n j Ap

∼= (A/pn j )p ∼=A/pn j , so each Mp is of the form we desire for M . It will now suffice
to show M is isomorphic to the direct sum of finitely many Mp.

Since M is finitely generated, [3.19.v] shows Supp(M ) = V
�

Ann(M )
�

. As A is a Dedekind domain, the prime-
power factorization of Ann(M ) shows that Supp(M ) is finite. Now the canonical maps m 7→ m/1: M →Mp for each
p ∈ Supp(M ) naturally compile into a map φ : M →

⊕

Mp. Note that since each pair p 6= q of primes is coprime,
there are x ∈ pn \q for arbitrarily high n, which then annihilate the (finitely generated) summands A/pn of Mp,
so by [3.1], (Mp)q = 0 for distinct primes p and q. On the other hand, (Mp)p ∼= Mp.5 Therefore, since localization
distributes over direct sums (Eq. 3.6) localizing φ at q shows φq : Mq→

�
⊕

Mp

�

q
∼= (Mq)q ∼=Mq is an isomorphism

for q ∈ Supp(M ); and similarly φq : Mq→
�
⊕

Mp

�

q
∼=
⊕

0 is an isomorphism 0→ 0 for q /∈ Supp(M ). By (3.9), φ is
an isomorphism.

3 http://planetmath.org/encyclopedia/FinitelyGeneratedModulesOverAPrincipalIdealDomain.html
4 See http://en.wikipedia.org/wiki/Structure_theorem_for_finitely_generated_modules_over_a_principal_ideal_

domain#Primary_decomposition.
5 For a multiplicative submonoid S of A, the map a 7→ (a/1)/1: A→ S−1(S−1A) satisfies the conditions (3.2), so that S−1A ∼= S−1(S−1A),

Using (3.5), we can rewrite this as S−1A ∼= S−1A⊗AS−1A, so for any A-module M , using (3.5) again and (2.14.ii), S−1M ∼= S−1A⊗AM ∼=
S−1A⊗AS−1A⊗AM ∼= S−1(S−1M ).
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Let A be a Dedekind domain and a 6= 0 an ideal in A. Show that every ideal in A/a is principal.
First, let p be a prime and n ≥ 1. As in the previous exercise, A/pn ∼=Ap/p

nAp, and Ap is a DVR, hence (p. 94) a
PID, so each ideal of A/pn is principal.

Given any a Ã A, use (9.1) to produce a prime factorization a =
∏

p
ni
i and consider the standard map A→

∏

A/pni
i . Since the pni

i are coprime, (1.10) says that a=
⋂

p
ni
i and the map is surjective with kernel a. Thus we can

write A/a∼=
∏

A/pni
i as a product of rings Bi each of whose ideals is principal. As in [1.22], each ideal b of A/a is a

sum of ideals of the Bi . If ei is the element of A/awhose i -component is 1 and whose other components are zero, and
b has bei = (bi ei ) for bi ∈ Bi , then b=

∑

bei is generated by the single element b = 〈bi 〉 ∈A/a whose i -component
is bi , since b ∈ b and each bi ei = b ei ∈ (b ). Thus A/a is principal.

Deduce that every ideal in A can be generated by at most 2 elements.
Suppose c Ã A is not principal, and let a nonzero a ∈ c be given. Then the ideal c/(a) of A/(a) is principal,

generated by b +(a) for some b ∈ c. It follows that c= (a, b ) in A.6

Let a, b, c be three ideals in a Dedekind domain. Prove that

a∩ (b+ c) = (a∩ b)+ (a∩ c),
a+(b∩ c) = (a+ b)∩ (a+ c).

Writing I for the set of nonzero ideals of our Dedekind domain, the problem is asking us to prove the lattice
(I , +, ∩) is distributive. Since all the ideals in question are submodules of A, by the first footnote to [9.2], to prove
an equation it suffices to show the localizations of the sides at each prime agree. By (3.4), localization distributes
over sum and intersection, so we now only have to prove the equations for A a DVR. But pm + pn = pmin{m, n} and
pm ∩ pn = pmax{m, n}, so pn 7→ n is a lattice isomorphism (I , +, ∩)→ (N, min, max). Since the latter is distributive,7

the equations hold, and we are done.8

6 A converse also holds: if A is a domain such that for every aÃA and nonzero a ∈ a there exists b such that (a, b ) = a, then A is a Dedekind
domain.

To see this, note that A is Noetherian, and all its localizations Ap at primes pmust also be Noetherian by (7.3) and satisfy the same two-generator
property. Let 0 6= aÃAp. Picking a nonzero element a ∈ma⊆ a and applying the two-generator property to a, we see there must be b ∈ a such
that a= (a, b ) =ma+(b ) in Ap. Now a is finitely generated and m=R(Ap), so by the corollary (2.7) to Nakayama’s Lemma, a= (b ). Thus Ap

is a local, Noetherian PID, and so by (9.2) is a DVR. Since this holds for all p, by (9.3) A is a Dedekind domain.
This result can apparently be attributed to a C.-H. Sah; see Theorem 20.11 of Pete L. Clark’s notes http://math.uga.edu/~pete/integral.

pdf.
7 To be thorough about this, we show that the lattice given by a totally ordered set (like N), when equipped with the operations x ∨ y =

max{x, y} and x ∧ y =min{x, y}, satisfies the equations x ∨ (y ∧ z) = (x ∨ y)∧ (x ∨ z) and x ∧ (y ∨ z) = (x ∧ y)∨ (x ∧ z) for all x, y, z. Since ∨
and ∧ are symmetric in their arguments, we may assume without loss of generality that y ≤ z. To prove the equations, using a bit more brute
force than we would like, we tabulate the values of the relevant terms and check that the sides are equal given any of the three possible orderings
of x, y, z.

x ∨ (y ∧ z) (x ∨ y) ∧ (x ∨ z) x ∧ (y ∨ z) (x ∧ y) ∨ (x ∧ z)
x y x z

x ≤ y ≤ z y z x x
y y x x

y ≤ x ≤ z x z y x
x x x x

y ≤ z ≤ x x x y z
x x z z

8 It is not strictly necessary to localize. For A a Dedekind domain again, the prime factorization (9.1) shows that to prove an equation it
will be enough to show vp-values of the sides agree for all primes p, where vp is given by a =

∏

p∈P p
vp(a). To do this, we show vp is a lattice

homomorphism (I , +, ∩)→ (N, min, max). Since A has dimension one, its primes are maximal and hence pairwise coprime. This allows us to
conclude products of disjoint sets of prime ideals are coprime, as follows: if ideals ai and b j are such that ai + b j = (1) for all i and j , then
∏

ai +
∏

b j = (1), for (1) =
∏

i (ai + b j ) ⊆
�
∏

ai
�

+ b j , so (1) =
∏

j

�

∏

i
�

ai
�

+ b j

�

⊆
∏

i ai +
∏

j b j . Thus by (1.10.i), each intersection

of powers of distinct primes is actually a product, and vice versa. Products of ideals do distribute over sums (p. 6), and for m ≤ n we have
am + an = am and am ∩ an = an . Write np =min{vp(a), vp(b)} and Np =max{vp(a), vp(b)}. Then

a+ b=
∏

pnp
∏

pvp(a)−np +
∏

pnp
∏

pvp(b)−np =
∏

pnp ·
�
∏

pvp(a)−np +
∏

pvp(b)−np
�

=
∏

pnp

since the two terms in the parentheses share no prime factors in common. Similarly,

a∩ b=
∏

pvp(a) ∩
∏

pvp(b) =
⋂

pvp(a) ∩
⋂

pvp(b) =
⋂

�

pvp(a) ∩ pvp(b)
�

=
⋂

pNp =
∏

pNp .

We now have vp(a+ b) =min{vp(a), vp(b)} and vp(a ∩ b) =max{vp(a), vp(b)} as hoped.
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Chapter 9: Discrete Valuation Rings and Dedekind Domains Ex. 9.9

(Chinese Remainder Theorem). Let a1, . . . , an be ideals and let x1, . . . , xn be elements in a Dedekind domain A. Then the system
of congruences x ≡ xi (mod ai ) (1≤ i ≤ n) has a solution x in A ⇐⇒ xi ≡ x j (mod ai + a j ) whenever i 6= j .

Following the book’s hint, define φ : A→
⊕n

i=1 A/ai by φ(x)i = x+ai , and ψ :
⊕n

i=1 A/ai →
⊕

i< j A/(ai +a j )
byψ

�

〈xi+ai 〉
�

〈i , j 〉 = xi− x j +ai+a j . The system of congruences x ≡ xi (mod ai ) has a solution x just if 〈xi+ai 〉 ∈
im(φ), and the conditions xi ≡ x j (mod ai+a j ) are satisfied just if 〈xi+ai 〉 ∈ ker(ψ). Then the statement in question
is true just if the sequence

A
φ
→
⊕

A/ai
ψ
→
⊕

A/(ai + a j )

is exact. But this means just to show im(φ) = ker(ψ), and thus by the first footnote to [9.3] it is enough to show it
is true after localizing at each prime p. By (3.4), localization distributes over quotients and sums, so it is enough to
prove the results for ideals ai = pki of a DVR A. Without loss of generality, assume ki ≤ k j for i < j .

If 〈xi+p
ki 〉 ∈ ker(ψ), it follows that for i < j we have xi− x j ∈ pki +pk j = pki . Thenφ(xn) = 〈xi+p

ki 〉, showing
ker(ψ)⊆ im(φ). That ψ ◦φ= 0 holds in any ring:

�

(ψ ◦φ)(x)
�

〈i , j 〉 =ψ
�

〈x + ai 〉
�

〈i , j 〉 = x − x + ai + a j = ai + a j .
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Completions

More than any other chapter, this one leaves small, eminently believable statements unproved. Before tackling the
exercises, we prove some of these assertions. Doing so takes a surprisingly long time.

Lemma 10.1. Let H be the intersection of all neighborhoods of 0 in [a topological abelian group] G. Then
i) H is a subgroup.

The book notes that “i) follows from the continuity of the group operations.” This is true, as far as it goes, but
is actually longer, in its details, than the rest of the proof.

Write NG(0) for the set of neighborhoods of 0 (N (0) when G is understood). Note that since x 7→ −x is a
homeomorphism, for each neighborhood U ∈ N (0) we also have −U ∈ N (0). Then V = U ∩−U ∈ N (0) and
V = −V . If x ∈ H and U ∈ N (0), find a subset V ∈ N (0) with V = −V . Then x ∈ V = −V , so −x ∈ V ⊆ U .
Since U was arbitrary, −x ∈H .

Since + : G×G→G is continuous and sends 〈0, 0〉 7→ 0, for any U ∈N (0) there is a neighborhood W of 〈0, 0〉
in G×G that addition maps into U . By the definition of the product topology, then, there are V1, V2 ∈N (0) such
that V1 ×V2 ⊆W . If we set V = V1 ∩V2, then V +V ⊆ U . Now suppose x, y ∈ H , and let U ∈ N (0). There is
V ∈N (0) such that V +V ⊆U , and x, y ∈V , so x + y ∈U . As U was arbitrary, x + y ∈H .

Finally, note 0 ∈H , so H is nonempty.

Equivalence of Cauchy sequences is an equivalence relation.* (p. 102)
〈xν〉 is equivalent to 〈xν〉 since the differences xν − xν are identically zero.
If 〈xν〉 is equivalent to 〈yν〉, then by definition xν−yν → 0, which we take to mean that for every U ∈N (0) there

is t (U ) ∈N such that for all ν ≥ t (U )we have xν−yν ∈U . To show that 〈yν〉 is also equivalent to 〈xν〉, let U ∈N (U )
be given and find a subset V ∈N (0) with V =−V . For ν ≥ t (V ) we have xν − yν ∈V =−V , so yν − xν ∈V ⊆U .

Now suppose 〈xν〉 is equivalent to 〈yν〉 and 〈yν〉 is equivalent to 〈zν〉. To show 〈xν〉 is equivalent to 〈yν〉, let U ∈
N (0) be given, and let V ∈N (0) be such that V +V ⊆U . By assumption, there are numbers t (V ), t ′(V ) ∈N such
that for ν ≥ t (V ) we have xν − yν ∈ V and for ν ≥ t ′(V ) we have yν − zν ∈ V . For ν ≥ max{t (V ), t ′(V )} we have
xν − zν = (xν − yν )+ (yν − zν ) ∈V +V ⊆U .

If 〈xν〉, 〈yν〉 are Cauchy sequences, so is 〈xν + yν〉, and its class in Ĝ depends only on the classes of 〈xν〉 and 〈yν〉.
Let U ∈ N (0), and let V ∈ N (0) be such that V +V ⊆ U . Since 〈xν〉 and 〈yν〉 are Cauchy, there are numbers

s(V ) and s ′(V ) such that xµ − xν ∈ V for all µ, ν ≥ s(V ) and yµ − yν ∈ V for all µ, ν ≥ s ′(V ). Then for all
µ, ν ≥max{s(V ), s ′(V )} we have (xµ+ yµ)− (xν + yν ) = (xµ− xν ) + (yµ− yν ) ∈V +V ⊆ U . As U was arbitrary,
〈xν + yν〉 is Cauchy.

If 〈x ′ν〉 represents the same class as 〈xν〉, so that xν − x ′ν → 0, then 〈xν + yν〉 and 〈x ′ν + yν〉 are equivalent, since
(xν + yν )− (x ′ν + yν ) = (xν − x ′ν ) + (yν − yν ) = xν − x ′ν → 0. Similarly, if 〈y ′ν〉 represents the same class as 〈yν〉, then
〈x ′ν + yν〉 and 〈x ′ν + y ′ν〉 are equivalent, so by transitivity 〈xν + yν〉 and 〈x ′ν + y ′ν〉 are equivalent.

Similarly, if 〈xν〉 is a Cauchy sequence, then 〈−xν〉 is a Cauchy sequence whose class in Ĝ depends only on that of 〈xν〉.*
This and the next are very easy, but necessary to show Ĝ is a group. Let U ∈N (0) be given; since 〈xν〉 is Cauchy,

there is s(U ) ∈N such that µ, ν ≥ s(U ) implies xµ− xν ∈ U . But (−xν )− (−xµ) =−(xν − xµ) = xµ− xν ∈ U then,
for all ν, µ≥ s(U ). As U was arbitrary, 〈−xν〉 is Cauchy.

If 〈x ′ν〉 represents the same class as 〈xν〉, so that xν−x ′ν → 0, then (−xν )−(−x ′ν )→ 0 as well; for given any U ∈N (0)
we may find a smaller V = −V ∈ N (0) and some t (V ) such that for all ν ≥ t (V ) we have xν − x ′ν ∈ V = −V , so
(−xν )− (−x ′ν ) =−(xν − x ′ν ) ∈V ⊆U as well.
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〈0〉 is a Cauchy sequence.*
This is trivial, since all differences are zero.

Hence we have an addition in Ĝ with respect to which Ĝ is an abelian group.
By the last two facts on independence of representatives, it will be enough to show the set of Cauchy sequences

in G forms an Abelian group. But this easily follows from the facts that this group is defined as a subgroup of the
product group GN and that the abelian group identities hold componentwise:
�

〈xν〉+ 〈yν〉
�

+ 〈zν〉= 〈xν + yν〉+ 〈zν〉=



(xν + yν )+ zν
�

=



xν +(yν + zν )
�

= 〈xν〉+ 〈yν + zν〉= 〈xν〉+
�

〈yν〉+ 〈zν〉
�

;

〈xν〉+ 〈0〉= 〈xν + 0〉= 〈xν〉;

〈xν〉+ 〈−xν〉=



xν +(−xν )
�

= 〈0〉;

〈xν〉+ 〈yν〉= 〈xν + yν〉= 〈yν + xν〉= 〈yν〉+ 〈xν〉.

For each x ∈ G the class of the constant sequence 〈x〉 is an element φ(x) of Ĝ, and φ : G → Ĝ is a homomorphism of
abelian groups. [The kernel of φ is the subgroup

⋂

N (0) of (10.1).]
This may be too obvious to bother with, but we do it anyway. Constant sequences are Cauchy because the

differences x − x = 0 of 〈x〉 approach (are) 0. φ is obviously a homomorphism: φ(0) is the equivalence class of 〈0〉,
which is the zero of Ĝ; 〈−x〉=−〈x〉, so taking classes, φ(−x) = −φ(x); and 〈x + y〉= 〈x〉+ 〈y〉, so taking classes,
φ(x + y) = φ(x) +φ(y). We have x ∈ ker(φ) just if 〈x〉 is in the class of 〈0〉, so that x = x − 0→ 0 as the indices
increase. But this means that for each U ∈ N (0) there is t (U ) such that for ν ≥ t (U ) we have x ∈ U . Since x is
independent of ν, that just means x ∈U , so x ∈

⋂

N (0).

There is a natural topology making Ĝ a topological group.*

For each U ∈NG(0), define Û ⊆ Ĝ to be the set of all elements x̂ ∈ Ĝ such that all representatives 〈xν〉 of x̂ are
“eventually in” U :

Û :=
¦

x̂ ∈ Ĝ : ∀〈xν〉 ∈ x̂ ∃N ∈N ∀ν ≥N (xν ∈U )
©

.1

Note that for all U , V ∈ NG(0) we have 0̂ ∈ØU ∩V = Û ∩ V̂ . Then if we write let N̂ = {Û : U ∈ NG(0)} and
take all translates in Ĝ, these sets together generate a unique topology on Ĝ for which N̂ is a neighborhood basis of
0̂.DO THIS 2

Suppose x̂, ŷ ∈ Ĝ are such that their sum lies in an open set W ⊆ Ĝ. By our definition of the topology, there is
a Û ∈ N̂ such that (x̂+ ŷ)+ Û ⊆W . By our proof of (10.1.i), there is V ∈NG(0) such that V +V ⊆U . If 〈xν〉 〈yν〉
are Cauchy sequences representing elements of V̂ , then there is N ∈ N sufficiently large that for all ν ≥N we have
xν , yν ∈ V , and hence xν + yν ∈ U . Thus V̂ + V̂ ⊆ Û , so addition takes

�

x̂ + V̂
�

×
�

ŷ + V̂
�

into (x̂ + ŷ) + Û ⊆W
and hence is continuous.

Similarly, any open set about −x̂, contains a basic open set −x̂ + Û . By our proof of (10.1.i) again, there is a
V =−V ∈NG(0) such that V ⊆ U . Then the opposite of any sequence eventually in V is also eventually in V , so
−V̂ = V̂ , and −

�

x̂ + V̂
�

=−x̂ + V̂ ⊆−x̂ + Û , so inversion is also continuous.

φ : G→ Ĝ is continuous.*

Let x ∈G and consider a basic open neighborhood φ(x)+ Û . If u ∈U ∈NG(0), there is some V ∈NG(0) such
that u+V ⊆U . Thus, if 〈yν〉 is a Cauchy sequence equivalent to 〈u〉, we must eventually have yν− u ∈V , so that yν
is eventually in u +V ⊆U . This shows φ(u) ∈ Û . It follows that φ(x +U )⊆φ(x)+ Û , showing φ is continuous.

1 We do have to stipulate eventual containment for all sequences in a class: in 〈Q, +〉, for instance, the Cauchy sequences 〈 n−1
n 〉 and 〈1〉 are

equivalent, but the former is always in the open ball of radius 1 about 0, while the latter never is.
It took me a while to decide between this definition and several other less fruitful possibilities, and I eventually set-

tled on this one as a result of Gerald A. Edgar’s answer at http://math.stackexchange.com/questions/192808/
topology-induced-by-the-completion-of-a-topological-group.

2 Brian M. Scott’s answer at http://math.stackexchange.com/questions/67259/inquiry-regarding-neighborhood-bases
elaborates how this works. But there is a question as to how to prove that in the topology generated by the
translates of N̂ , these sets are actually neighborhoods: http://math.stackexchange.com/questions/234803/
translating-a-neighborhood-basis-of-a-topological-group.
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Chapter 10: Completions

If G is first countable or Hausdorff, then Ĝ is first countable or Hausdorff, respectively.*

If 〈Ui 〉i∈N is a countable neighborhood basis of 0 in G, we claim 〈Ûi 〉 will be a countable neighborhood basis of
0̂ in Ĝ. Indeed, for any V ∈ NG(0) there is Ui ⊆ V , so for any V̂ ∈ N̂ there is Ûi ⊆ V̂ . By translation, we have
countable neighborhood bases at every point of Ĝ.

Given two distinct points of Ĝ, finding disjoint neighborhoods of the two is equivalent, by translation, to find-
ing disjoint neighborhoods of 0̂ and their difference x̂. Let 〈0〉 and 〈xν〉 be representatives. Since they are assumed
inequivalent, it follows there is some U ∈NG(0) such that the differences xν are not eventually in U , so that x̂ /∈ Û .
Using the proof of (10.1.i), find V ∈NG(0) such that V +V ⊆U . Now we claim the basic neighborhoods V̂ 3 0̂ and
x̂ + V̂ 3 x̂ are disjoint. If not, there would be ŷ in their intersection, so that ŷ ∈ V̂ and ŷ ∈ x̂ + V̂ , or equivalently
ŷ− x̂ ∈ V̂ . But then from our proof Ĝ is a topological group we would have x̂ = ŷ+(ŷ− x̂) ∈ V̂ +V̂ ⊆ Û , after all.

If G is first countable and Hausdorff, then Ĝ is complete in the sense that all Cauchy sequences in Ĝ converge to points of
Ĝ.*3

Let 〈Ui 〉i∈N be a countable neighborhood basis of 0 in G. By the proof of (10.1.i), we may assume Ui =−Ui and
Ui+1+Ui+1 ⊆Ui for all n, so that the same will hold of 〈Ûi 〉.

Let 〈x̂n〉 be a Cauchy sequence in Ĝ, and select a representative 〈xn, ν〉 for each x̂n . For each n, since the sequence
〈xn, ν〉 is Cauchy, there is a number Λn such that when ν , µ ≥ Λn , we have xn, ν − xn,µ ∈ Un+2. Since the sequence
〈x̂n〉 is Cauchy, there is for each i ∈N an Ni ∈N such that for all n, m ≥ Ni we have x̂n − x̂m ∈ Ûi+2. That in turn
implies we have xn, ν − xm, ν ∈Ui+2 for all sufficiently large ν.

Now for each ν ∈N, let yν = xν,Λν ∈G. We claim that 〈yν〉 is a Cauchy sequence. Indeed, if n, m ≥Ni , there are
arbitrarily large ν such that xn, ν − xm, ν ∈Ui+2, in particular such that ν ≥max{Λn , Λm}, and then

yn − ym = xn,Λn
− xm,Λm

= (xn,Λn
− xn, ν )

︸ ︷︷ ︸

ν ≥ Λn

+ (xn, ν − xm, ν ) + (xm, ν − xm,Λm
)

︸ ︷︷ ︸

ν ≥ Λm

∈Ui+2+Ui+2+Ui+2 ⊆Ui . (10.1)

Let ŷ ∈ Ĝ be the equivalence class of 〈yν〉. Our goal is to show x̂n → ŷ, or in other words that for each Ûi ,
we have ŷ − x̂n ∈ Ûi for all sufficiently large n. In other words, we want to show that if n is big enough then each
representative 〈zn, ν〉 of ŷ − x̂n is in Ui for all high enough ν. It will actually be enough to find Mi such that for
each n ≥ Mi , the representative 〈wn, ν〉= 〈yν − xn, ν〉 is eventually in Ui+1; for then, given n ≥ Mi and any other
representative 〈zn, ν〉, we will have zn, ν −wn, ν eventually in Ui+1, so that zn, ν = (zn, ν −wn, ν ) +wn, ν is eventually in
Ui+1+Ui+1 ⊆Ui .

Mi =Ni+2 from above will work, for if m ≥Ni+1 and ν ≥ Ξm :=max{Λm , Ni+1}, then we indeed have

yν − xm, ν = (yν − ym)+ (ym − xm, ν ) = (yν − ym)
︸ ︷︷ ︸

Eq. 10.1: m, ν ≥ Ni+1

+ (xm,Λm
− xm, ν )

︸ ︷︷ ︸

ν ≥ Ξm ≥ Λm

∈ Ui+1+Ui+2 ⊆Ui .

If H is another abelian group and f : G→H a continuous homomorphism, then the image under f of a Cauchy sequence
in G is a Cauchy sequence in H , and therefore f induces a homomorphism f̂ : Ĝ→ Ĥ, which is continuous.

Let 〈xν〉 be a Cauchy sequence in G and let U ∈ NH (0) be given. Since f (0) = 0, by continuity, there is V ∈
NG(0) such that f (V ) ⊆ U . By assumption there is s(V ) ∈ N such that xµ − xν ∈ V for all µ, ν ≥ s(V ). Then
f (xµ)− f (xν ) = f (xµ− xν ) ∈ f (V )⊆U . Thus




f (xν )
�

is Cauchy.

To show f̂ is well defined, we must show it preserves equivalence. But if 〈xν〉 and 〈x ′ν〉 are equivalent, then there
is t (V ) ∈ N such that xν − x ′ν ∈ V for ν ≥ t (V ), so f (xν )− f (x ′ν ) = f (xν − x ′ν ) ∈ f (V ) ⊆ U , showing




f (xν )
�

and



f (x ′ν )
�

are equivalent.

It is obvious f̂ is a homomorphism because operations on Cauchy sequence are defined componentwise and f̂
is induced by applying f componentwise to Cauchy sequences.

3 This is also a special case of a general result in Bourbaki’s General Topology Part 1 (Chapter III, §3.5, Theorem I) regarding completions (in
terms of Cauchy filters) with respect to the right uniformity, but I have not attempted to translate that proof into our language.

Our case could also be proved using the theorem that a first-countable, Hausdorff topological group is metrizable; see http://u.math.biu.
ac.il/~megereli/mickey25.pdf.
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To prove continuity we use the topology on the completion we defined above. Let a basic neighborhood f̂ (x̂)+V̂
in Ĥ be given, where V ∈NH (0) Since f is continuous and f (0) = 0, there is U ∈NG(0) such that f (U )⊆V . Then
for each Cauchy sequence 〈uν〉 eventually in U , the image sequence 〈 f (uν )〉 is eventually in V , so that f̂ (Û )⊆ V̂ and
therefore f̂ (x̂ + Û )⊆ f̂ (x̂)+ V̂ , showing f̂ is continuous.

Thus we have a sequence of subgroups
G =G0 ⊇G1 ⊇ · · · ⊇Gn ⊇ · · ·

and U ⊆G is a neighborhood of 0 if and only if it contains some Gn .
...

In fact if g ∈ Gn then g +Gn is a neighborhood of g ; since g +Gn ⊆ Gn this shows Gn is open. [Prove that taking the
x +Gn as a neighborhood basis of x defines a topology on G making G a topological group.*] (pp. 102–3)

The fact that the authors prove the Gn are open shows they are using the Bourbaki definition of neighborhoods:4

to wit, given a topology on X , a set N ⊆ X is defined to be a neighborhood of x just if there is an open set U ⊆ X
with x ∈ U ⊆N . A fundamental system of neighborhoods (neighborhood basis) of a point x ∈ X is then a collection
B of subsets of X such that the neighborhoods of x are precisely the sets containing a member ofB . On the other
hand, given collectionsB(x) of subsets of X , one for each x ∈ X , the following axioms guarantee that they define
a unique topology under which eachB(x) is a neighborhood basis for x:

1. if N , N ′ ∈B(x), there there is N ′′ ∈B(x) with N ′′ ⊆N ∩N ′;

2. x is in each member ofB(x);

3. if N ∈B(x), there is N ′ ∈B(x) such that for all y ∈N ′ there exists N ′′ ∈B(y) with N ′′ ⊆N

(“any neighborhood of x is also a neighborhood of all points sufficiently near x”).

It is not hard to see that that the set of translates x+Gn satisfies these axioms: 1. for m ≤ n, evidently x+Gn ⊆
(x +Gm)∩ (x +Gn); 2. obviously x ∈ x +Gn ; 3. for all y ∈ x +Gn we have y +Gn = x +Gn +Gn = x +Gn . Thus
we have a well-defined topology on G. Inversion is continuous, since it sends x +Gn ↔−x +Gn , and addition is
continuous since, given a basic neighborhood x+y+Gn , addition sends the neighborhood (x+Gn)×(y+Gn)⊆G×G
of 〈x, y〉 into it.

If 0→G′
i
,→G

p
→G′′→ 0 is an exact sequence of groups and Gn ⊆G is a subgroup, then

0→ G′

G′ ∩Gn

ι→ G
Gn

π→ G′′

p(Gn)
→ 0

is an exact sequence.* (pp. 104–5)
The kernel of G′ ,→G�G/Gn is G′∩Gn , so ι is defined and injective. The composition G

p
�G′′�G′′/p(Gn)

is surjective and takes the same value on any member of a class g+Gn , so π is defined and surjective. Since p ◦ i = 0,
so also π ◦ ι = 0. Now suppose g +Gn ∈ ker(π). Then p(g ) ∈ p(Gn), so there is h ∈ Gn with p(g − h) = 0. By
exactness of the original sequence, g−h ∈G′. Now ι

�

g−h+(G′∩Gn)
�

= g+Gn , so the sequence is exact at G/Gn .

[W]e can apply (10.3) with G′ =Gn[;] then G′′ =G/Gn has the discrete topology so that Ĝ′′ =G′′.
From p. 103 recall that Gn is open, so its translates g +Gn are open. Since these become points in G′′, it follows

G′′ is discrete. Using the neighborhood {0} of 0 in G′′, it follows that for every Cauchy sequence 〈x̄ν〉 in G′′, there is
some s({0}) such that for allµ, ν ≥ s({0})we have x̄µ− x̄ν = 0; that is, every Cauchy sequence is eventually constant.

But a sequence that is eventually x̄ is equivalent to the constant sequence 〈x̄〉, so the canonical map G′′→ Ĝ′′ is an
isomorphism.

Since the an are ideals it is not hard to check that with [the a-topology]A is a topological ring, i.e., that the ring operations
are continuous.

4 Nicolas Bourbaki, General Topology Part 1, Definitions 4 and 5, pp. 18–21.
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Chapter 10: Completions

We have shown above that A is a topological group under addition; it remains to show multiplication is contin-
uous. But multiplication maps the product neighborhood (x+an)× (y+an) of 〈x, y〉 into xy+ xan + yan +a2n ⊆
xy + an .

The completion Â of A is again a topological ring[.]
In the light of (10.4), the unspecified topology in question should be given by letting the x+Òan be a neighborhood

basis for each x ∈ Â. Because 〈Òan〉 is a decreasing sequence of subgroups, Â a topological group under addition. Each
Òan is an ideal, since it is the contraction of the ideal

∏∞
j=1 a

n/(a j ∩an) in the product ring
∏∞

j=1 A/a j . Thus, as with

A, multiplication Â×Â→ Â takes the neighborhood (x+Òan)×(y+Òan) of 〈x, y〉 into xy+xÒan+yÒan+Óa2n ⊆ xy+Òan ,
so that Â is a topological ring.

φ : A→ Â is a continuous ring homomorphism, whose kernel is
⋂

an .
By p. 102, φ is a group homomorphism with kernel as stated; multiplicativity follows because 〈x〉〈y〉 = 〈xy〉,

and taking classes gives φ(x)φ(y) = φ(xy). As for continuity, for x ∈ an we have φ(x) represented in
∏∞

j=1 A/a j

by 〈x + a j 〉 ∈
∏∞

j=1 a
n/(a j ∩ an), so that φ(an) ⊆ Òan ; thus for any y ∈ A and any basic neighborhood φ(y) + Òan of

φ(y) ∈ Â we have φ(y + an)⊆φ(y)+ Òan .

Likewise for an A-module M : take G = M , Gn = an M . This defines the a-topology on M , [making M a continuous
A-module.]

Because Gn is a decreasing sequence of additive subgroups, this does indeed define a topology on M . To see
continuity, note that given a basic neighborhood x m + an M of x m ∈ M , the map A× M → M takes the open
neighborhood (x+an)× (m+an M ) of 〈x, m〉 into (x+an)(m+an M ) = x m+an m+ xan M +a2n M ⊆ x m+an M .

[T]he completion M̂ of M is a topological Â-module.
The topology on M̂ is defined, as before by the basic neighborhoods Õan M of 0. Here we note that the module

multiplication Â×M̂ → M̂ is left undefined. For elements 〈x j +a
j 〉 ∈ Â and 〈m j +a

j M 〉 ∈ M̂ , define their product as
〈x j+a

j 〉·〈m j+a
j M 〉= 〈x j m j+a

j M 〉. To see this works, first note that x j+1m j+1−x j m j = x j+1(m j+1−m j )+(x j+1−
x j )m j ∈ x j+1a

j M+a j m j ⊆ a j M ,5 so the resulting sequence is in M̂ . Second, if we replaced x j with x ′j ∈ x j+a
j , then

we would have (x ′j − x j )m j ∈ a j M , and similarly if we replaced m j with m′j ∈ m j +a j M , so that this multiplication
is well defined.

Now, observe ÒakÕan M ⊆Õak+n M . Indeed, if x j ∈ ak and m j ∈ an M for all j , then x j m j ∈ ak+n M for all j , so that

the sequence elements x j m j + a j M are in ak+n M/(a j M + ak+n M ). For continuity, taking x ∈ Â and m ∈ M̂ , and

considering the basic neighborhood x m+Õan M of their product, note that multiplication takes (x+Òan)×(m+Õan M )
to x m+ Òan m+ xÕan M + ÒanÕan M ⊆ x m+Õan M .

If f : M →N is any A-module homomorphism, [... f] defines f̂ : M̂ → N̂ .
Let f̂

�

〈m j+a
j M 〉

�

= 〈 f (m j )+a
j N 〉. This is an element of N̂ since f (m j+1)− f (m j ) = f (m j+1−m j ) ∈ f (a j+1M )⊆

a j+1N . To see the map is well defined, note that if m′j −m j ∈ a j M , then f (m′j ) ∈ f (m j )+ a j N .

f̂ is a group homomorphism because it is defined in terms of the homomorphisms f̄ : M/a j M →N/a j N given
by f̄ (m + a j M ) = f (m) + a j N . It is a module homomorphism because f̂

�

〈x j m j + a j M 〉
�

= 〈x j f (m j ) + a j N 〉 =

〈x j + a j 〉 f̂
�

〈m j + a j M 〉
�

whenever 〈x j + a j 〉 ∈ Â and 〈m j + a j M 〉 ∈ M̂ .

f̂ is also continuous, because f̂
�

Õan M
�

⊆ÕAnN , as f̂ takes sequences of elements of an M/(a j M+an M ) to sequences
of elements of anN/(a j N + anN ).

If C is a ring, and A=C [x1, . . . , xn] a polynomial ring, and a= (x1, . . . , xn) the ideal of polynomials with no constant
term, then Â=C [[x1, . . . , xn]], the ring of formal power series.*

This generalizes Example 1) on this page.

5 Thanks to Jude Gaudot sp? for pointing out a misindexing in the earlier versions here.
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am ÃA is the set of polynomials with no terms of degree < m. If we let b= (x1, . . . , xn) in B :=C [[x1, . . . , xn]],
then bm is the set of power series of order≥ m. Since every class modulo bm is represented by the (polynomial) class
of its truncation below degree m, we have isomorphisms B/bm ∼=A/am compatible with the maps m+1 7→ m, and
so B̂ ∼= Â. But the natural map B→ B̂ is an isomorphism: it is injective since

⋂

bm = 0, and surjective because if pm

is the sum of terms of bm+1 of total degree n and 〈bm + bm〉 ∈ B̂ , then
∑

p j + bm =
∑

j<m pm + bm = bm + bm for
each m.

[A]l l s t ab l ea− f i l t rat i ons onMd e t e r mi ne t he same t o pol o g yonM, name l y t hea−t o pol o g y.(p.106)
The proof of (10.6) shows any stable a-filtrations 〈Mn〉 and 〈M ′n〉 have bounded difference, so we may fix n0 such that

for all n ∈ N we have Mn+n0
⊆ M ′n and M ′n+n0

⊆ Mn . Let x ∈ M . For any 〈Mn〉-basic neighborhood x +Mn each point
y ∈ x +Mn has a 〈M ′n〉-basic neighborhood y +M ′n+n0

⊆ y +Mn = x +Mn , so x +Mn is open in the 〈M ′n〉-topology,
and thus the 〈M ′n〉-topology contains the 〈Mn〉-topology. The converse holds by symmetry. Thus all stable a-filtrations on
M induce the same topology the stable filtration 〈an M 〉 does, namely the a-topology.

Let A be a ring (not graded), a an ideal of A. Then we can form a graded ring A∗ =
⊕∞

n=0 a
n . Similarly, if M is an

A-module and Mn is an a-filtration of M , then M ∗ =
⊕

n Mn is a graded A∗-module, since am Mn ⊆Mm+n . (p. 107)
We can afford some clarification of what is going on here. Writing An = an , we have A∗ =

⊕

An , and our multi-
plication takes Am ×An → Am+n . The slightly confusing thing is that there also is an am ⊆ A= A0, for instance, and if
we multiply that by An , we get a subset of am+n ⊆ An . So what the book is saying is that if we multiply Am by the nth

summand Mn of M ∗, we get a subset of the (m+n)th summand Mm+n ; we are not considering, say, Mn ⊆M in the zeroth
summand of M ∗.

Proposition 10.3 1
2 *. Using (10.3) or otherwise it is clear that a-adic completion commutes with finite direct sums. (p. 108)

By induction it will suffice to show a-adic completion distributes over binary direct sums. It is possible to use (10.3) and
the diagrammatic definition of direct sums to do this, but easier to just give an explicit isomorphism. The a-adic filtration on
M⊕N is 〈an M⊕anN 〉. It is clear




〈xn+a
n M 〉, 〈yn+a

nN 〉
�

7→



〈xn , yn〉+an(M⊕N )
�

gives a well-defined, homomorphic

bijectionφ : M̂⊕N̂ ↔ÙM ⊕N since we have natural isomorphisms (M/an M )⊕(N/anN ) ∼−→ (M⊕N )/an(M⊕N ) and
〈xn+1, yn+1〉 ≡ 〈xn , yn〉

�

modan(M ⊕N )
�

if and only if xn+1 ≡ xn (mod an M ) and yn+1 ≡ yn (mod anN ).

[I] f F ∼=An we have Â⊗AF ∼= F̂ .

Â⊗AF ∼= Â⊗AAn = Â⊗A

n
⊕

j=1

A
(2.14.iii)∼=

n
⊕

j=1

(Â⊗AA)
(2.14.iv)∼=

n
⊕

j=1

Â
(10.3 1

2 *)
∼=

×
n
⊕

j=1

A= F̂

Â⊗AN //

��

Â⊗AF

��
N̂ // F̂ .*

Given an A-module homomorphism φ : N → F , the following square commutes:
The map around the upper-right is the composition

Â⊗AN → Â⊗AF → Â⊗AF̂ → Â⊗ÂF̂ → F̂ taking

〈an + an〉⊗ x 7→ 〈an + an〉⊗φ(x) 7→ 〈an + an〉⊗



φ(x)+ an F
�

7→ 〈an + an〉⊗



φ(x)+ an F
�

7→



anφ(x)+ an F
�

,

and the map around the lower-left is the composition Â⊗AN → Â⊗AN̂ → Â⊗ÂN̂ → N̂ → F̂ given by

〈an + an〉⊗ x 7→ 〈an + an〉⊗ 〈x + anN 〉 7→ 〈an + an〉⊗ 〈x + anN 〉 7→ 〈an x + anN 〉 7→



φ(an x)+ an F
�

.

[In the following diagram, if the rows are exact, γ is surjective, and β is injective, then a] little diagram chasing proves
that α is injective:

N̄
ζ //

γ
����

F̄
η //

��

β
��

M̄ //

α����

0

N̂ ε
// F̂

δ
// M̂ .
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Suppose m̄ ∈ ker(α). There is f̄ ∈ η−1(m̄), and δβ f̄ = αη f̄ = 0. Since the bottom row is exact, there is n̂ ∈ N̂ with
εn̂ = β f̄ , and since γ is surjective, there is n̄ ∈ γ−1(n̂). Now εγ n̄ = βζ n̄ = β f̄ , so by injectivity of β we get f̄ = ζ n̄,
and thus m̄ = η f̄ = ηζ n̄ = 0, showing α is injective.

[C]heck that x̄m x̄n does not depend on the particular representatives chosen. [Here we have a ring A with ideal a and are
given xm ∈ am , xn ∈ an . We write x̄m ∈ am/am+1, x̄n ∈ an/an+1, x̄m x̄n := xm xn ∈ am+n/am+n+1]* (p. 111)

As sets we have (xm + am+1)(xn + an+1) = xm xn + xna
m+1+ xma

n+1+ am+n+2 ⊆ xm xn + am+n+1.

Similarly, if M is an A-module and 〈Mn〉 is an a-filtration of M , . . .

G(M ) =
∞
⊕

n=0

Mn/Mn+1

. . . is a graded G(A)-module in a natural way.
Let ak ∈ ak and xn ∈Mn ; since 〈Mn〉 is an a-filtration, ak xn ∈Mn+k . Note that

(ak + ak+1)(xn +Mn+1) = ak xn + ak+1xn + ak Mn+1+ ak+1Mn+1 ⊆ ak xn +Mn+k+1,

so for āk ∈ ak/ak+1 and x̄n ∈ Mn/Mn+1 we can define āk x̄n := ak xn ∈ Mn+k/Mn+k+1 uniquely. Extend this definition
by distributivity to a product G(A)×G(M )→G(M ), so that to finish checking G(M ) is a G(A)-module, it only remains
to check 1̄x = x and (ab )x = a(b x) for a, b ∈ A and for x ∈ G(M ). Using distributivity, we only need to check for
homogeneous elements; but then it is obvious, for 1̄x̄n = 1xn = x̄n and

(āk b̄`)x̄n = ak b` x̄n = ak b`xn = āk b`xn = āk (b̄` x̄n) in Mk+`+n/Mk+`+n+1

simply because the associative rule holds for the A-module M . To see G(M ) is a graded G(A)-module, note that by con-
struction Gk (A)Gn(M ) = (a

k/ak+1)(Mn/Mn+1)⊆Mn+k/Mn+k+1 =Gn+k (M ).

If β ◦φ= φ̂ ◦α with β : M → M̂ injective, α a bijection, and φ̂ surjective, then φ is surjective.* (p. 113)
Write ψ= φ̂◦α; it is surjective since α and φ̂ are. Thus M̂ = im(ψ) =β

�

im(φ)
�

⊆β(M ); soβ is surjective as well,
hence a bijection. Thus surjectivity of φ follows from that of ψ.

EXERCISES
Let αn : Z/pZ→ Z/pnZ be the injection of Abelian groups given by αn(1) = pn−1 and let α : A→ B be the direct sum of all

the αn (where A is a countable direct sum of copies of Z/pZ, and B is the direct sum of the Z/pnZ). Show that the p-adic
completion of A is just A but that the completion of A for the topology induced from the p-adic topology on B is the direct
product of the Z/pZ. Deduce that the p-adic completion is not a right-exact functor on the category of all Z-modules.

Since pA = 0, the sequence A/pnA is · · ·A id→ A
id→ A, the coherent sequences of which are constant sequences 〈a〉,

giving an obvious isomorphism lim←− A/pnA∼=A.
To make coordinate references easier, let Gn be the nth copy of Z/pZ in A. We have pnB =

⊕

j>n pnZ/p jZ. As
im(α j ) = p j−1Z/p jZ, which is contained in pnZ/p jZ so long as j > n, it follows α−1

j (p
nZ/p jZ) is Z/pZ if j > n

and 0 otherwise. Then An := α−1(pnB) is the subgroup
⊕

j>n G j of A=
⊕∞

j=1 G j , so A/An
∼=
⊕n

j=1 G j . The projection
A/An+1 → A/An kills the (n+ 1)st component and preserves the others; the inverse system associated to the topology on
A induced by α is thus essentially · · · → (Z/pZ)3→ (Z/pZ)2→Z/pZ. Writing π j : A/An+1→G j for the projection, in
a coherent sequence 〈ξn〉, the component πn(ξn) ∈Gn determines (is equal to) the the components πn(ξ j ) of all the later
members ξ j , j ≥ n, so the map φ : lim←− A/An→

∏∞
n=1 Gn taking 〈ξn〉 7→ 〈πn(ξn)〉 is an isomorphism.

Consider the short exact sequence 0 → A
α→ B → B/α(A) → 0. If we topologize the groups by the filtrations

〈α−1(pnB)〉, 〈pnB〉, and 〈pnB/α(A)〉, then by (10.3) the corresponding sequence of completed systems is exact; so if we
instead give A the p-adic (discrete) topology 〈pnA = 0〉, then, assuming the map Â→ B̂ remains defined, the resulting
sequence should not still be exact. Indeed, we have maps A/pnA∼=A→ α(A) ,→ B → B/pnB compiling into an inverse

system, so we have a short sequence 0→ A→ B̂ →ÚB/α(A)→ 0. Since A 6∼=
∏

nZ/pZ, this sequence is not exact at B̂ , so
p-adic completion is not right-exact. (Though it does preserve surjectivity, because if ρ : B � C is a surjection, we have
ρ(pnB) = pnC , so we have a surjective map 〈B/pnB〉 → 〈C/pnC 〉 of surjective inverse systems, and (10.3) gives us

122



Chapter 10: Completions Ex. 10.2

B̂ � Ĉ .)6 p-adic completion is not left-exact, by the same example; the essential reason is that given a general homomor-
phism α : A→ B (in our example, an injection), we needn’t have α(pnA) = α(A)∩ pnB, so the p-adic topology on A is
not that induced from B and the hypotheses of (10.3) are not met.

In Exercise 1, let An = α
−1(pnB), and consider the exact sequence

0→An→A→A/An→ 0.

Show that lim←− is not right exact, and compute lim←−
1 An .

We can rewrite the sequence as 0→
⊕∞

j=n+1 G j →
⊕∞

j=1 G j →
⊕n

j=1 G j → 0. The inclusions An+1 ,→ An , identity
map idA, and projections A/An+1�A/An give us an exact sequence of inverse systems. (10.2) gives us an exact sequence

0→ lim←− An→ lim←− A→ lim←− A/An→ lim←−
1 An→ lim←−

1 A→ lim←−
1 A/An→ 0.

To show lim←− is not right exact, it will be enough, by this sequence, to show lim←−
1 An 6= 0. Since 〈A〉 and 〈A/An〉 are surjective

systems, the proof of (10.2) shows us lim←−
1 A and lim←−

1 A/An are 0. As in the last problem, lim←− A = A and lim←− A/An
∼=

∏∞
j=1 G j . For lim←− An , since the maps are inclusions, any coherent sequence is a constant sequence, which means its lone

term must be in each An . But
⋂∞

n=1 An = 0. Thus our exact sequence actually gives us a short exact sequence

0→A
ψ
→ lim←− A/An→ lim←−

1 An→ 0.

To identify the last term it remains to describe the injection ψ. We claim it is basically the inclusion
⊕∞

j=1 G j ,→
∏∞

j=1 G j . Indeed, since the maps A→ A/An are quotient maps, the map from A ∼= lim←− A (∏∞
n=1 A to lim←− A/An (

∏∞
n=1 A/An is given by a 7→ 〈a〉 7→ 〈a (mod An)〉. Composing with the isomorphisms A/An

∼=
⊕n

j=1 G j , this gives
a 7→




〈π j (a)〉nj=1

�∞
n=1, sending a ∈

∏∞
j=1 G j to a list of truncations. Using our isomorphism φ : 〈ξn〉 7→ 〈πn(ξn)〉 from

the last problem finally gives a 7→ 〈πn(a)〉= a. Thus lim←−
1 An
∼=
�
∏∞

n=1Z/pZ
���
⊕∞

n=1Z/pZ
�

.

Let A be a Noetherian ring, a an ideal and M a finitely-generated A-module. Using Krull’s Theorem and Exercise 14 of Chapter
3, prove that

∞
⋂

n=1

an M =
⋂

m⊇a
ker(M →Mm),

where m runs over all maximal ideals containing a.
Krull’s Theorem (10.17) says that the left-hand side is the set of elements of M annihilated by 1+ a for some a ∈ a, so

it remains to show the same is true of the right. Let x ∈ M . For all maximal m ⊇ a we have 1+ a ⊆ 1+m ⊆ A\m so
if (1+ a)x = 0 for some a ∈ a, then by [3.1], x/1 = 0 in Mm for all maximal m ⊇ a. On the other hand if x/1 = 0 in
Mm for all maximal m ⊇ a, then the submodule Ax ⊆ M is such that (Ax)m = 0, and then [3.14] gives Ax = ax, so in
particular there is a ∈ a such that x = ax, or (1− a)x = 0.

Deduce that
M̂ = 0 ⇐⇒ Supp(M )∩V (a) =∅

�

in Spec(A)
�

.

Recall that the module above is the kernel of the canonical map M → M̂ , so that M̂ = 0 ⇐⇒ M =
⋂

m⊇a ker(M →
Mm). That in turn means that Mm = 0 for all maximal m⊇ a, or in the language of [3.19], that none of these maximal
ideals are in Supp(M ). Let p ∈ Spec(A) be contained in a maximal m, so that Sm ⊆ Sp. Then if x ∈ M is annihilated by
an element of Sm, it is a fortiori annihilated by an element of Sp, so by [3.1], if Mm = 0, then also Mp = 0. Thus Mm = 0
for all maximal m⊇ a if and only if Mp = 0 for all p ∈V (a), or in other words, Supp(M )∩V (a) =∅.

6 We embarrassingly were unable to make the connection between the above and the fact that p-adic completion is not exact, mostly because
we were trying to prove surjectivity was not preserved and to find an exact sequence where A, with the alternate topology, occurred as the last
nonzero term. This paragraph adapts Yimu Yin’s solution: http://pitt.edu/~yimuyin/research/AandM/exercises10.pdf
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Let A be a Noetherian ring, a an ideal in A, and Â the a-adic completion. For any x ∈A, let x̂ be the image of x in Â. Show that

x not a zero-divisor in A =⇒ x̂ not a zero-divisor in Â.

Let x ∈ A not be a zero-divisor, so multiplication by x is injective; the book’s suggested sequence 0→ A
x→ A is then

exact. Taking inverse limits gives an exact sequence 0→ Â→ Â by (10.3), where the map on Â⊆
∏

A/an is given by
〈ξn〉 7→ 〈xξn〉, i.e., by multiplication by x̂. Thus multiplication by x̂ is injective, so x̂ is not a zero-divisor.

Alternately, but very similarly, one can use the A-algebra structure A→ Â to tensor the sequence with Â. Since A is
Noetherian, Â is flat by (10.14), so the map x ⊗ id: A⊗AÂ→ A⊗AÂ is injective. By (2.14.iv) we have an isomorphism
φ : A⊗AÂ→ Â, and φ ◦ (x ⊗ id) ◦φ−1 : Â→ Â is multiplication by x̂.

Does this imply that

A is an integral domain =⇒ Â is an integral domain?

Not a priori, for in general not all elements of Â are images of elements of A. In fact,7 if we write Aa for the

A/(ab)n+1 ∼ //

��

A/an+1×A/bn+1

��
A/(ab)n ∼ // A/an ×A/bn

completion of A at a, then if A is an integral domain and a, b Ã A are coprime
ideals, we can show Aab is not an integral domain. Since for each an and bn remain
coprime for n ≥ 1 (see the footnote to [9.8]), by the Chinese Remainder Theorem
(1.10), each map A/(ab)n→A/an×A/bn given by x+(ab)n 7→ 〈x+an , x+bn〉 is
an isomorphism, and the square diagrams to the right commute, where the vertical
maps on the right are 〈x + an+1, y + bn+1〉 7→ 〈x + an , y + bn〉. Thus we have an
isomorphism between Aab and the inverse limit on the right, which ring consists of coherent sequences




〈ξn , ηn〉
�

n of pairs
in
∏

(A/an ×A/bn), which correspond to pairs



〈ξn〉n , 〈ηn〉n
�

of coherent sequences in
�
∏

A/an
�

×
�
∏

A/bn
�

under
the obvious isomorphism, so that Aab ∼=Aa×Ab, and hence is not an integral domain.

Let A be a Noetherian ring and let a, b be ideals in A. If M is any A-module, let Ma, Mb denote its a-adic and b-adic completions
respectively. If M is finitely generated, prove that (Ma)b ∼=Ma+b.

Since (10.13) tells us Ma =Aa⊗AM , by (2.14) it is enough to prove that Ab⊗AAa ∼=Aa+b, but it is not obvious how
to do this. Instead, we follow the book’s instructions to complete a proof that is unfortunately lengthy when fully fleshed
out.

Following the book’s suggestion, we can a-adically complete the sequences 0→ bm M → M → M/bm M → 0 to get
sequences 0 → (bm M )a → Ma → (M/bm M )a → 0, which are exact by (10.12). Using the isomorphisms (10.13) we
see the map (bm M )a → Ma is the composition (bm M )a ∼−→ Aa ⊗Ab

m M � Aa ⊗AM
∼−→ Ma. Since the isomorphism

Aa ⊗AM → Aa ⊗AMa → Aa ⊗Aa M → Ma is given by 〈an〉 ⊗ x 7→ 〈an〉 ⊗ 〈x〉 7→ 〈an x〉, it follows that the image of
(bm M )a→Ma is bm Ma. Then exactness gives Ma/bm Ma ∼= (M/bm M )a.

Therefore

(Ma)b = lim←− Ma/bm Ma ∼= lim←− (M/b
m M )a ∼= lim←−

m

lim←−
n

�

M
bm M

Â

an M + bm M
bm M

�

,

since (an M + bm M )/bm M is the image of an M under M � M/bm M . But by the third isomorphism theorem (2.1.i), the
terms on the right-hand side are isomorphic to M/(an M + bm M ) =: Mm, n .

An element of lim←−n
Mm, n is represented by a sequence 〈xm, n〉n of elements xm, n ∈ Mm, n coherent under the quotient

maps Mm, n+1 → Mm, n , and an element of lim←−m lim←−n Mm, n is represented by a sequence



〈xm, n〉n
�

m of such sequences,

coherent under the reductions m+ 1 7→ m, which act on the nth coordinates xm+1, n (the inverse limit being a submodule
of
∏

n Mm+1, n ) as the quotient maps Mm+1, n → Mm, n . Note that whenever n ≤ n′ and m ≤ m′, the iterated quotient
maps Mm′, n′ →Mm′, n→Mm, n and Mm′, n′ →Mm, n′ →Mm, n are equal. Thus an element of the double limit is really just
an infinite array 〈xm, n〉m, n coherent in both directions. Given such a coherent array, each xp, p uniquely determines all
xm, n with m, n ≤ p. Therefore, to specify a coherent array uniquely, one need only specify a coherent diagonal sequence
〈xp, p〉 ∈ lim←−p M p, p . This sets up a bijection lim←−m lim←−n Mm, n ↔ lim←− M p, p that obviously preserves the operations and

hence is an isomorphism.
Finally, since

(a+ b)2n ⊆ an + bn ⊆ (a+ b)n ,

7 This is taken, after our own failure, from [KarpukSol].
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the topology on M induced by the filtration 〈(an+bn)M 〉 is the same as that induced by 〈(a+b)n M 〉, so the corresponding
completions should be isomorphic. But the former is the inverse limit from above, isomorphic to (Ma)b, and the latter is
Ma+b.

Let A be a Noetherian ring and a an ideal in A. Prove that a is contained in the Jacobson radical of A if and only if every maximal
ideal of A is closed for the a-topology. (A Noetherian topological ring in which the topology is defined by an ideal contained
in the Jacobson radical is called a Zariski ring. Examples are local rings and (by (10.15)(iv)) a-adic completions.

This proof oddly requires no use of the Noetherian hypothesis. We show a maximal ideal m is closed in the a-topology if
and only if a⊆m. This implies the result because a is contained in all maximal ideals if and only it is contained in their
intersection, the Jacobson radical. Note that a set C ⊆ A is closed if and only if each x ∈ A\C has a basic neighborhood
x + an disjoint from C . Let mÃA be a maximal ideal.

If a⊆m and x /∈m, then so x + an ⊆ x +m is disjoint from m for all n.
If a 6⊆m, any element of a\m descends to a unit in the field A/m, and so has a multiple x ≡ 1 (mod m), with x ∈ a.

Then xn ∈ an and xn ≡ 1 (mod m), so 1− xn ∈ (1+ an)∩m for all n even though 1 /∈m, and m is not closed.

Let A be a Noetherian ring, a an ideal of A, and Â the a-adic completion. Prove that Â is faithfully flat over A (Chapter 3, Exercise
16) if and only if A is a Zariski ring (for the a-topology).

We again seem to be able, alarmingly, to prove the result without using the Noetherian hypothesis. By (10.14), Â is
flat, and by [3.16.iii], the condition will be met if and only if the extensions mÂ 6= Â for all maximal m Ã A. Since a
Noetherian ring A is Zariski if and only if a is in all maximal m, it will be enough to show that for each maximal m we
have a⊆m ⇐⇒ mÂ 6= Â ⇐⇒ (IS THIS REALLY THE SAME?) for no element x ∈m is x̂ a unit in Â.

If a⊆m, then m/an is a proper ideal of A/an for all n, and so no element of m can become invertible.
If a 6⊆ m, then a +m = (1), and there are x ∈ m and a ∈ a with x = 1 − a. Inductively, given y2n such that

xy2n = 1− a2n
, multiplying both sides by 1+ a2n

gives xy2n (1+ a2n ) = 1− a2n+1
, showing x is a unit modulo a2n+1

. Now
y2n+1 := y2n (1+ a2n ) ≡ y2n (mod a2n ), so if we set ym = y2n+1 for 2n < m ≤ 2n+1, we see 〈yn + an〉 is an element of Â
inverse to x̂.

Alternately8 (and using the Noetherian hypothesis), if Â is faithfully flat, then by [3.16.iii], me 6= Â for any maximal
mÃ A, so there is a maximal nÃ Â containing it. By [1.5.iv], nc ⊇mec ⊇m is maximal, so nc =m. (10.15.iv) says â is
in R(Â), so â⊆ n. Therefore a⊆ âc ⊆ nc =m, and a is contained in R(A).

The book also has a suggested proof. Since Â is flat by (10.14), to prove faithful flatness [3.16.v] says it is enough to check
that the canonical maps M → Â⊗AM are injective for all A-modules M . If this fails, some nonzero x ∈M is killed, so the
composition Ax ,→M → Â⊗AM is already not injective. Since Â is flat, again by (10.14), Â⊗AAx→ Â⊗AM is injective,
so the map Ax→ Â⊗AAx is not. Thus we only need to check injectivity for cyclic modules M ; in this case, (10.13) tells us
Â⊗AM ∼= M̂ , so we are concerned with the maps M → M̂ .

If a is contained in the Jacobson radical of A, then since A is Noetherian and M is finitely generated, by (10.19), the
kernel of M → M̂ is 0.

If a is not contained in the Jacobson radical, there is a maximal ideal m /∈ V (a); write M = A/m. Since m ⊆ A is
not closed by [10.6], it follows that {0} ⊆ M is not closed, and so cannot be the kernel of M → M̂ . Alternately, since
each an +m = (1), it follows that an M = M for each n, so the kernel is M . Looked at yet another way, by (3.19.v),
Supp(M ) =V

�

Ann(M )
�

= {m}, which is disjoint from V (a), so by [10.3], M̂ = 0.

Let A be the local ring of the origin in Cn (i.e., the ring of all rational functions f/g ∈ C(z1, . . . , zn) with g (0) 6= 0), let B be
the ring of power series in z1, . . . , zn which converge in some neighborhood of the origin, and let C be the ring of formal
power series in z1, . . . , zn , so that A( B ( C . Show that B is a local ring and that its completion for the maximal ideal
topology is C . Assuming that B is Noetherian, prove that B is A-flat.

To sensibly talk about B, we first must pick a notion of convergence for power series in several variables; we use absolute
convergence, because it is independent of which sequence of partial sums we take the limit of.

The surjective ring homomorphism h 7→ h(0) : B � C shows the ideal m = (z1, . . . , zn) of power series with zero
constant term is maximal. To show B is local, we demonstrate a power series f with nonzero constant term is a unit. If the

8 http://pitt.edu/~yimuyin/research/AandM/exercises10.pdf
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reader is willing to accept that a formal multiplicative inverse of a power series with positive multiradius of convergence
likewise has positive multiradius of convergence, then we need only produce an f −1 ∈ C ; and we can do this by an
induction starting at n = 0, for by [1.5.i], f ∈ C[[z1, . . . , zn , w]] is a unit just if f (z, 0) ∈ C[[z1, . . . , zn]] is a unit.
Otherwise, please consult the footnote.9 This also shows that A⊆ B, since any g ∈ C[z] with g (0) 6= 0 has an inverse in
B. But A( B, since for example exp(z) /∈A. We see B (C since

∑

j !z j
1 ∈C but j !|ζ j | →∞ for ζ 6= 0.

To compute B̂, write n = m ∩ A and note that the inclusion A ,→ B induces isomorphisms A/nm ∼−→ B/mm for
all m ∈ N, basically because the truncations of power series below a given total degree are just polynomials. Since these
isomorphisms respect the quotient maps A/nm+1�A/nm , we have an isomorphism of inverse systems, so B̂ ∼= Â, which,
as pointed out in the proof of (10.27), is C .

Since A and B are local rings with topologies defined by their maximal ideals (which are their Jacobson radicals), and
we are told B is Noetherian ([7.4.ii] contains a proof in the n = 1 case; can we do an induction?), they are Zariski rings.
By [10.7], C = B̂ = Â is faithfully flat over A and B, so it follows from [3.17] that B is A-flat.

Let A be a local ring, m its maximal ideal. Assume that A is m-adically complete. For any polynomial f (x) ∈ A[x], let f̄ (x) ∈
(A/m)[x] denote its reduction mod. m. Prove Hensel’s lemma: if f (x) is monic of degree n and if there exist coprime
monic polynomials ḡ (x), h̄(x) ∈ (A/m)[x] of degrees r, n− r with f̄ (x) = ḡ (x)h̄(x), then we can lift ḡ (x), h̄(x) back
to monic polynomials g (x), h(x) ∈A[x] such that f (x) = g (x)h(x).

There is a more general version stated as [Eisenbud, Thm. 7.18], proved there in two exercises whose extensive hints
we follow.

First, we show that given a ring B and coprime, monic p, q ∈ B[x]with deg p = r, any c ∈ B[x] admits an expression
c = ap + b q with deg b < r. (In the case q = 1, this is the division algorithm. This implies the book’s suggested lemma,
for if deg q = n − r and deg c ≤ n, we have deg b q < n, forcing deg a ≤ n − r.) Indeed, B[x]/(p) is generated by
q̄ since (p, q) = B[x], so there is b ∈ B[x], such that b̄ q̄ = c̄ in B[x]/(p). Since p is monic of degree r , the elements
1̄, x̄, . . . , x̄ r−1 freely generate B[x]/(p) as a B-module, so we may assume deg b < r . Since q is monic, this choice of b
is unique. Now c ≡ b q

�

mod (p)
�

, and p, being monic, is by [1.2.ii] not a zero-divisor, so ap = c − b q has a unique
solution a ∈ B[x]. 10, 11

Second, we claim that if b⊆R(A) is an ideal of A and we are given g , h ∈A[x]with g monic, then if ( ḡ , h̄) = (1) in
(A/b)[x], we have (g , h) = A[x]. Indeed, if M = A[x]/(g ), and N = hM , then since bA[x] + (g , h) = A[x], we have

9 This is adapted from a proof where n = 1 in [Lang, Ch. II, Thm. 3.3]. As convergence is unaffected by taking constant multiples, we
may assume without loss of generality that f (0) = 1. Here we set up some notation. We will work in the rings C[[z, w]] = C[[z1, . . . , zn , w]]
and C[[w]]. If α = 〈α1, . . . , αn〉 ∈ Nn is a multi-index, xα =

∏

xαm
m , whether xm = zm or xm ∈ C. If |a j | ≤ r j for a j ∈ C and r j ≥ 0, write

∑

a j w j ≺
∑

r j w j in C[[w]]; this is a transitive relation. The following fact is helpful: if f , g ∈C[[w]] andω ∈C are such that f ≺ g and g (ω)
converges, then f (ω) converges.

To see f −1 converges in a neighborhood of the origin, set g = 1− f ; then formally, f −1 = (1− g )−1 =
∑

k g k , using the geometric series.
Write g =

∑

a j w j ∈ C[[z, w]] for a j ∈ C[[z]]. Since g converges absolutely some neighborhood of the origin, we can find a closed polydisk

{〈ζ ,ω〉 : ζm ≤ εm , ω ≤ δ} on which g converges absolutely. In particular, the a j converge absolutely on D̄ = {ζ : ζm ≤ εm}. If we write

a j =
∑

cαzα for cα ∈ C, then their maximal values on D̄ are the finite numbers r j =
∑

|cα|εα, and so to show f −1(ζ ,ω) converges for all

ζ ∈ D̄ it suffices to show f −1(r,ω) := f −1(r1, . . . , rn ,ω) converges. If we had r j ≥ δ− j for infinitely many j , the series g (r, δ) would not
converge; as we know it does, r j <δ

− j for all but finitely many j , and thus there is a constant R≥ δ−1 such that r j < R j for all j . We now have

g (r, w)≺
∑∞

j=1 R j w j = Rw
1−Rw , so

f −1(r, w)≺
∞
∑

k=0

g (r, w)k ≺
∞
∑

k=0

� Rw
1−Rw

�k
=

1

1− Rw
1−Rw

=
1−Rw
1− 2Rw

= (1−Rw)
∞
∑

k=0

(2Rw)k ≺ (1+Rw)
∞
∑

k=0

(2Rw)k ,

showing f −1 converges on D̄ ×{ω : |ω|< 1/2R}.
10 There is actually a mistake here ([EisenEmail]), as the author does not require q to be monic. We need q̄ to not be a zero-divisor for the

uniqueness claim. This will also be the case if B[x]/(p) is an integral domain, but we cannot make any guarantees on p in the rest of the proof.
11 Here is a proof of the book’s lemma that if monic p, q ∈ B[x] of respective degrees r, n − r are coprime, then for any polynomial c of

degree ≤ n there are a, b ∈ B[x], of respective degrees ≤ n− r, r , such that ap + b q = c . Since (p, q) = (1), this is obviously possible if we drop
the restriction on degrees. If a = a j x j + (deg < j ) and b = bm x m + (deg < m) with a j , bm 6= 0, and j > n − r , we will polynomials a′, b ′ of
degrees respectively < j , m such that again a′p + b ′q = c ; applying this repeatedly eventually achieves the desired restriction on degrees. Since
deg c ≤ n < j + r , it follows that the leading term a j x j+r of ap cancels the leading term bm x m+n−r , so a j = −bm and j + r = m + n − r , or

j − (n− r ) = m− r . (This also shows r < m.) If we let a′ = a− a j x j−(n−r )q and b ′ = b − bm x m−r p, then deg a′ < j and deg b ′ < m, and

a′p + b ′q = (ap + b q)− (a j x j−(n−r )+ bm x m−r )pq = c .
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bM +N = M . Since M is finitely generated by 1̄, x̄, . . . , x̄deg g−1, Nakayama’s Lemma (2.7) applies to show hM = M , so
that (g , h) = (1) in A[x].

Now we prove the result. We need only assume that A is complete with respect to some ideal a; we do not necessarily
need a maximal or A local. We inductively construct sequences 〈gk〉 and 〈hk〉 of monic polynomials of the right degrees
in A[x] with f − gk hk ≡ 0 (mod ak ) and gk ≡ g j , hk ≡ h j (mod a j ) for j < k. Coefficient by coefficient, the gk and
the hk will form Cauchy sequences with respect to the a-topology, and so converge to unique limits g , h ∈ A[x] with
g ≡ gk , h ≡ hk (mod ak ) for all k ≥ 1. We will then have f − g h = ( f − gk hk ) + (gk hk − g h) ≡ 0 (mod ak ) for all
k. Since A is a-adically complete,

⋂

ak = 0, so f = g h, as hoped.
If g1, h1 are lifts of the appropriate degrees of ḡ , h̄ to A[x], by assumption, f − g1h1 ≡ 0 (mod a) (really meaning

modulo a[x]). The Eisenbud version of the induction step follows; the one from the book is in the footnote.12 Suppose
inductively we have found gk , hk ∈ A[x] such that gk ≡ g j , hk ≡ h j (mod a2 j−1) for all j < k and f − gk hk = c ≡ 0

(mod a2k−1). Since by (10.15.iv), a2k−1 ⊆R(A), it follows from the second claim, with b= a2k−1
, that (gk , hk ) =A[x]. By

the first claim, with B =A, p = gk , q = hk , there are unique a, b ∈A[x]with deg b < r and agk+bhk = c. Descending
to A/a2k−1[x], where we take B = A/a2k−1

in the first claim and use uniqueness, we see that since c̄ = 0 we also have
ā = b̄ = 0, or a, b ∈ a2k−1[x]. Set gk+1 = gk + b ∈ gk + a2k [x] and hk+1 = hk + a ∈ hk + a2k [x], so

f − gk+1hk+1 = ( f − gk hk )− (agk + bhk )− ab = c − c + ab = ab ∈ a2k
[x].

i) With the notation of Exercise 9, deduce from Hensel’s lemma that if f̄ (x) has a simple root α ∈ A/m, then f (x) has a simple
root a ∈A such that α= a mod m.

If α is a simple root of f̄ , we have a factorization f̄ = (x − α) ḡ , where ḡ is coprime to x − α. Since we assume f̄ is
monic, so is ḡ . By [10.9], there exist monic lifts h of x −α and g of ḡ to A[x]; since deg h = 1, we must be able to write
h = x − a for some a ∈ A, and a 7→ α under A→ A/m. Since x − a is irreducible, if it divided g , then (x − α)2 would
divide f̄ , contrary to assumption, so a is a simple root of f .

ii) Show that 2 is a square in the ring of 7-adic integers.
2 is be a square if and only if x2−2 ∈Z7[x] has a solution, if and only if it splits into linear factors. x2− 2̄ has simple

roots ±3̄ in Z7/7Z7
∼=Z/7Z, so by i), 2 has two square roots in Z7.

iii) Let f (x, y) ∈ k[x, y], where k is a field, and assume that f (0, y) has y = a0 as a simple root. Prove that there exists a
formal power series y(x) =

∑∞
n=0 an xn such that f

�

x, y(x)
�

= 0.
(This gives the “analytic branch” of the curve f = 0 through the point (0, a0).)

Write A= k[[x]] and m = (x), so A/m = k. Considering f (x, y) as an element of A[y] ) k[x][y] = k[x, y], the
image of f in k[y] is f (0, y), which by assumption has a simple root a0 ∈ k. By i), f (x, y) has a simple root y(x) ∈ k[[x]]
with constant term a0.

Show that the converse of (10.26) is false, even if we assume that A is local and that Â is a finitely-generated A-module.
Since (10.26) says that completing a Noetherian ring A with respect to an ideal a produces a Noetherian Â, the converse

would presumably be that if the a-completion Â of a ring A is Noetherian, then A was already Noetherian. It then falls to
us to find a non-Noetherian local ring with finitely generated, Noetherian completion.

Following the book’s hint, let A = C∞0 (R) be the set of germs [ f ] at 0 ∈ R of C∞ real-valued functions f. The
homomorphism [ f ] 7→ f (0) surjects onto the field R, showing the functions vanishing at 0 form a maximal ideal a. To

12 Let gk , hk ∈A[x] be given. Since ḡk = ḡ , h̄k = h̄, we have ( ḡk , h̄k ) = (1) in (A/a)[x], so there are m j ∈ ak such that f − gk hk =
∑n

j=0 m j x j ,

and for 0≤ j ≤ n there exist a j , b j ∈A[x] of degrees≤ n− r, r such that ā j ḡk+ b̄ j h̄k = x̄ j in (A/a)[x]. Then there are r j ∈ a[x]with deg r j ≤ n
such that a j gk + b j hk + r j = x j in A[x] (this paraphrases the solution in [PapaSol]; I had not seen the necessity of working coefficient by
coefficient and gotten stuck). We then can write

f − gk hk =
∑

m j (a j gk + b j hk + r j ) = gk

∑

m j a j + hk

∑

m j b j +
∑

m j r j .

Now gk+1 = gk +
∑

m j b j ∈ gk + ak+1[x] and hk+1 = hk +
∑

m j a j ∈ hk + ak+1[x] satisfy the degree restrictions, and

f − gk+1 hk+1 = ( f − gk hk )− gk

∑

m j a j − hk

∑

m j b j −
∑

j

∑

`

m j m`a j b` =
∑

m j r j −
∑

j

∑

`

m j m`a j b` ∈ a
k+1[x].
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see this is the only maximal ideal, suppose f represents an [ f ] /∈ a; then by continuity f 6= 0 on some neighborhood of 0,
so f locally admits a multiplicative inverse g , and [ f ][g ] = [1], showing [ f ] is a unit.

Write bn :=
�

[ f ] ∈ A : f ( j )(0) = 0 for 0 ≤ j < n
	

; we want to show an = bn = (x
n). Suppose inductively that

an ⊆ bn . Then if [ f ] ∈ an+1, we can write f as a sum of elements g h for [g ] ∈ a and [h] ∈ an . By the generalized product
rule, (g h)(n) =

∑n
j=0

�n
j

�

g ( j )h (n− j ); since g (0) = 0, and h (n− j )(0) = 0 for j ≥ 1, we see f (n)(0) = 0, so [ f ] ∈ bn+1. For
the reverse inclusion, we use Taylor’s theorem with remainder: for any open interval U ⊆ R and f ∈ C∞(U ), we can
write f (x) =

∑n−1
j=0

1
j ! f ( j )(0)x j + gn(x)x

n on U , where gn ∈C∞(U ) and gn(0) =
1
n! f (n)(0).13 Thus bn ⊆ (xn)⊆ an .

Since xn gn ∈ an , and any polynomial is its own Maclaurin series, truncations of Maclaurin series yield isomorphisms
A/an → R[x]/(xn) compatible with the quotient homomorphisms given by n + 1 7→ n. By Example 1 on p. 105, Â∼=
R[[x]], which is Noetherian by (7.5*) because R is a field. However, by (10.18), since 0 6= e−1/x2 ∈

⋂

an (its Maclaurin
series is 0), A is not Noetherian. By Borel’s theorem that every power series is the Taylor series of a C∞ function, A→ Â
is surjective, so that Â is finitely generated.

If A is Noetherian, then A[[x1, . . . , xn]] is a faithfully flat A-algebra.
By [2.5], A→A[x1, . . . , xn] is flat, and by (10.14) and our proof above that the latter is the completion of the former,

A[x1, . . . , xn]→ A[[x1, . . . , xn]] is flat, so [2.8.ii] says A→ A[[x1, . . . , xn]] is flat. For any a Ã A we have ae = a+ a ·
(x1, . . . , xn), so that aec = a; thus, by [3.16.i], A[[x1, . . . , xn]] is faithfully flat over A.

13 For a proof, note that by the chain rule, d
dt f (tx) = x f ′(tx). Integrating both sides from 0 to 1 and using the fundamental theorem of calculus

gives f (x)− f (0) = x
∫ 1

0 f ′(tx)dt . Write g (x) =
∫ 1

0 f ′(tx)dt ; then g (0) =
∫ 1

0 f ′(0)dt = f ′(0). Thus f (x) = f (0) + x g (x) for a C∞ function g
with g (0) = f ′(0). See [Tu, Lemma 1.4] for a generalization of this result to real-valued functions on open subsets ofRn , star-shaped with respect
to some point (specialized to 0 for us).

Applying the above to g and iterating, we get expressions f (x) = f (0)+
∑n−1

j=1 g j (0)x
j + gn(x)x

n , so f (n)(0) = n!gn(0) for all n.

This differs slightly from the usual form of the theorem, which assumes only that f is n times differentiable at 0 and gets a remainder term
hn−1(x)x

n−1 with limx→0 hn−1(x) = 0 instead of our gn(x)x
n ; see e.g. [WPTaylor].
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(1− t )−d =
∞
∑

k=0

�

d + k − 1
d − 1

�

t k . (p. 117)

(1− t )−1 = 1+ t + t 2+ · · · , so we want to check that the coefficient of t k in its d th power is
�d+k−1

d−1

�

. This coefficient is
the number of possible ways of forming a product

∏d
j=1 t k j with

∑d
j=1 k j = k, which is the number of ordered partitions

of a row of k objects into d groups. This is the same as the number of ways of inserting d − 1 dividers into the row of k
objects, or of choosing d − 1 objects out of k + d − 1 to serve as dividers, namely

�d+k−1
d−1

�

.

Example. Let A=A0[x1, . . . , xs ], where A0 is an Artin ring and the xi are independent indeterminates. Then An is a free
A0-module generated by the monomials x m1

1 · · · x
ms
s where

∑

mi = n; there are
�s+n−1

s−1

�

of these, hence P (A, t ) = (1− t )−s .
(p. 118)

The coefficient of t n in P (A, t ) is l (An). Since An
∼=A(

s+n−1
s−1 )

0 as an A0-module, it follows l (An) =
�s+n−1

s−1

�

l (A0). Then by
the expression above, P (A, t ) = l (A0)(1− t )−s . This is not the expression that the book gives unless l (A0) = 1. The degree
d (A) = d

�

Gm(A)
�

as defined on p. 119 is unaffected by this change, and hence so is the dimension n of k[x1, . . . , xn](x1, ..., xn )

in the example on p. 121 and d
�

Gq(A)
�

in the proof of (11.20).

Given a polynomial f (x) ∈Z[x], the sum g (n) =
∑n

j=0 f ( j ) is a polynomial in n.* (p. 119)
We can write f (n) =

∑

k ak nk , so it will be enough to show that for each n the function gk (n) =
∑n

j=0 j k is a
polynomial.1 Note that g0(n) = n+1. Suppose inductively that g j (n) is a polynomial for j ≤ k. By the binomial theorem

we have (m+1)k+1−mk+1 =
∑k

j=0

�k+1
j

�

m j . Summing both sides from m = 0 to n gives (n+1)k+1 =
∑k

j=0

�k+1
j

�

g j (n),

and rearranging, we see gk (n) = (n+ 1)k+1−
∑k−1

j=0

�k+1
j

�

g j (n) is a polynomial in n.

If 0→N ,→M →M ′→ 0 is exact and qÃA, then 0→N/(N ∩ qn M )→M/qn M →M ′/qn M ′→ 0 is exact.* (p. 120)
This is a special case of a similar result in the beginning notes to Ch. 10.

EXERCISES
Let f ∈ k[x1, . . . , xn] be an irreducible polynomial over an algebraically closed field k. A point P on the variety f (x) = 0 is

non-singular ⇐⇒ not all the partial derivatives.f/.xi vanish at P. Let A= k[x1, . . . , xn]/( f ), and let m be the maximal
ideal of A corresponding to the point P. Prove that P is non-singular ⇐⇒ Am is a regular local ring.

Write k[x] = k[x1, . . . , xn] and let P = 〈a1, . . . , an〉, so that m is the image in A of mP = (x1− a1, . . . , xn − an) Ã
k[x]. Since f (P ) = 0, we have f ∈ mP , so there are p j ∈ k[x] (possibly zero) such that f =

∑

(x j − a j )p j . Then
. f/.xi = pi +(xi −ai )(.pi/.xi )+

∑

j 6=i (x j −a j ).p j/.xi . All terms but possibly pi are in mP ; so it follows that P is a singular
point of the variety f (x) = 0 ⇐⇒ all the.f/.xi vanish at P ⇐⇒ each pi ∈mP ⇐⇒ f ∈m2

P .
Now we work to rephrase regularity of Am in terms of f . Since A= k[x]/( f ) and the quotient map k[x]→A takes

SmP
→ Sm, by (3.4.iii) and [3.4], we have k[x]mP

/( f )mP
∼=
�

k[x]/( f )
�

m
= Am. Since dim k[x]mP

= n, by (11.18),
dim Am = n − 1. By the third isomorphism theorem (2.1.i) and (3.4.iii), k ∼= k[x]/mP

∼= A/m ∼= Am/mAm, so, using
(3.4.iii) again, Am is a regular local ring just if dimk (m/m

2) = dimk (mAm/m
2Am) = n−1. Now m=mP/( f ), and m2 is

the image ofm2
P under k[x]→A, which is

�

m2
P+( f )

�

/( f ), so that by (2.1.i) again,m/m2 = mP
( f )

.

m2
P+( f )
( f )

∼=mP/
�

m2
P+( f )

�

.

If f ∈m2
P , then this is mP/m

2
P , which has dimension n, so Am is not regular. Otherwise m2

P +( f ) strictly contains m2
P , so

dimk (m/m
2)< n. But by (11.15), dimk (m/m

2)≥ n− 1.

1 adapted from http://mathforum.org/library/drmath/view/56920.html
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Ex. 11.2 Chapter 11: Dimension Theory

In (11.21) assume that A is complete. Prove that the homomorphism k[[t1, . . . , td ]]→A given by ti 7→ xi (1≤ i ≤ d ) is injective
and that A is a finitely-generated module over k[[t1, . . . , td ]].

The first thing to check is that this homomorphism is well defined. If n = (t1, . . . , td ) Ã k[t ] := k[t1, . . . , td ], then
the nn form a neighborhood basis of 0 in k[t ], and the map k[t ] → A given by ti 7→ xi sends nn → qn ⊆ mn . Thus
a Cauchy sequence in k[t ] is sent to a Cauchy sequence in A, which converges to a point of A by completeness, so since
k[[t ]] := k[[t1, . . . , td ]] is the completion of k[t ] with respect to n, we have a well defined map k[[t ]]→ A as asserted,
making A a k[[t ]]-module.

For injectivity, let p(t ) ∈ k[[t ]] be in the kernel. Writing q = (x1, . . . , xd ), by (7.16.iii), p(x) = 0 ⇐⇒ p(x) ∈ qn

for every n. Write pn(t ) for the nth homogeneous component of p(t ); since p0(x) = 0, it follows p0(t ) = 0. Inductively
suppose p j (t ) = 0 for all j ≤ n. Now p(x)− pn(x) ∈ qn+1, and p(x) = 0 ∈ qn+1, so pn(x) ∈ qn+1 By (11.20), the
coefficients of pn(t ) are in k ∩m= 0. Thus each pn(t ) = 0, so p(t ) = 0.

Now 〈qn〉 is a n̂-filtration of A, k[[t ]] is complete, and A is Hausdorff (since complete) with respect to the q-topology
(which by (7.16.iii) is the m-topology), so by (10.24), A will be a finitely-generated k[[t ]]-module if Gq(A) is a finitely-
generated Gn̂

�

k[[t ]]
�

-module. By (10.22.ii), Gn̂

�

k[[t ]]
� ∼= Gn

�

k[t ]
�

and the latter is isomorphic to k[t ] under t̄i 7→ ti .
But the map k[t ]→Gq(A) taking ti 7→ x̄i is a quotient map.

Extend (11.25) to non-algebraically-closed fields.
By Noether normalization [5.16], if d = dim V , there are algebraically independent x1, . . . , xd ∈ A(V ) such that

A(V ) is integral over the polynomial subring B = k[x1, . . . , xd ]. Since B is a UFD, as noted on p. 63, it is integrally
closed. Following the book’s hint, note that k̄ is integral over k ( B, and trivially the xi are integral over B, so that by
(5.3) the ring C = k̄[x1, . . . , xd ] is integral over B. As V is an irreducible variety, A(V ) is an integral domain, so that
(11.26) applies to the inclusion B ⊆ A(V ): for any maximal ideal mÃ A(V ), then, dim A(V )m = dim Bmc , where mc is
maximal by (5.8). It remains to show that dim Bn = d for all maximal ideals nÃ B. By (5.10), since C is integral over B,
there is a prime of C lying over n, and by (1.4), there is a maximal ideal qÃC containing that prime, whose contraction
to B is then a prime ideal containing n, which must be n itself. As (11.26) also applies to the inclusion B ⊆ C , we have
dim Bn = dim Cq. But we already established in (11.25) that dim Cq = d .

An example of a Noetherian domain of infinite dimension (Nagata). Let k be a field and let A = k[x1, x2, . . . , xn , . . .] be a
polynomial ring over k in a countably infinite set of indeterminates. Let m1, m2, . . . be an increasing [or even just
unbounded] sequence of positive integers such that mi+1 − mi > mi − mi−1 for all i > 1. [Actually, set m1 = 0.] Let
pi = (xmi+1, . . . , xmi+1

) and let S be the complement in A of the union of the ideals pi .
Each pi is a prime ideal and therefore the set S is multiplicatively closed. The ring S−1A is Noetherian by Chapter 7,

Exercise 9. Each S−1pi has height equal to mi+1−mi , hence dim S−1A=∞.
Note that the complement S of the union of a set P of primes in A is multiplicatively closed, as follows: x, y ∈ S ⇐⇒

∀p ∈ P (x, y /∈ p) ⇐⇒ ∀p ∈ P (xy /∈ p) ⇐⇒ xy ∈ S.
The prime ideals of A that persist in S−1A are by (3.11.iv) those that don’t meet S, so the maximal ideals of S−1A are

S−1p for prime pÃA maximal with respect to not meeting S. Suppose aÃA doesn’t meet S, so it is contained in the union
of the pi ; we claim it is contained in some pi . Given (a1, . . . , a`)⊆ a, the a j only involve finitely many indeterminates, so
for some n we have (a1, . . . , a`)⊆

⋃n
i=1 pi . By (1.11.i), (a1, . . . , a`)⊆ pi for some i ≤ n. If we append a`+1 ∈ a, we again

have an n′ ∈ N such that (a1, . . . , a`, a`+1) ⊆ pi for some i ≤ n′; but n′ ≤ n, since we don’t have a1 ∈ pi for i > n by
assumption. Thus appending a generator can only decrease our collection of candidate pi . If for any b ∈ a we have b /∈ pi ,
we can choose a`+1 = b and pick a new pi with i ≤ n. Since there are only finitely many of these, this is eventually no
longer possible, and then we are done.

Thus the maximal ideals of S−1A are the S−1pi . We claim the localizations with respect to these are Noetherian.
Without loss of generality, take i = 1. Note

�

S−1A\S−1p1

�−1 =
�

S−1(A\p1)
�−1 =

�

S−1Sp1

�−1 = S−1
p1

S = S−1
p1

since
S =A\

⋃

p j ⊆A\p1 = Sp1
and Sp1

is multiplicatively closed. Thus the localization

(S−1A)S−1p1
=
�

S−1A\S−1p1

�−1(S−1A) = S−1
p1

S−1A= S−1
p1

A=Ap1
.

If we let K be the field k(xm2+1, . . . , xm2+n , . . .), then Ap1
= K[x1, . . . , xm2

](x1, ..., xm2
) as a subset of the field of fractions of

A. Since K[x1, . . . , xm2
] is Noetherian by the Hilbert Basis Theorem (7.6), Ap1

is Noetherian by (7.4). By (3.13), the height
of S−1p1 is dim (S−1A)S−1p1

= dim Ap1
= dim K[x1, . . . , xm2

](x1, ..., xm2
); this is m2 by the example on p. 121.
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Since each nonzero a ∈A only uses finitely many indeterminates, it can only be in finitely many pi , and so each nonzero
a/s ∈ S−1A can only be in finitely many maximal ideals S−1pi . This and the fact that the (S−1A)S−1pi

are Noetherian are
the hypotheses of [7.9], which tells us S−1A is Noetherian.

Reformulate (11.1) in terms of the Grothendieck group K(A0) (Chapter 7, Exercise 25).
We recall the hypotheses and definitions. A =

⊕

An is a Noetherian graded ring, generated as an algebra over its
summand A0 by finitely many homogeneous elements x j , j = 1, . . . , r , of respective degrees k j > 0. M =

⊕

Mn is a finitely
generated graded A-module, so that each Mn is a finitely generated A0-module. λ is an additive function from the the class of
finitely generated A0-modules toZ. The Poincaré series of M with respect to λ is Pλ(M , t ) =

∑∞
n=0 λ(Mn)t

n ∈Z[[t ]]. (11.1)
states that, with q =

∏r
j=1(1− t k j ) and the standard definition for reciprocals of power series, Pλ(M , t ) ∈ q−1Z[t ] (

Z[[t ]].
I feel my attempts to say something meaningful about this situation in terms of K(A0) have come up a little short, but

here goes.
Write Fgr(A) for the category of finitely generated graded A-modules and degree-preserving A-module homomor-

phisms. Define the graded Grothendieck group Kgr(A) of A from theFgr(A) using the same process by which we defined
the original K-group: form the free abelian group on the set of isomorphism classes ofFgr(A) and take the quotient by the
subgroup generated by [N ]−[M ]+[P ] for all short exact sequences 0→N →M → P → 0 (where now the isomorphisms
defining the classes and the maps in the sequences are degree-preserving). Write γgr(M ) for the class of M in Kgr(A) and
γ (Mn) for the class of Mn in K(A0). As a degree-preserving homomorphism of graded A-modules induces an A0-module ho-
momorphism on each component, there is a natural map Φ : Kgr(A)→K(A0)[[t ]] given by γgr(M ) 7→

∑

γ (Mn)t
n , where

K(A0)[[t ]] is just an additive group. There does not seem to be a reason to expect Φ to be either surjective or injective.
Since λ is additive, it induces a homomorphism λ0 : K(A0)→Z as in [7.26.i], which we can apply to each component

in K(A0)[[t ]]; call this process Λ0]. Then we can factor Pλ(−, t ) as

Fgr(A)
γgr→Kgr(A)

Φ→K(A0)[[t ]]
Λ0−→Z[[t ]] :

M 7→ γgr(M ) 7→
∑

γ (Mn)t
n 7→

∑

(λ0 ◦ γ )(Mn)t
n =

∑

λ(Mn)t
n .

From this one can see that the original additive function λ doesn’t matter so much as the associated λ0 ∈Hom
�

K(A0), Z).
Thus im(Φ ◦ γgr)( K(A0)[[t ]] is a collection of “universal Poincaré series” for finitely generated graded A-modules, each
of which, when subjected to any λ0 ∈Hom

�

K(A0), Z), produces an element of q−1Z[t ](Z[[t ]].2 Thus, finally, the best
we can do in the general case is to say that the Poincaré series yields a bilinear map

Q : Hom
�

K(A0), Z
�

×Kgr(A)→Z[[t ]]

with imQ = q−1Z[t ]. This looks a bit different than the original, but is not much more interesting.3

Let A be a ring (not necessarily Noetherian). Prove that

1+ dim A≤ dim A[x]≤ 1+ 2 dim A.

If p0 ( p1 ( · · ·( pr is any ascending chain of length r in Spec(A), then p0[x]( p1[x]( · · ·( pr [x]( pr + (x) is
an ascending chain of length r + 1 in Spec

�

A[x]
�

; the last ideal is prime since it is the kernel of A[x]� A/pr and the
others by [2.7]. Thus 1+ dim A≤ dim A[x].

By [3.21.iv], for p ∈ Spec(A)we have a homeomorphism between the set of primes of A[x] lying over p and Spec
�

k(p)⊗
AA[x]

�

, where k(p) is the field Ap/pAp. By [2.6], k(p)⊗AA[x] ∼= k(p)[x]; but dim k(p)[x] = 1, because any nonzero
prime is maximal, so a chain of primes of A[x] over a given p has length no more than one, and hence contains at most
two primes. Thus a chain of length r in Spec(A), containing r + 1 primes, is the contraction of a chain of at most 2r + 2
primes of A[x], which has length 2r + 1. Taking suprema over chains in Spec(A) gives dim A[x]≤ 1+ 2 dim A.

2 One would like to lift the result about the image up to K(A0)[[t ]], and say something like “im(Φ ◦ γgr) ⊆ q−1K(A0)[t ],” but since K(A0)
doesn’t usually have a ring structure, multiplication and hence q−1 have no obvious meaning in K(A0)[[t ]].

3 With more restrictive hypotheses, we can say more; see http://math.stackexchange.com/questions/217612/
exercise-11-5-from-atiyah-macdonald-hilbert-serre-theorem-and-grothendieck-grou and the articles by William Smoke
linked therein.
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Let A be a Noetherian ring. Then

dim A[x] = 1+ dim A,

and hence, by induction on n,
dim A[x1, . . . , xn] = n+ dim A.

By [11.6], we have dim A[x]≥ 1+ dim A.
For the other direction, it will be enough to show that height P ≤ height p+ 1 whenever P is a prime of A[x] and

p=Pc ÃA. If we form rings of fractions of both rings with respect to A\p to get Pp ÃAp[x] lying over pp ÃAp, we see
by (3.11.iv) that these have the same heights as P and p, respectively, so we may assume A is local with maximal ideal p.

Following the book’s hint, we first show height p[x] = height p. If height p= m, then since A is a local Noetherian
ring, there is by (11.13) a p-primary ideal q of A generated by m elements. q[x] is p[x]-primary by [4.7.iii], and is
generated over A[x] by the m generators of q, so by (11.16), height p[x]≤ m. We proved m ≤ height p[x], on the other
hand, in [11.6].

Now we show, by induction on height p, that height P≤ height p+1. For height p= 0, the result is again implied by
the proof of [11.6]. Suppose that height p= m and the result holds for primes of height< m. To show height P≤ m+1,
we need to see height Q ≤ m for each prime Q (P. If Qc ( p, then height Qc < m, so height Q ≤ m by induction.
If Qc = p, then p[x]⊆Q(P, and so, recalling from our proof of [11.6] that the longest chain of primes in A[x] lying
over p contains two primes, we see Q= p[x], whose height is m.
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	Rings and Ideals
	Let x be a nilpotent element of a ring A. Show that 1+x is a unit of A. Deduce that the sum of a nilpotent element and a unit is a unit.
	Let A be a ring
	Generalize the results of Exercise 2 to a polynomial ring A[x1,…,xr] in several indeterminates.
	In the ring A[x], the Jacobson radical is equal to the nilradical.
	Let A be a ring and let A[-2mu[x]-2mu] be the ring of formal power series f = n=0an xn with coefficients in A. Show that
	A ring A is such that every ideal not contained in the nilradical contains a nonzero idempotent (that is, an element e such that e2 = e =0). Prove that the nilradical and Jacobson radical of A are equal.
	Let A be a ring in which every element satisfies xn = x for some n > 1 (depending on x). Show that every prime ideal in A is maximal.
	Let A be a ring =0. Show that the set of prime ideals of A has minimal elements with respect to inclusion.
	Let a be an ideal =(1) in a ring A. Show that a= r(a) -3mua is an intersection of prime ideals.
	Let A be a ring, N its nilradical. Show the following are equivalent:
	A ring A is Boolean if x2 = x for all x A. In a Boolean ring A, show that 
	A local ring contains no idempotent =0,1.
	Let K be a field and let  be the set of all irreducible monic polynomials f in one indeterminate with coefficients in K. Let A be the polynomial ring over K generated by indeterminates xf, one for each f . Let a be the ideal of A generated by the polynomials f(xf) for all f . Show that a=(1).
	In a ring A, let  be the set of all ideals in which every element is a zero-divisor. Show that the set  has maximal elements and that every maximal element of  is a prime ideal. Hence the set of zero-divisors in A is a union of prime ideals.
	Let A be a ring and let X be the set of all prime ideals of A. For each subset E of A, let V(E) denote the set of all prime ideals of A which contain E. Prove that
	Draw pictures of `39`42`"613A`-1`-145`47`"603ASpec (Z), `39`42`"613A`-1`-145`47`"603ASpec (R), `39`42`"613A`-1`-145`47`"603ASpec (C[x]), `39`42`"613A`-1`-145`47`"603ASpec (R[x]), `39`42`"613A`-1`-145`47`"603ASpec (Z[x]).
	For each f A, let Xf denote the complement of V(f) in X = `39`42`"613A`-1`-145`47`"603ASpec (A). The sets Xf are open. These are called the basic open sets of `39`42`"613A`-1`-145`47`"603ASpec (A). Show that they form a basis of open sets for the Zariski topology.
	For psychological reasons it is sometimes convenient to denote a prime ideal of A by a letter such as x or y when thinking of it as a point of X = `39`42`"613A`-1`-145`47`"603ASpec (A). When thinking of x as a prime ideal of A, we denote it by px (logically, of course, it is the same thing). Show that
	A topological space X is said to be irreducible if X =� and if every pair of non-empty open sets in X intersect, or equivalently if every non-empty open set is dense in X. Show that `39`42`"613A`-1`-145`47`"603ASpec (A) is irreducible if and only if the nilradical of A is a prime ideal.
	Let X be a topological space.
	Let 2mu-:6muplus1muA B be a ring homomorphism. Let X = `39`42`"613A`-1`-145`47`"603ASpec (A) and Y = `39`42`"613A`-1`-145`47`"603ASpec (B). If q Y, then -1(q ) is a prime ideal of A, i.e., a point of X. Hence  induces a mapping *2mu-:6muplus1muY X. Show that
	Let A = i=1n Ai be a direct product of rings Ai. Show that `39`42`"613A`-1`-145`47`"603ASpec (A) is the disjoint union of open (and closed) subspaces Xi, where Xi is canonically homeomorphic with `39`42`"613A`-1`-145`47`"603ASpec (Ai).
	Let A be a Boolean ring (1.11Exercise 11), and let X = `39`42`"613A`-1`-145`47`"603ASpec (A).
	Let L be a lattice, in which the sup and inf of two elements a,b are denoted by a b and a b respectively. L is a Boolean lattice (or Boolean algebra) if
	From the last two exercises deduce Stone's theorem, that every Boolean lattice is isomorphic to the lattice of open-and-closed subsets of some compact Hausdorff topological space.
	Let A be a ring. The subspace of `39`42`"613A`-1`-145`47`"603ASpec (A) consisting of the maximal ideals of A, with the induced topology, is called the maximal spectrum of A and is denoted by `39`42`"613A`-1`-145`47`"603AMax (A). For arbitrary commutative rings it does not have the nice functorial properties of `39`42`"613A`-1`-145`47`"603ASpec (A) (see 1.21Exercise 21), because the inverse image of a maximal ideal under a ring homomorphism need not be maximal.
	Let k be an algebraically closed field and let
	Let f1,…,fm be elements of k[t1,…,tn]. They determine a polynomial mapping 2mu-:6muplus1mukn km: if x kn, the coordinates of (x) are f1(x),…,fm(x). 

	Modules
	Show that (Z/mZ) Z(Z/nZ) = 0 if m,n are coprime.
	Let A be a ring, a an ideal, M an A-module. Show that (A/a) A M is isomorphic to M/aM-2mu. 
	Let A be a local ring, M and N finitely generated A-modules. Prove that if M N = 0, then M = 0 or N = 0. 
	Let Mi (i I) be any family of A-modules, and let M be their direct sum. Prove that M is flat -3mu each Mi is flat.
	Let A[x] be the ring of polynomials in one indeterminate over a ring A. Prove that A[x] is a flat A-algebra. 
	For any A-module M, let M[x] denote the set of all polynomials in x with coefficients in M, that is to say expressions of the form
	Let p be a prime ideal in A. Show that p[x] is a prime ideal in A[x]. If m is a maximal ideal in A, is m[x] a maximal ideal in A[x]?
	i) If M and N are flat A-modules, then so is M A N. 
	Let 0 M' M M'' 0 be an exact sequence of A-modules. If M' and M'' are finitely generated, then so is M. 
	Let A be a ring, a an ideal contained in the Jacobson radical of A; let M be an A-module and N a finitely generated A-module, and let u -2mu2mu-:6muplus1muM N be a homomorphism. If the induced homomorphism M/aM N / aN is surjective, then u is surjective. 
	Let A be a ring =0. Show that Am .5-.5.5-.5.5-.5.5-.5An -3mum = n. 
	Let M be a finitely generated A-module and 2mu-:6muplus1muM An a surjective homomorphism. Show that ker() is finitely generated.
	Let f -1mu2mu-:6muplus1muA B be a ring homomorphism, and let N be a B-module. Regarding N as an A-module by restriction of scalars, form the B-module NB = B A N. Show that the homomorphism g 2mu-:6muplus1muN NB which maps y to 1 y is injective and that g(N) is a direct summand of NB. 
	A partially ordered set I is said to be a directed set if for each pair i,j in I there exists k I such that i k and j k. 
	In the situation of Exercise 14, show that every element of M can be written in the form i(xi) for some i I and some xi Mi. 
	Show that the direct limit is characterized (up to isomorphism) by the following property. Let N be an A-module and for each i I let i2mu-:6muplus1muMi N be an A-module homomorphism such that i = j ij whenever i j. Then there exists a unique homomorphism 2mu-:6muplus1muM N such that i = i for all i I. 
	Let (Mi)i I be a family of submodules of an A-module, such that for each pair of indices i,j in I there exists k I such that Mi + Mj Mk. Define i j to mean Mi Mj and let ij2mu-:6muplus1muMi Mj be the embedding of Mi in Mj. Show that
	Let M= (Mi,ij), N = (Ni,ij) be direct systems of A-modules over the same directed set. Let M, N be the direct limits and i2mu-:6muplus1muMi M, i 2mu-:6muplus1muNi N the associated homomorphisms. 
	A sequence of direct systems and homomorphisms
	Keeping the same notation as in , let N be any A-module. Then (Mi N, ij 1) is a direct system; let P = (Mi N) be its direct limit. For each i I we have a homomorphism i 1 2mu-:6muplus1muMi N M N, hence by a homomorphism 2mu-:6muplus1muP M N. Show that  is an isomorphism so that 
	Let (Ai)i I be a family of rings indexed by a directed set I, and for each pair i j in I let ij2mu-:6muplus1muAi Aj be a ring homomorphism, satisfying conditions (1) and (2) of . Regarding each Ai as a Z-module we can then form the direct limit A = Ai. Show that A inherits a ring structure from the Ai so that the mappings Ai A are ring homomorphisms. The ring A is the direct limit of the system (Ai,ij). 
	Let (Ai,ij) be a direct system of rings and let Ni be the nilradical of Ai. Show that Ni is the nilradical of Ai. 
	Let (B) be a family of A-algebras. For each finite subset of  let BJ denote the tensor product (over A) of the B for J. If J' is another finite subset of  and J J', there is a canonical A-algebra homomorphism BJ BJ'. Let B denote the direct limit of the rings BJ as J runs through all finite subsets of . The ring B has a natural A-algebra structure for which the homomorphisms BJ B are A-algebra homomorphisms. The A-algebra B is the tensor product of the family (B). 
	If M is an A-module, the following are equivalent: i) M is flat; ii) `39`42`"613A`-1`-145`47`"603ATorAn(M,N) = 0 for all n > 0 and all A-modules N; iii) `39`42`"613A`-1`-145`47`"603ATorA1(M,N) = 0 for all A-modules N. 
	Let 0 N' N N'' 0 be an exact sequence, with N'' flat. Then N' is flat -3mu N is flat. 
	Let N be an A-module. Then N is flat -3mu`39`42`"613A`-1`-145`47`"603ATor1(A/a,N) = 0 for all finitely generated ideals a in A. 
	A ring A is absolutely flat if every A-module is flat. Prove that the following are equivalent: i) A is absolutely flat; ii) every principal ideal is idempotent; iii) every finitely generated ideal is a direct summand of A. 
	A Boolean ring is absolutely flat.

	Rings and Modules of Fractions
	Let S be a multiplicatively closed subset of a ring A, and let M be a finitely generated A-module. Prove that S-1M = 0 if and only if there exists s S such that sM = 0. 
	Let a be an ideal of a ring A, and let S = 1 + a. Show that S-1a is contained in the Jacobson radical of S-1A. 
	Let A be a ring, let S and T be two multiplicatively closed subsets of A, and let U be the image of T in S-1A. Show that the rings (ST)-1A and U-1(S-1A) are isomorphic. 
	Let f 2mu-:6muplus1muA B be a homomorphism of rings and let S be a multiplicatively closed subset of A. Let T = f-2mu(S). Show that S-1B and T-1B are isomorphic as S-1A-modules. 
	Let A be a ring. Suppose that, for each prime ideal p, the local ring Ap has no nilpotent element =0. Show that A has no nilpotent element =0. If each Ap is an integral domain, is A necessarily an integral domain? 
	Let A be a ring =0 and let  be the set of all multiplicatively closed subsets S of A such that 0 -.25ex-.25ex-.25ex-.25exS. Show that  has maximal elements and that S  is maximal if and only if A S is a minimal prime ideal of A. 
	A multiplicatively closed subset S of a ring A is said to be saturated if
	Let S, T be multiplicatively closed subsets of A, such that S T. Let 2mu-:6muplus1muS-1A T-1A be the homomorphism which maps each a/s S-1A to a/s considered as an element of T-1A. Show that the following statements are equivalent: i)  is bijective. ii) For each t T, t/1 is a unit in S-1A. iii) For each t T there exists x A such that xt S. iv) T is contained in the saturation of S (Exercise 7). v) Every prime ideal which meets T also meets S. 
	The set S0 of all non-zero-divisors in A is a saturated multiplicatively closed subset of A. Hence the set D of zero-divisors in A is a union of prime ideals (see Chapter 1,Exercise 14). Show that every minimal prime ideal of A is contained in D. 
	Let A be a ring. i) If A is absolutely flat (Chapter 2, Exercise 27) and S is any multiplicatively closed subset of A, then S-1A is absolutely flat. 
	Let A be a ring. Prove that the following are equivalent:  i) A/N is absolutely flat (N being the nilradical of A). ii) Every prime ideal of A is maximal. iii) `39`42`"613A`-1`-145`47`"603ASpec (A) is a T1-space (i.e., every subset consisting of a single point is closed). iv) `39`42`"613A`-1`-145`47`"603ASpec (A) is Hausdorff. 
	Let A be an integral domain and M an A-module. An element x M is a torsion element of M if `39`42`"613A`-1`-145`47`"603AAnn (x) =0, that is if x is killed by some non-zero element of A. Show that the torsion elements of M form a submodule of M. This submodule is called the torsion submodule and is denoted by T(M). 
	Let S be a multiplicatively closed subset of an integral domain A. In the notation of Exercise 12, show that T(S-1M) = S-1(TM). 
	Let M be an A-module and a an ideal of A. Suppose that Mm= 0 for all maximal ideals ma. Prove that M = aM. 
	Let A be a ring, and let F be the A-module An. Show that every set of n generators of F  is a basis of F . 
	Let B be a flat A-algebra. Then the following conditions are equivalent: i) aec = a for all ideals a of A. ii) `39`42`"613A`-1`-145`47`"603ASpec (B) `39`42`"613A`-1`-145`47`"603ASpec (A) is surjective. iii) For every maximal ideal m of A we have me =(1). iv) If M is any non-zero A-module, then MB =0. v) For every A-module M, the mapping x 1 x of M into MB is injective. 
	Let A   f -20mu      B   g -20mu      C be ring homomorphisms. If g f  is flat and g is faithfully flat, then f  is flat. 
	Let f 2mu-:6muplus1muA B be a flat homomorphism of rings, let q  be a prime ideal of B and let p= q c. Then f*2mu-:6muplus1mu`39`42`"613A`-1`-145`47`"603ASpec (Bq ) `39`42`"613A`-1`-145`47`"603ASpec (Ap) is surjective. 
	Let A be a ring, M an A-module. The support of M is defined to be the set `39`42`"613A`-1`-145`47`"603ASupp (M) of prime ideals p of A such that Mp=0. Prove the following results: i) M =0 -3mu`39`42`"613A`-1`-145`47`"603ASupp (M) =�. 
	Let f 2mu-:6muplus1muA B be a ring homomorphism, f* 2mu-:6muplus1mu`39`42`"613A`-1`-145`47`"603ASpec (B) `39`42`"613A`-1`-145`47`"603ASpec (A) the associated mapping. Show that i) Every prime ideal of A is a contracted ideal -3muf* is surjective. 
	i) Let A be a ring, S a multiplicatively closed subset of A, and 2mu-:6muplus1muA S-1A the canonical homomorphism. Show that *2mu-:6muplus1mu`39`42`"613A`-1`-145`47`"603ASpec (S-1A) `39`42`"613A`-1`-145`47`"603ASpec (A) is a homeomorphism of `39`42`"613A`-1`-145`47`"603ASpec (S-1A) onto its image in X = `39`42`"613A`-1`-145`47`"603ASpec (A). Let this image be denoted by S-1X .  In particular, if f  A, the image of `39`42`"613A`-1`-145`47`"603ASpec (Af) in X  is the basic open set X  f .
	Let A be a ring and p a prime ideal of A. Then the canonical image of `39`42`"613A`-1`-145`47`"603ASpec (Ap) in `39`42`"613A`-1`-145`47`"603ASpec (A) is equal to the intersection of all the open neighborhoods of p in `39`42`"613A`-1`-145`47`"603ASpec (A). 
	Let A be a ring, let X = `39`42`"613A`-1`-145`47`"603ASpec (A) and let U be a basic open set in X (i.e., U = X  f for some f  A: Chapter 1,Exercise 17). i) If U = X  f, show that the ring A(U) = Af  depends only on U and not on f . 
	Complete the description of a presheaf structure on X = `39`42`"613A`-1`-145`47`"603ASpec (A), by defining A(U) for all open subsets U X , not just basic ones. 
	Show that the presheaf of  has the following property. Let (Ui)iI be a covering of X  by basic open sets. For each i I let si A(Ui) be such that, for each pair of indices i,j, the images of si and sj in A(Ui Uj) are equal. Then there exists a unique s A (= A(X)) whose image in A(Ui) is si, for all i I. (This essentially implies that the presheaf is a sheaf.) 
	Let f 2mu-:6muplus1muA B, g 2mu-:6muplus1muA C be ring homomorphisms and let h 2mu-:6muplus1muA B  A C be defined by h(x) = f-2mu(x) g(x). Let X , Y, Z, T be the prime spectra of A, B, C, B  A C respectively. Then h*(T) = f*(Y) g*(Z). 
	Let (B,g) be a direct system of rings and B the direct limit. For each , let f2mu-:6muplus1muA B be a ring homomorphism such that g f= f whenever  (i.e. the B form a direct system of A-algebras). The f induce f 2mu-:6muplus1muA B. Show that
	i) Let f2mu-:6muplus1muA B be any family of A-algebras and let f 2mu-:6muplus1muA B be their tensor product over A (Chapter 2, Exercise 23). Then
	(Continuation of Exercise 27.) i) For each g A, the set X -2mug (1.17Chapter 1,Exercise 17) is both open and closed in the constructible topology. 
	Let f 2mu-:6muplus1muA B be a ring homomorphism. Show that f*2mu-:6muplus1mu`39`42`"613A`-1`-145`47`"603ASpec (B) `39`42`"613A`-1`-145`47`"603ASpec (A) is a continuous closed mapping (i.e., maps closed sets to closed sets) for the constructible topology. 
	Show that the Zariski topology and the constructible topology on `39`42`"613A`-1`-145`47`"603ASpec (A) are the same if and only if A/N is absolutely flat (where N is the nilradical of A). 

	Primary Decomposition
	If an ideal a has a primary decomposition, then `39`42`"613A`-1`-145`47`"603ASpec (A/a) has only finitely many irreducible components.
	If a= r(a), then a has no embedded prime ideals. 
	If A is absolutely flat, every primary ideal is maximal. 
	In the polynomial ring Z[t], the ideal m= (2,t) is maximal and the ideal q = (4,t) is m-primary, but is not a power of m. 
	In the polynomial ring K[x,y,z] where K is a field and x, y, z are independent indeterminates, let p1 = (x,y), p2 = (x,z), m= (x,y,z); p1 and p2 are prime, and m is maximal. Let a= p1p2. Show that a= p1 p2 m2 is a reduced primary decomposition of a. Which components are isolated and which are embedded? 
	Let X be an infinite compact Hausdorff space, C(X) the ring of real-valued continuous functions on X (Chapter 1,Exercise 26). Is the zero ideal decomposable in this ring? 
	Let A be a ring and let A[x] denote the ring of polynomials in one indeterminate over A. For each ideal a of A, let a[x] denote the set of all polynomials in A[x] with coefficients in a. i) a[x] is the extension of a to A[x]. 
	Let k be a field. Show that in the polynomial ring k[x1,…,xn] the ideals pi = (x1,…,xi) (1 i n) are prime and all their powers are primary. 
	In a ring A, let D(A) denote the set of prime ideals p which satisfy the following condition: there exists a A such that p is minimal in the set of prime ideals containing (0:a). Show that x A is a zero divisor -3mu x p for some pD(A). 
	For any prime ideal p in a ring A, let Sp(0) denote the kernel of the homomorphism A Ap. Prove that i) Sp(0) p.
	If p is a minimal prime ideal of a ring A, show that Sp(0) (Exercise 10) is the smallest p-primary ideal. 
	Let A be a ring, S a multiplicatively closed subset of A. For any ideal a, let S(a) denote the contraction of S-1a in A. The ideal S(a) is called the saturation of a with respect to S. Prove that i) S(a) S(b) = S(ab). 
	Let A be a ring and p a prime ideal of A. Then nth symbolic power of p is defined to be the ideal (in the notation of Exercise 12)
	Let a be a decomposable ideal in a ring A and let p be a maximal element of the set of ideals (a: x), where x A and x -.25ex-.25ex-.25ex-.25exa. Show that p is a prime ideal belonging to a. 
	Let a be a decomposable ideal in a ring A, let  be an isolated set of prime ideals belonging to a, and let q  be the intersection of the corresponding primary components. Let f be an element of A such that, for each prime ideal p belonging to a, we have f p-3mup-.25ex-.25ex-.25ex-.25ex, and let Sf be the set of all powers of f. Show that q = Sf-2mu(a) = (a: fn) for all large n. 
	If A is a ring in which every ideal has a primary decomposition, show that every ring of fractions S-1A has the same property. 
	Let A be a ring with the following property. (L1) For every ideal a=(1) in A and every prime ideal p, there exists x-.25ex-.25ex-.25ex-.25exp such that Sp(a) = (a: x), where Sp= A p. 
	Consider the following condition on a ring A:
	Let A be a ring and p a prime ideal of A. Show that every p-primary ideal contains Sp(0), the kernel of the canonical homomorphism A Ap. 
	Let M be a fixed A-module, N a submodule of M. The radical of N in M is defined to be
	An element x A defines an endomorphism x of M, namely m xm. The element x is said to be a zero-divisor (resp. nilpotent) in M if x is not injective (resp. is nilpotent). A submodule Q of M is primary in M if Q =M and every zero-divisor in M/Q is nilpotent. 
	A primary decomposition of N in M is a representation of N as an intersection
	State and prove the analogues of (4.6)–(4.11) inclusive. (There is no loss of generality in taking N = 0.)

	Integral Dependence and Valuations
	Let f -1mu2mu-:6muplus1muA B be an integral homomorphism of rings. Show that f*2mu-:6muplus1mu`39`42`"613A`-1`-145`47`"603ASpec (B) `39`42`"613A`-1`-145`47`"603ASpec (A) is a closed mapping, i.e. that it maps closed sets to closed sets. (This is a geometrical equivalent of (5.10).)
	Let A be a subring of a ring B such that B is integral over A, and let f -1mu2mu-:6muplus1muA  be a homomorphism of A into an algebraically closed field . Show that f can be extended to a homomorphism of B into .
	Let f 2mu-:6muplus1muB B' be a homomorphism of A-algebras, and let C be an A-algebra. If f is integral, prove that f 12mu-:6muplus1muB A C B' A C is integral. (This includes (5.6) ii) as a special case.)
	Let A be a subring of B such that B is integral over A. Let n be a maximal ideal of B and let m= n A be the corresponding maximal ideal of A (see (5.8)). Is Bn necessarily integral over Am?
	Let A B be rings, B integral over A. i) If x A is a unit in B then it is a unit of A. 
	Let B1,…,Bn be integral A-algebras. Show that i=1n Bi is an integral A-algebra.
	Let A be a subring of a ring B, such that the set B A is closed under multiplication. Show that A is integrally closed in B. 
	i) Let A be a subring of an integral domain B, and let C be the integral closure of A in B. Let f,g be monic polynomials in B[x] such that fg C[x]. Then f, g are in C[x].
	Let A be a subring of a ring B and let C be the integral closure of A in B. Prove that C[x] is the integral closure of A[x] in B[x].
	A ring homomorphism f 2mu-:6muplus1muA B is said to have the going-up property (resp. the going-down property) if the conclusion of the going-up theorem (5.11) (resp. the going-down theorem (5.16)) holds for B and its subring f-2mu(A). 
	Let f -1mu2mu-:6muplus1muA B be a flat homomorphism of rings. Then f has the going-down property.
	Let G be a finite group of automorphisms of a ring A, and let AG denote the subring of G-invariants, that is of all x A such that (x) = x for all G. Prove that A is integral over AG.
	In the situation of Exercise 12, let p be a prime ideal of AG, and let P be the set of prime ideals of A whose contraction is p. Show that G acts transitively on P. In particular, P is finite.
	Let A be an integrally closed domain, K its field of fractions and L a finite normal separable extension of K. Let G be the Galois group of L over K and let B be the integral closure of A in L. Show that (B) = B for all G, and that A = BG.
	Let A,K be as in Exercise 14, let L be any finite extension field of K, and let B be the integral closure of A in L. Show that, if p is any prime ideal of A, then the set of prime ideals q  of B which contract to p is finite (in other words, that `39`42`"613A`-1`-145`47`"603ASpec (B) `39`42`"613A`-1`-145`47`"603ASpec (A) has finite fibers).
	Let k be a field and let A =0 be a finitely generated k-algebra. Then there exist elements y1,…,yr A which are algebraically independent over k and such that A is integral over k[y1,…,yr].
	Let X be an affine algebraic variety in kn, where k is an algebraically closed field, and let I(X) be the ideal of X in the polynomial ring k[t1,…,tn] 1.27Chapter 1,Exercise 27. If I(X) =(1) then X is not empty.
	Let k be a field and let B be a finitely generated k-algebra. Suppose that B is a field. Then B is a finite algebraic extension of k. (This is another version of Hilbert's Nullstellensatz. The following proof is due to Zariski. For other proofs, see (5.24), (7.9).)
	Deduce the result of 5.17Exercise 17 from 5.18Exercise 18. 
	Let A be a subring of an integral domain B such that B is finitely generated over A. Show that there exists s =0 in A and elements y1,…,yn in B, algebraically independent over A and such that Bs is integral over B's, where B' = A[y1,…,yn]. 
	Let A, B be as in Exercise 20. Show that there exists s =0 in A such that, if  is an algebraically closed field and f -1mu2mu-:6muplus1muA  is a homomorphism for which f-2mu(s) =0, then f can be extended to a homomorphism B .
	Let A, B be as in Exercise 20. If the Jacobson radical of A is zero, then so is the Jacobson radical of B.
	Let A be a ring. Show that the following are equivalent: i) Every prime ideal in A-2mu is an intersection of maximal ideals. ii) In every homomorphic image of A-2mu the nilradical is equal to the Jacobson radical. iii) Every prime ideal in A-2mu which is not maximal is equal to the intersection of the prime ideals which contain it strictly. 
	Let A be a Jacobson ring (5.23Exercise 23) and B an A-algebra. Show that if B is either (i) integral over A or (ii) finitely generated as an A-algebra, then B is Jacobson.
	Let A be a ring. Show that the following are equivalent: i) A is a Jacobson ring; ii) Every finitely generated A-algebra B which is a field is finite over A.
	Let X be a topological space. A subset of X is locally closed if it is the intersection of an open set and a closed set, or equivalently if it is open in its closure.
	Let A, B be two local rings. B is said to dominate A if A is a subring of B and the maximal ideal m of A is contained in the maximal ideal n of B (or, equivalently, if m= n A). Let K be a field and let  be the set of all local subrings of K. If  is ordered by the relation of domination, show that  has maximal elements and that A  is maximal if and only if A is a valuation ring of K.
	Let A be an integral domain, K its field of fractions. Show that the following are equivalent: (1) A is a valuation ring of K; (2) If a, b are any two ideals of A, then either ab or ba.
	Let A be a valuation ring of a field K. Show that every subring of K which contains A is a local ring of A.
	Let A be a valuation ring of a field K. The group U of units of A is a subgroup of the multiplicative group K of K.
	Conversely, let  be a totally ordered abelian group (written additively), and K a field. A valuation of K with values in  is a mapping v 2mu-:6muplus1muK such that (1) v(x-1muy) = v(x) + v(y), (2) v(x+y) min(to.v(x),v(y))to., for all x,y K. Show that the set of elements x K such that v(x) 0 is a valuation ring of K. This ring is called the valuation ring of v, and the subgroup v(K) of  is the value group of v.
	Let  be a totally ordered abelian group. A subgroup  of  is isolated in  if, whenever 0  and , we have . Let A be a valuation ring of a field K, with value group  (Exercise 31). If p is a prime ideal of A, show that v(Ap) is the set of elements 0 of an isolated subgroup  of , and that the mapping so defined of `39`42`"613A`-1`-145`47`"603ASpec (A) into the set of isolated subgroups of  is bijective.
	Let  be a totally ordered abelian group. We shall show how to construct a field K and a valuation v of K with  as value group. Let k be any field and let A = k[] be the group algebra of  over k. By definition, A is freely generated as a k-vector space by elements x () such that xx= x+. Show that A is an integral domain. 
	Let A be a valuation ring and K its field of fractions. Let f -1mu2mu-:6muplus1muA B be a ring homomorphism such that f*2mu-:6muplus1mu`39`42`"613A`-1`-145`47`"603ASpec (B) `39`42`"613A`-1`-145`47`"603ASpec (A) is a closed mapping. Then if g-2mu2mu-:6muplus1muB K is any A-algebra homomorphism (i.e., if g f is the embedding of A in K) we have g(B) = A.
	From Exercises 1 and 3 it follows that, if f -1mu2mu-:6muplus1muA B is integral and C is any A-algebra, then the mapping (f 1)*2mu-:6muplus1mu`39`42`"613A`-1`-145`47`"603ASpec (B A C) `39`42`"613A`-1`-145`47`"603ASpec (C) is a closed map.

	Chain Conditions
	i) Let M be a Noetherian A-module and u 2mu-:6muplus1muM M a module homomorphism. If u is surjective, then u is an isomorphism.
	Let M be an A-module. If every non-empty set of finitely generated submodules of M has a maximal element, then M is Noetherian.
	Let M be an A-module and let N1, N2 be submodules of M. If M/N1 and M/N2 are Noetherian, so is M/(N1 N2). Similarly with Artinian in place of Noetherian.
	Let M be a Noetherian A-module and let a be the annihilator of M in A. Prove that A/a is a Noetherian ring.
	A topological space X is said to be Noetherian if the open subsets of X satisfy the ascending chain condition (or, equivalently, the maximal condition). Since closed subsets are complements of open subsets, it comes to the same thing to say that the closed subsets of X satisfy the descending chain condition (or, equivalently, the minimal condition). Show that, if X is Noetherian, then every subspace of X is Noetherian, and that X is compact.
	Prove that the following are equivalent: i) X is Noetherian. ii) Every open subspace of X is compact. iii) Every subspace of X is compact.
	A Noetherian space is a finite union of irreducible closed subspaces. Hence the set of irreducible components of a Noetherian space is finite.
	If A is a Noetherian ring, then `39`42`"613A`-1`-145`47`"603ASpec (A) is a Noetherian topological space. Is the converse true?
	Deduce from Exercise 8 that the set of minimal prime ideals in a Noetherian ring is finite.
	If M is a Noetherian module (over an arbitrary ring A) then `39`42`"613A`-1`-145`47`"603ASupp (M) is a closed Noetherian subspace of `39`42`"613A`-1`-145`47`"603ASpec (A).
	Let f -1mu2mu-:6muplus1muA B be a ring homomorphism and suppose that `39`42`"613A`-1`-145`47`"603ASpec (B) is a Noetherian space (Exercise 5). Prove that f*2mu-:6muplus1mu`39`42`"613A`-1`-145`47`"603ASpec (B) `39`42`"613A`-1`-145`47`"603ASpec (A) is a closed mapping if and only if f has the going-up property (Chapter 5, Exercise 10).
	Let A be a ring such that `39`42`"613A`-1`-145`47`"603ASpec (A) is a Noetherian space. Show that the set of prime ideals of A satisfies the ascending chain condition. Is the converse true?

	Noetherian Rings
	Let A be a non-Noetherian ring and let  be the set of ideals in A which are not finitely generated. Show that  has maximal elements and that the maximal elements of  are prime ideals.
	Let A be a Noetherian ring and let f = n=0an xn A[-2mu[x]-2mu]. Prove that f is nilpotent if and only if each an is nilpotent.
	Let a be an irreducible ideal in a ring A. Then the following are equivalent: i) a is primary; ii) for every multiplicatively closed subset S of A we have (S-1a)c = (a:x) for some x S; iii) the sequence (a:xn) is stationary, for every x A.
	Which of the following rings are Noetherian? In all cases the coefficients are complex numbers. i) The ring of rational functions of z having no pole on the circle |z| = 1.
	Let A be a Noetherian ring, B a finitely generated A-algebra, G a finite group of automorphisms of B, and BG the set of all elements of B which are left fixed by every element of G. Show that BG is a finitely generated A-algebra.
	If a finitely generated ring is a field, then it is a finite field.
	Let X be an affine algebraic variety given by a family of equations f(t1,…,tn) = 0 (aI) (Chapter 1,Exercise 27). Show that there exists a finite subset I0 of I such that X is given by the equations f(t1,…,tn) = 0 for aI0.
	If A[x] is Noetherian, is A necessarily Noetherian?
	Let A be a ring such that (1) for each maximal ideal m of A, the local ring Am is Noetherian; (2) for each x =0 in A, the set of maximal ideals of A which contain x is finite. Show that A is Noetherian.
	Let M be a Noetherian A-module. Show that M[x] (Chapter 2, Exercise 6) is a Noetherian A[x]-module.
	Let A be a ring such that each local ring Ap is Noetherian. Is A necessarily Noetherian?
	Let A be a ring and B a faithfully flat A-algebra (Chapter 3, Exercise 16). If B is Noetherian, show that A is Noetherian.
	Let f 2mu-:6muplus1muA B be a ring homomorphism of finite type and let f*2mu-:6muplus1mu`39`42`"613A`-1`-145`47`"603ASpec (B) `39`42`"613A`-1`-145`47`"603ASpec (A) be the mapping associated with f. Show that the fibers of f* are Noetherian subspaces of B [`39`42`"613A`-1`-145`47`"603ASpec (B), rather].
	Let k be an algebraically closed field, let A denote the polynomial ring k[t1,…,tn] and let a be an ideal in A. Let V-2mu be the variety in kn defined by the ideal a, so that V-2mu is the set of all x = "426830A x1,…,xn "526930B  kn such that f-2mu(x) = 0 for all f a. Let I(V) be the ideal of V, i.e. the ideal of all polynomials g A such that g(x) = 0 for all x V. Then I(V) = r(a).
	Let A be a Noetherian local ring, m its maximal ideal and k its residue field, and let M-2mu be a finitely generated A-module. Then the following are equivalent: i) M is free; ii) M is flat; iii) the mapping of mM into A M is injective; iv) `39`42`"613A`-1`-145`47`"603ATorA1(k,M) = 0.
	Let A be a Noetherian ring, M a finitely generated A-module. Then the following are equivalent: i) M is a flat A-module; ii) Mp is a free Ap-module, for all prime ideals p; iii) Mm is a free Am-module, for all maximal ideals m.
	Let A be a ring and M a Noetherian A-module. Show (by imitating the proofs of (7.11) and (7.12)) that every submodule N of M has a primary decomposition.
	Let A be a Noetherian ring, p a prime ideal of A, and M a finitely generated A-module. Show that the following are equivalent: i) p belongs to 0 in M; ii) there exists x M such that `39`42`"613A`-1`-145`47`"603AAnn (x) = p; iii) there exists a submodule of M isomorphic to A/p.
	Let a be an ideal in a Noetherian ring A. Let
	Let X be a topological space and let F be the smallest collection of subsets of X which contains all open subsets of X and is closed with respect to the formation of finite intersections and complements. i) Show that a subset E of X belongs to F if and only if E is a finite union of sets of the form U C, where U is open and C is closed.
	Let X be a Noetherian topological space (Chapter 6, Exercise 5) and let E X. Show that E F if and only if, for each irreducible closed set X0 X, either E X0 =X0 or else E X0 contains a non-empty open subset of X0. The sets belonging to F are called the constructible subsets of X. 
	Let X be a Noetherian topological space and let E be a subset of X. Show that E is open in X if and only if, for each irreducible closed subset X0 in X, either E X0 = � or else E X0 contains a non-empty open subset of X0.
	Let A be a Noetherian ring, f -1mu2mu-:6muplus1muA B a ring homomorphism of finite type (so that B is Noetherian). Let X = `39`42`"613A`-1`-145`47`"603ASpec (A), Y = `39`42`"613A`-1`-145`47`"603ASpec (B) and let f*2mu-:6muplus1muY X be the mapping associated with f. Then the image under f* of a constructible subset E of Y is a constructible subset of X.
	With the notation and hypotheses of Exercise 23, f* is an open mapping -3mu f has the going-down-property (Chapter 5, Exercise 10).
	Let A be Noetherian, f 2mu-:6muplus1muA B of finite type and flat (i.e., B is flat as an A-module). Then f*2mu-:6muplus1mu`39`42`"613A`-1`-145`47`"603ASpec (B) `39`42`"613A`-1`-145`47`"603ASpec (A) is an open mapping.
	Let A be a Noetherian ring and let F(A) denote the set of all isomorphism classes of finitely generated A-modules. Let C be the free abelian group generated by F(A). With each short exact sequence 0 M' M M'' 0 of finitely generated A-modules we associate the element [M'] - [M] + [M''] of C, where [M] is the isomorphism class of M, etc. Let D be the subgroup of C generated by these elements, for all short exact sequences. The quotient group C/D is called the Grothendieck group of A, and is denoted by K(A). If M is a finitely generated A-module, let (M), or A(M), denote the image of [M] in K(A).
	Show that K(A) has the following universal property: for each additive function  on the (proper) class of finitely generated A-modules, with values in an abelian group G, there exists a unique homomorphism 02mu-:6muplus1muK(A) G such that (M) = 0(to.(M))to. for all M.
	Show that K(A) is generated by the elements (A/p), where p is a prime ideal of A.
	If A is a field, or more generally if A is a principal ideal domain, then K(A) .5-.5.5-.5.5-.5.5-.5Z.
	Let f 2mu-:6muplus1muA B be a finite ring homomorphism. Show that restriction of scalars gives rise to a homomorphism f!2mu-:6muplus1muK(B) K(A) such that f!(to.B(N))to. = A(N) for a B-module N. If g 2mu-:6muplus1muB C is another finite ring homomorphism, show that (g f)! = f! g!.

	Let A be a Noetherian ring and let F1(A) be the set of all isomorphism classes of finitely generated flat A-modules. Repeating the construction of Exercise 26 we obtain a group K1(A). Let 1(M) denote the image of [M] in K1(A).
	Show that tensor product of modules over A induces a commutative ring structure on K1(A), such that 1(M)1(N) = 1(M N). The identity element of this ring is 1(A).
	Show that tensor product induces a K1(A)-module structure on the group K(A), such that 1(M)(N) = (M N).
	If A is a (Noetherian) local ring, then K1(A) .5-.5.5-.5.5-.5.5-.5Z.
	Let f -1mu2mu-:6muplus1muA B be a ring homomorphism, B being Noetherian. Show that extension of scalars gives rise to a ring homomorphism f!2mu-:6muplus1muK1(A) K1(B) such that f!(to.1(M))to. = 1(B A M). If g-2mu2mu-:6muplus1muB C is another ring homomorphism (with C Noetherian), then (g f)! = g! f!.
	If f -1mu2mu-:6muplus1muA B is a finite ring homomorphism then


	Artin Rings
	
	Let A be a Noetherian ring. Prove that the following are equivalent:
	A is Artinian;
	`39`42`"613A`-1`-145`47`"603ASpec (A) is discrete and finite;
	`39`42`"613A`-1`-145`47`"603ASpec (A) is discrete.

	Let k be a field and A a finitely generated k-algebra. Prove that the following are equivalent:
	A is Artinian;
	A is a finite k-algebra.

	Let f -1mu2mu-:6muplus1muA B be a ring homomorphism of finite type. Consider the following statements:
	f is finite;
	the fibres of f* are discrete subspaces of `39`42`"613A`-1`-145`47`"603ASpec (B);
	for each prime ideal p of A, the ring B A k(p) is a finite k(p)-algebra ( k ( p)  is the residue field of Ap);
	the fibres of f* are finite.

	In , show that X is a finite covering of L (i.e., the number of points of X lying over a given point of L is finite and bounded.)
	Let A be a Noetherian ring and q -2mu a p-primary ideal in A. Consider chains of primary ideals from q -1mu to p. Show that all such chains are of finite bounded length, and that all maximal chains have the same length.

	Discrete Valuation Rings and Dedekind Domains
	Let A be a Dedekind domain, S a multiplicatively closed subset of A. Show that S-1A is either a Dedekind domain or the field of fractions of A.
	Let A be a Dedekind domain.
	A valuation ring (other than a field) is Noetherian if and only if it is a discrete valuation ring.
	Let A be a local domain which is not a field and in which the maximal ideal m is principal and n=1mn = 0. Prove that A is a discrete valuation ring.
	Let M be a finitely-generated module over a Dedekind domain. Prove that M is flat -3mu M is torsion-free.
	Let M be a finitely generated torsion module (T(M) = M-2mu) over a Dedekind domain A. Prove that M is uniquely representable as a finite direct sum of modules A/pini, where pi are nonzero prime ideals of A.
	Let A be a Dedekind domain and a=0 an ideal in A. Show that every ideal in A/a is principal.
	Let a, b, c be three ideals in a Dedekind domain. Prove that
	(Chinese Remainder Theorem). Let a1,…,an be ideals and let x1,…,xn be elements in a Dedekind domain A. Then the system of congruences x xi 8mu(mod6muai) (1 i n) has a solution x in A -3mu xi xj 8mu(mod6muai + aj) whenever i =j.

	Completions
	Let n2mu-:6muplus1muZ/pZZ/pnZ be the injection of Abelian groups given by n(1) = pn-1 and let 2mu-:6muplus1muA B be the direct sum of all the n (where A is a countable direct sum of copies of Z/pZ, and B is the direct sum of the Z/pnZ). Show that the p-adic completion of A is just A but that the completion of A for the topology induced from the p-adic topology on B is the direct product of the Z/pZ. Deduce that the p-adic completion is not a right-exact functor on the category of all Z-modules.
	In Exercise 1,let An = -1(pn B), and consider the exact sequence
	Let A be a Noetherian ring, a an ideal and M a finitely-generated A-module. Using Krull's Theorem and Exercise 14 of Chapter 3, prove that
	Let A be a Noetherian ring, a an ideal in A, and  the a-adic completion. For any x A, let  be the image of x in . Show that
	Let A be a Noetherian ring and let a, b be ideals in A. If M is any A-module, let Ma, Mb denote its a-adic and b-adic completions respectively. If M is finitely generated, prove that (Ma)b.5-.5.5-.5.5-.5.5-.5Ma+b.
	Let A be a Noetherian ring and a an ideal in A. Prove that a is contained in the Jacobson radical of A if and only if every maximal ideal of A is closed for the a-topology. (A Noetherian topological ring in which the topology is defined by an ideal contained in the Jacobson radical is called a Zariski ring. Examples are local rings and (by (10.15)(iv)) a-adic completions.
	Let A be a Noetherian ring, a an ideal of A, and  the a-adic completion. Prove that  is faithfully flat over A (Chapter 3, Exercise 16) if and only if A is a Zariski ring (for the a-topology).
	Let A be the local ring of the origin in Cn (i.e., the ring of all rational functions f/g C(z1,…,zn) with g(0) =0), let B be the ring of power series in z1,…,zn which converge in some neighborhood of the origin, and let C be the ring of formal power series in z1,…,zn, so that A B C. Show that B is a local ring and that its completion for the maximal ideal topology is C. Assuming that B is Noetherian, prove that B is A-flat.
	Let A be a local ring, m its maximal ideal. Assume that A is m-adically complete. For any polynomial f(x) A[x], let (x) (A/m)[x] denote its reduction mod. m. Prove Hensel's lemma: if f(x) is monic of degree n and if there exist coprime monic polynomials (x),(x) (A/m)[x] of degrees r,n-r with (x) = (x)(x), then we can lift (x),(x) back to monic polynomials g(x),h(x) A[x] such that f(x) = g(x)h(x).
	i) With the notation of Exercise 9, deduce from Hensel's lemma that if -2mu(x) has a simple root A/m, then f-2mu(x) has a simple root a A such that = a 12mumodm.
	Show that the converse of (10.26) is false, even if we assume that A is local and that  is a finitely-generated A-module.
	If A is Noetherian, then A[-2mu[x1,…,xn]-2mu] is a faithfully flat A-algebra.

	Dimension Theory
	Let f k[x1,…,xn] be an irreducible polynomial over an algebraically closed field k. A point P on the variety f-2mu(x) = 0 is non-singular -3mu not all the partial derivatives -2muf/xi vanish at P. Let A = k[x1,…,xn]/(f), and let m be the maximal ideal of A corresponding to the point P. Prove that P is non-singular -3muAm is a regular local ring.
	In (11.21) assume that A is complete. Prove that the homomorphism k[-2mu[t1,…,td]-2mu] A given by ti xi (1 i d) is injective and that A is a finitely-generated module over k[-2mu[t1,…,td]-2mu].
	Extend (11.25) to non-algebraically-closed fields.
	An example of a Noetherian domain of infinite dimension (Nagata). Let k be a field and let A = k[x1,x2,…,xn,…] be a polynomial ring over k in a countably infinite set of indeterminates. Let m1,m2,… be an increasing [or even just unbounded] sequence of positive integers such that mi+1 - mi > mi - mi-1 for all i > 1. [Actually, set m1 = 0.] Let pi = (xmi + 1,…,xmi+1) and let S be the complement in A of the union of the ideals pi.
	Reformulate (11.1) in terms of the Grothendieck group K(A0) 7.25(Chapter 7, Exercise 25).
	Let A be a ring (not necessarily Noetherian). Prove that
	Let A be a Noetherian ring. Then


