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Abstract

[THIS VERSION IS STILL BEING EDITED AND SHOULD BE CONSIDERED PRELIMINARY.]

Given a compact manifold with an action of a torus T with isolated fixed points and with a
T equivariant stable complex structure, the isotropy weights at the fixed points satisfy certain
identities that are obtained by applying the ABBV localization formulae to the fixed point sets
of closed subgroups of T with prescribed isotropy representation on the normal bundle. We
formulate the “realization challenge” — the question whether every list of abstract fixed point
data that satisfies these identities can be obtained in this way. When the dimension of the
manifold is 2 or 4 and the torus action is locally standard, we obtain a positive answer from
an explicit construction. When the dimension of the manifold is arbitrary and the torus action
is locally standard, or, more generally, GKM, we obtain a positive answer.

1. Infroduction: the “realization challenge”

Much of the information about a smooth action on a manifold can be extracted from the isotropy
representations on the tangent spaces to the fixed points of the action. The representations that
occur are not independent; the topology of the manifold dictates relations between them. In
particular, the Atiyah-Bott-Berline—Vergne fixed point theorem, applied to characteristic classes
of the tangent bundle and normal bundles of isotropy strata, imposes a list of conditions that
the weights of the representations must satisfy. We ask conversely whether, given a finite list
of representations that satisfy these conditions, it necessarily arises as fixed-point data for some
torus action on a manifold. Schematically, we observe there is a map

torus actions on manifolds — isotropy data satisfying certain conditions

and ask whether we can construct a section.

To describe our notion of isotropy data precisely, we will need a well-defined notion of weights,
and for this we will equip the manifolds we consider with an equivariant stable complex structure
(we lay out this and other necessary background in Section 2). To make this one level more
precise, let T be a torus and consider a family (X,,0;,),cp indexed by a finite set P, where each
X, is a multiset consisting of (dim T) elements of Hom(T, S!)\{1} and each 0, is 1 or —1.

Conjecture 1.1. Given abstract isotropy data (X,,0,)ycp satisfying all relations obtained from
ABBY, there exists a compact oriented stably complex T-manifold M whose fixed point set M”
can be identified with P in such a way that the weights of the isotropy representation on T, M are
X, and the orientation on T, M inherited from M agrees with the orientation on T, M induced by
the stable complex structure precisely when o, = 1.



A more precise statement involves spelling out these relations, and can be found in Prob-
lem A.1. The amount of data to be dealt with in general is substantial, and here we deal only
with the case of a GKM action, where we show the answer to be in the affirmative.

Theorem A. Given GKM abstract isotropy data (X,,0p)pcp satisfying (2.5), there exists a compact,
oriented, stably complex GKM T-manifold M whose abstract isotropy data is (Xp, 0p) pep-

When M is 2-dimensional this result is encapsulated in known examples, as we discuss in
Section 3, and when M is 4-dimensional, we provide an explicit construction in Section 4. The
proof of Theorem A is in Section 5, and in Appendix A we discuss what the conjecture should
look like in the general case.

Acknowledgments: The impetus for this work was an earlier, uncirculated preprint of the third
author joint with Viktor L. Ginzburg and Susan Tolman. The authors thank Alastair Darby and
Nigel Ray for helpful conversations.

2. Definitions and set-up

In this section we establish notation, definitions, and a few lemmas. As there are differing con-
ventions for some terms, we go into more detail than we might otherwise.

Notation 2.1. In all that follows we denote by T a compact torus of real dimension k, i.e., a Lie
group isomorphic to a finite product U(1)* of circle groups, and by M an orientable smooth
manifold of real dimension 21 equipped with a smooth T-action.

Definition 2.2. An orientation of a real vector bundle V' — B is a smoothly varying choice of
orientation of each fibre. Explicitly, if Fr(V) — B denotes the frame bundle of V and GL* (V)
the identity component of the group GL(V) of bundle automorphisms of V over idp, then an
orientation of V, if one exists, is a global section of the bundle Fr(V)/GL* (V) — B. A (fibrewise)
complex vector bundle V — B is a real vector bundle equipped with a (fibrewise) complex struc-
ture, meaning an automorphism | of bundles over B such that | 2p = —v for each v € V. It follows
each fibre of a complex vector bundle is a complex vector space under i - v := Jv. A almost com-
plex manifold is a smooth manifold M together with a complex structure on its tangent bundle
T™ — M.

Any vector space of real dimension 2/ equipped with a complex structure | admits a basis
with respect to which ] is a block-diagonal matrix with blocks [{ 7§ ], which is to say GL(2/,R)
acts transitively by conjugation on the space of complex structures, and one checks the stabilizer
is the subgroup GL(¢, C) under the standard embedding. It follows a complex structure on a real
vector bundle V — B of rank 2/ can be identified with a section of the GL(2¢, R)/GL(¢, C)-bundle
Fr(V)/GL(¢,C) — B associated to the frame bundle.

An isomorphism of complex vector bundles is an isomorphism of real bundles intertwining
the complex structures. A T-equivariant complex vector bundle t: V — B is a complex vector
bundle equipped with T-actions on V' and B such that 7 is T-equivariant and the map V — V
induced by each element of T is an automorphism of complex vector bundles. It follows that a T-
equivariant complex structure can be identified with a T-equivariant global section of the bundle
Fr(V)/GL(n,C) — B. Given a complex vector bundle V — B a local section (vy,...,v,) of the
complex frame bundle Fr(V) — B determines the local section (vy, Jv1,...,v,, Jv,) of the real



frame bundle Fr(Vg) — B and hence an ordered basis at each fiber, inducing what is called the
complex orientation of V. Specializing to the case of the tangent TM — M to a smooth manifold,
this means an almost complex structure on M determines an orientation of M, again called the
complex orientation.

We denote by C, the one-dimensional complex representation determined by a homomor-
phism a € Hom(T, S!). Reciprocally, we call such an « the weight of a one-dimensional repre-
sentation isomorphic to C,. We always write the operation in Hom(T, S') additively, so that,
particularly, —a is the composition of « and complex conjugation S! — S.

Given a manifold M with a T-action, a T-equivariant stable complex structure on M is the
equivalence class of a T-equivariant complex structure on some stabilization TM @ R" of its
tangent bundle, where T acts on TM by the tangent action and trivially on R". Two such complex
structures J; on TM @ R™ and ], on TM @ R"? are defined to be equivalent if there exist non-
negative integers sq, s, and a smooth T-equivariant isomorphism

~

(TM®R", ;) @C" — (TMOR", ) ®C*

of complex vector bundles over M, where the stabilizing trivial bundles C*! and C* each carry
the standard complex structure.The manifold M, equipped with such structures, is called a stably
complex T-manifold. Note that the choice of a stable complex structure on M does not determine
an orientation of M.

Remark 2.3. As real T-representations C, and C_, are isomorphic, but as complex representations
they are not. This distinction is important, as it means the weights of irreducible factors are
defined for isotropy representations on a stably complex T-manifold.

Stable complex structures behave well under restriction to fixed-point submanifolds.

Proposition 2.4. Let H be a closed subgroup of T and N a connected component of the set M of H-fixed
points of M. An orientation of M induces an orientation on N. A T-equivariant stable complex structure
on M induces a unique T-equivariant stable complex structure on N and a unique T-invariant complex
structure on the normal bundle v);N to N in M. An orientation on M thus uniquely determines an
orientation on N. Moreover, if H is contained in another closed subgroup K of H and P is a connected
component of NX, then the T-equivariant stable complex structure on P induced from N agrees with that
induced directly from M, the T-equivariant complex structures on normal bundles are compatible in the
sense that

0 - vyP — vpP — (vmuN)|p — 0 (2.1)

is a short exact sequence of complex vector bundles over P, and the orientation on P inherited from N
agrees with that inherited directly from M.

Proof. Fix a representative (TM@®R’, ]) of an equivariant stable complex structure on M. Restrict-
ing, we obtain a T-equivariant complex vector bundle (TM @ R")|y over N whose H-fixed point
set is the subbundle TN @ (R'|y). This is in fact a complex subbundle, as | commutes with the
tangent action of H on TM, and so we also obtain a complex structure on the quotient bundle.
The inclusion TM|y < (TM @ R")|y induces a T-equivariant bundle isomorphism

™|y ~ (TM@®R')|y
TN TN&® (R'[n)

VMN =



and hence a T-equivariant complex structure on the normal bundle vaN. It can be checked that
complex structures on stabilizations of TM representing the same equivariant stable complex
structure on M give rise to the same equivariant stable complex structure on N and the same
invariant complex structure on v)/N. The given fibrewise orientation on TM and the complex
orientation on v/ N uniquely induce a fibrewise orientation on the kernel TN of the bundle map
TM| N —> VM N.

The statement about restriction of equivariant stable complex structures follows again from
the fact | commutes with the tangent action of each element of T. The exact sequence (2.1) of
normal bundles follows from the third isomorphism theorem:

TM|P®K/TP®K P

(vmN)|p =~ (TMOR) |y ~ ~
MEJIP = TTNOR |, ~ TN|p®Br/ = WP
TPOR’
The transitivity of induced orientations follows from this sequence. O

We filter a T-manifold not only by its stabilizers but by its isotropy representations.

Definition 2.5. Given a complex representation p: H — AutV, of a subgroup H of the torus T
with trivial invariant subspace (V,)", we define the corresponding isotypic submanifold MF to
be the closure in M of the set of points p whose stabilizer is equal to H and such that the isotropy
representation of H on T,M/(T,M)" is isomorphic to p.

Remark 2.6. Note that given a equivariant stable complex structure on M, because every connected
component N of M is a connected component of MH, such N are T-submanifolds of M, which
by Proposition 2.4 inherit T-equivariant stable complex structures, and whose normal bundles
in M are T-equivariant complex bundles. Particularly, if p is a fixed point, then the tangent
space T,M = vj{p} inherits an equivariant almost complex structure and hence a complex
orientation. By Proposition 2.4, this inherited orientation does not depend whether we view {p}
as a submanifold of M or of some isotypic submanifold M.

Definition 2.7. Given a fixed point p of a stably complex T-manifold, the orientation on T,M
induced by the stable complex structure on M is called the complex orientation. If M is oriented,
we write ¢, for the sign at p, chosen to be respectively 1 or —1 depending whether the complex
orientation of T, M agrees or disagrees with the chosen orientation of M.

The Atiyah—Bott-Berline—Vergne (ABBV) fixed-point theorem [BV82, AB84], given an oriented
T-manifold M, considers the pushforward map 7™: H%(M) — H%(pt) = H*(BT) in Borel equiv-
ariant cohomology and states that for any equivariant cohomology class c € H}(M), one has

i (eln)
e = Z ) ﬁ € H*(BT), (2.2)
NeM

where N ranges over components of the fixed point set M! and e’ is the equivariant Euler
class. Part of the statement is the non-obvious fact that the right-hand side, a priori only lying
in some localization of H*(BT), indeed lies in H*(BT) itself. The phrase “all ABBV identities”
in Conjecture 1.1 is an abstraction of the collection of all these statements, over all equivariant
cohomology classes ¢, where we replace M with every isotypic submanifold MF. The precise
statement is (A.1). For now, we focus on the GKM case.



Definition 2.8. A stably complex T"-manifold M?" is called a GKM manifold when
¢ the fixed point set MT" is discrete and

e for each fixed point p, no two weights of the isotropy representation T* — T, M are collinear
in Hom(T*, S1).

In this case, if p: H — AutV, is a representation of a subgroup H of codimension one, the
components N of a nonempty MF are 2-spheres N consisting of two points p,q of M! and a
complement N° foliated by orbits of a circle action a: T — T/H = S'. The normal bundle v,N°
to this complement N° is a trivial bundle whose every fibre carries an H-representation we may
write as @}1:_11 C B for some nonzero B]- € Hom(H, S!). The isotropy representations at the poles
p and q can be written

n—1 n—1

TPM = szp ® @1 Cﬁj,p’ TqM = szq @ @1 (Cﬁ/,q’
= =

where each of «, and a, is « or —a and Bj,, Bj, € Hom(T,S") restrict, for each j, to B; €
Hom(H, S'). Thus
Bip =PBjq (mod a). (2.3)

Select an orientation of N at random. Both tangent spaces T,N and T;N are isomorphic to
C, as real T-representations, but the orientation inherited from N may or may not agree with
the complex orientations. Remembering that we defined ¢}, € {+1} to be 1 just in the case of
agreement and applying (2.2) to ¢g = 1 € H(N), we get

0—[1— ! + ! _1+L_L+L (2.4)
@ eT(vnip})  eT(ww{q}) &« —a opap  ogay 4

When we collect abstract isotropy data in the form of isotropy representations at fixed points,
we also forget the 2-spheres N (edges of the GKM graph), and to find the minimal relations
abstract isotropy data must satisfy if it comes from a GKM action, we need to identify “potential
2-spheres” in the data. Taking (2.3) as the identifying condition for a potential 2-sphere, we are
motivated to define the sets I, in the following definition. The crucial condition (2.5) then follows
from summing (2.4) over endpoints of such potential 2-spheres.

Definition 2.9. Let k < 1 be natural numbers and M?" a compact, oriented, stably complex T*-
manifold with isolated fixed points. The isotropy data of M is (Xp,0p),epr, where X is the
multiset of weights of T,M and 0, € {£1} is 1 just if the orientation of T,M agrees with the
orientation of (—D%X Ce. Abstmct isotropy data is simply a finite family (Xp,ap) pep such that
each X, is a multiset of 7 nontrivial elements of Hom(T*, S') and each opis1or —1.

leen abstract isotropy data (Xp,0p)pep, for each codimension-one closed subgroup H of
T = T* and each (n — 1)-dimensional representation p: H —> V|, with trivial invariant subspace
VPH, we write P, < P for the set of indices p such that X, £ Hom(T, Sl) can be decomposed as
{ap} 1Y, where H = kera, and the restriction of Y to H is the multiset of weights of p. We will
call abstract isotropy data GKM when each X, is a set no two elements of which are collinear.

The condition on GKM abstract isotropy data ultimately extracted from (2.4) is this:



For all p, > 01“ =0. (2.5)
pepp p p

Now we can state the central problem.

Problem 2.10. Given GKM abstract isotropy data (Xp,0p)ycp satisfying (2.5), does there exist a
compact, oriented, stably complex GKM T-manifold M whose isotropy data is (Xy, o) pep?

We state a generalization, as yet unanswered, in Appendix A.

3. Two dimensions

The statement of Problem 2.10 in case n = k = 1 is particularly simple but gives intuition for the
general proof and provides a useful example of the meaning of the signs o.

Theorem 3.1. Let P be a finite set, for each p € P let X, = {a,} contain a single element of Hom(S!, S1),
and let 0, € {1}. Partition P into sets Py consisting of those p for which ker a, is the group of £ roots

of unity, and assume that for all £ > 1,

1
— =0.

pep, IP%p

Then there exists a compact, oriented, stably complex S'-surface M and an identification of P with MS'
such that for each p € MS' the weight of the isotropy action of T on T,M is a,, and the given orientation
of Ty M agrees with the complex orientation if and only if 0 = 1.

Proof. For each ¢ > 1 and all p,q € P; we have a, = +ag, so if we write s: S! 14, 81 for the
standard generator, (2.5) implies there are as many p € P with o,&, = /s as there are g € P with
oy0 = —s. Use this observation to partition P into pairs {p,q}. Then M will be a disjoint union
of manifolds M’ with isotropy data ((ocp, 0p), (ch,(rq)) corresponding to these, to be constructed
in the following examples. ]

Example 3.2 (0, /0, = 1). Consider the action of S' on 5% =~ CP! induced by S? L4 81 < C* and the
multiplication of C* With the standard complex structure on CP!, the tangent representation at
the north pole 0 is /s and that at the south pole o is —/s. If we give CP! the standard orientation
induced from the basis 1,7 of C, then 0y = 0, = 1. If we give it the opposite orientation, then
0p = 0 = —1. Either way opag + 0o = 0.

Example 3.3 (0/0; = —1). The tangent bundle TS? to a sphere S? is stably trivial, as the normal
bundle v of the inclusion in R® is trivial and Kg’ = TS2@v. In coordinates, v and TS? can be
seen as the subsets of S? x R3 given respectively by pairs (p,v) such that p € S> and v L p and
by pairs (p,ap) with a € R. Stabilizing again allows us to define a stable complex structure on
S? distinct from the standard stable complex structure on CP!. Explicitly, we have a real bundle
isomorphism

TS?@vOR S RPOR = (g

which on the fibre over each point p € S? takes

(v,ap,b) — (x(v+ap) +iy(v + ap),z(v + ap) + ib)



Pulling back the standard constant real frame on (C?)g gives a frame on TS?> ® R? which on the
fiber pt ®Rp @R over p = (x,y,z) € S is

((1,0,0) —xp,0,0),  ((0,1,0)—yp,0,0),  (G,p,0),  (G,0,1).

In particular, at both the north and south poles p+ = (0,0,+1), the first two basis vectors are
((1,0,0),0,0) and ((0,1,0),0, O).

On the other hand, the standard orientation of S? is given at p. by the basis (+1,0,0), (0,1,0)
of Ty, S2. Thus 0y, = land 0, = —1, so, with the same action as in Example 3.2, we have
ap, =ap = Ls.Butstilloy, ap, +0p 0y =4ls—1Ls=0.

Remark 3.4. In fact, these are in a strong sense the only examples: the only closed, connected,
oriented surfaces a circle acts on nontrivially are the torus and the sphere, and circle actions on
tori do not admit fixed points.

4. Four dimensions

In the case n = k = 2 we are able to provide a more interesting construction. We will realize
GKM abstract isotropy data satisfying (2.5) by a skeletal construction starting with a 0-skeleton
whose points are in correspondence with the index set of the given abstract isotropy data. The
1-skeleton will be modelled by a 2-regular graph.

Definition 4.1. An graph consists of a set of vertices and a set of edges between them; multiple
edges between the same pair of vertices are allowed. Given an graph I', write 7'(I') for the set
of vertices of I' and &'(T') for the set of orientations of edges of I'—thus each edge of I" appears
twice in &(T'), once with either orientation. If e € &(I') starts at p € #(I') and ends at g, we write
e: p—g,and e: g — p for the same edge with the opposite orientation.

We need two lemmas, the first of which we generalize substantially in the next section and
the other of which is sui generis.

Lemma 4.2. Given GKM abstract isotropy data (X, 0p) pep satisfying (2.5), there exists a 2-regular graph
T with vertex set P and labels a(e) € Hom(T, S') for each oriented edge e such that

* foreach e: p — q, we have opu(e) + oya(€) = 0,
* if the two oriented edges emanating from p are e, e’, then X, = {a(e), a(e’)}, and

o if we write X, = {a(e), B(e)} and X, = {w(e), B(€)}, then p(2) = B(e) (mod «(e)).

The resulting graph is what is called a GKM graph, as we elaborate on in Definition 2.8, and
in fact this lemma will be expanded to that case in Lemma 5.7. If the X, are bases of Hom(T, S!)
it is what is called a torus graph.

Proof. Take P itself as 7 (I') and construct the edges as follows. For each element p of a fixed P, as
in Definition 2.9, note that «;, can be one of precisely two elements +a. From the identity (2.5) we
see that there are exactly as many p € P, such that 0,a, = & as those such that 0, = —a. Choose
a bijection between these two subsets of P, and add to &(I') an edge e between each pair of points
p and q matched by this bijection, setting a(e) = a. By construction, we have cya(e) + oya(e) = 0
and B(e) = B(é) (mod «). Repeat this process for each p.



It remains to check I is 2-regular. Given p € P = 7(I), if X, = {a,B}, then p € P, for
0 = PBlieras O there is an edge at p corresponding to a. As the elements of X}, are not collinear,
the resulting subgroups ker a are distinct, so exactly two edges of I' emanate from p. O

As we will identify P with a subset of our final T-manifold, we will henceforth identify the
vertices p of the lemma with the corresponding p € P. The submanifolds corresponding to an
edge of this graph will be provided by the following construction.

Lemma 4.3. Let T be a two-dimensional torus. Given a pair of homomorphisms «, B € Hom(T, S') and
an integer k there exists a T-equivariant Hermitian line bundle &: E — CP' such that the weight of the
induced action of T on the tangent space Tjy ojCP' is a and that on Ty ;)CP' is —a, while the weight of
the induced action of T on Ey o) is B and that at Eq) is B + ka.

Proof. Let C* be an abstract algebraic torus, to be used as an auxiliary. Given p € Hom(T, S!) and

k € Z write C, ; for the one-dimensional complex representation of T x C* given by (t,z) - v :=

p(t)zkv.

Form the (T x C*)-representation Cp_1 @ C,,—1 © Cgy; projecting out the last coordinate
makes this the total space of a (T x C*)-equivariant line bundle over Cy_; ®C,, 1 =~ C2 If
we restrict this line bundle to C?\{0} and quotient the C*-action out from both total and base
space of this restricted bundle, we get a T-equivariant line bundle E — CP!. One may check that
the T-action on CP! has respective weights a and —a at [1,0] and [0, 1] and the other weights of
the T-action on the fibres E[; o) and E|o 1} are respectively § and B + ka. O

Remark 4.4. The line bundle E contains a natural “unit disc” subbundle DE determined by im-
posing the restriction |w| < 1/]z0|2 + |z1|? on points (zo,z1, w) € C*\{0} x Cg x before quotienting
by the C*-action. It also induces an orientation on E and a fiberwise complex structure. The
weights of the action at [1,0] and [0, 1] € E will differ by a sign from the weights with respect to
the stable complex structure we are about to construct.

Now the pieces are in place.

Theorem 4.5. Let n = k = 2. Given GKM abstract isotropy data (X,,0p)pcp satisfying (2.5), there
exists a four-dimensional compact stably complex GKM T-manifold M whose isotropy data is (X, o) pep-
Moreover, if the X, are all bases of Hom(T, S'), then the action is locally standard in the sense that
around every point of M there is a local T-equivariant homeomorphism to a neighborhood in C? with the
standard T-action.

Proof. Given GKM abstract isotropy data (Xp,0p)pep satisfying (2.5), create a graph I' as in
Lemma 4.2; note in particular that this 2-regular graph is a union of cycles. For each edge
e: p — q, we write a, := 0p&, (note that by Definition 2.8 we always have a, + a; = 0), and we
write B, for the single element of X,\{a.}. Consistently orient each cycle of T’; this distinguishes
a subset of oriented edges &t & &(I') such that the end of each edge of &7 is the beginning of
another. For each oriented edge e: p — g, observe that f; is equal to B, + ma, for some m € Z by
Definition 2.8; thus we may use Lemma 4.3 to construct, for each e € &, a complex line bundle
&.: E, —> CP! := CP! with associated weights a., B, at [1,0] and —a,, B at [0,1]. We identify
0e Ee’[l,O] with p and 0 € E€|[0’1] with q.

Each line bundle ¢, has a well-defined closed unit disc bundle DE, by Remark 4.4. Recall that
for each paire: p — gand f: ¢ — rin & we have a; = s by construction. Now we glue together
DE, and DE £ as follows. Select disjoint closed T-invariant neighborhoods D; of [0,1] € (CPg and



Dy of [1,0] € (CP}, which we may equivariantly identify with closed unit discs D,, & C,, and
D, ;& C, ; in one-dimensional T-representations. Then we have equivariant identifications

DEe|DE = Daé X D/gé,

(4.1)
DEf‘Df = Daf X Dﬁf’

and since oya; = a; = By and ag = B;, there exists an orientation-preserving equivariant diffeo-
morphism DE,|p, — DE¢|p , given in terms of the trivializing coordinates by (z, w) — (w, 2).
Thus the interior of the quotient space

My = el}LDEE/(e, (z,w)) ~ (f, (w,z)) forp->gq LR

naturally inherits the structure of a complex T-manifold.

The remainder of the construction proceeds in parallel for each component of M;, so we may
as well assume M is connected. Note that the T-orbit space DE,|p,/T of each of the polydiscs we
plumbed with is diffeomorphic to a closed rectangle (D?/S') x (D?/S') = [0,1]?, and the T-orbit
space of the restriction of DE, to CP}\(D, u Dy) is diffeomorphic to a rectangle (0,1) x [0,1].
The entire orbit space M;/T is a closed annulus, smooth except at the points (0,0) and (1,1)
in each identification rectangle [0,1]2. Thus a small T-invariant neighborhood of dM; meets the
interior (M;)° in an open set which is a principal T-bundle over an open annulus. Since any such
bundle is globally trivializable, we may smoothly and equivariantly identify this intersection
with S' x (1 —¢,1) x T. Writing D(;_, | for the complement in $* =~ R? U {co} of the closed disc
of radius 1 — ¢, we set

M= M S1x (16, 1)xT Do) < T.

It remains to find a T-equivariant stable complex structure on M such that the isotropy
weights at each p € P are X,. We will identify this as the class of an T-equivariant complex
structure on TM @RZ, where the T-action on the stabilizing summand is trivial. We do this one
level at a time on the equivariant skeleton, first on neighborhoods of the fixed points p € P, then
on the edges DE, for e € &7, and finally on the 2-cell D(j_, ) x T.

For the O-skeleton, each p € P is the source of one directed edge e: p — g in &, note that
the natural T-equivariant almost complex structure on the tangent bundle of the unit polydisc
Dy, x Dg, < Cy, x Cp, has the correct weights, but the complex structure on the plumbing locus
DE;|p, = D,, x Dg, inherited from DE, will agree only if 0, = 1. Using the equivariant home-
omorphism D,, ~ D,, which is complex conjugation if ¢, = —1 and the identity if 0, = 1, we
equip the plumbing locus with the complex structure of D,, x Dg,. If 5, = 1, stabilize this bundle
by adding C; otherwise, add the conjugate C. Note this structure induces a equivariant complex
structure on the bundles TD, and E.|p, = D,, x Cpg, as well. For brevity, we will call these three
the 0-skeleton structures.

To find an equivariant stable complex structure on the equivariant 1-skeleton (M;)°, it is
enough to find one on each equivariant edge DE,. For this, recall that this edge is the total space of
a disc bundle 7: DE, — (CP} and that since the kernel of the tangent map m,.: TDE, — TCP!
can be identified with 77*E,, we have a short exact sequence

0 — 7*E, — TDE,®R* — 7*(TCP! ®R?) — 0 (1.2)
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of T-equivariant complex vector bundles over DE,. Using the identification DE,|p, =~ D,, x Deg,
from (4.1), this exact sequence restricts over DE,|p, to the evidently equivariantly split sequence

0 — Dy, x Dg, xCp, —> Duex(CaexDﬁfx(Cﬁfoz — DuexCaexDﬁesz — 0,

equipped with the diagonal action. We have a similar identification near the other pole of (CP%,
over DE,|p,, and since DE,|p, and DE,|p, are closed, we may extend these splittings to an equiv-
ariant splitting of (4.2). Note that this decomposition is what we want on the level of T-actions,
but the orientations on the C,, fibers may not agree with the 0-skeleton structure on DE,|p, . If we
can determine equivariant complex structures on the bundles E, and TCP! @ R? such that their
pullbacks, when restricted over D,, agree with the 0-skeleton structures, then the splitting will
induce an equivariant complex structure on TDE, ® R? agreeing with the 0-skeleton structure as
well.

For E,, we may just take the original equivariant complex structure provided by Lemma 4.3.
For TCP! ®R?, we start with the 0-skeleton structure on (TD, 11 TD;) ® R? and recall from Def-
inition 2.2 that a equivariant complex structure can be identified with an equivariant section of
the bundle

C = Fr(TCP! @ R?)/GL(2,C) — CP..

The quotient group T/(ker a,) acts freely on the restriction 7 of this bundle to CP!\{p, q}, with
quotient a bundle
Y: Q-1

over an open interval, and equivariant sections of 7y correspond bijectively to sections of 7. Our
desired section | is already defined over D, and D, so the corresponding section j of 7 is defined
over the two half-open intervals I, = D./T and I; = D;/T, which sitin I as (0,¢] and [1 —¢,1) do
in (0,1). As GL(4,R) has two components, corresponding to positive vs. negative determinant,
and GL(2,C) only one component, it follows the fibers GL(4, R)/GL(2,C) of ¢ and 7 have two
components, corresponding to orientations of TCP} @ R?, and hence the total spaces do as well.
Moreover, the 0-skeleton structures corresponding to the sections over DE.\{p} and DE;\{q} lie
in the same component of C owing to our choice of C or C as stabilizing factor, so corresponding
sections from I, and I; to Q do as well. Since I is contractible, Q is a trivial bundle, and hence
sections of Q correspond to maps I — GL(4,R)/GL(2,C). As I, and I; are closed in I and their
images lie in the same component of Q, we may connect the existing sections to a full section
j: I — Q as hoped. By construction, the resulting | has isotropy weight «, at p and «; at g.

Having done this for all e € £ gives a equivariant complex structure on TM; ®R?, since for a
sequence of edges p > g = r, by construction the structures on E,|p, and E flp, agree and likewise
that on TD; ® R? agrees with that on TDy ®R?. Our final task is to extend this to a equivariant
complex structure on the rank-six real vector bundle TM ®R? — M. Under the identifications
we used to construct M, this amounts to constructing a section over over the equivariant two-cell
D(1_¢e0) x T agreeing with one already chosen on the equivariant annulus S'x (1—¢1] x T. The
bundle of complex structures over D(;_ ) x T is a trivial bundle with fiber GL(6,R)/GL(3, C),
so the problem reduces to extending a nonequivariant map from an annulus to this fiber over an
entire open disc. But this is always possible as m; (GL* (6, R)/GL(3,C)) = 0. O
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5. GKM graphs

In this section we answer Problem 2.10 in the affirmative. We use the notation for graphs from
Definition 4.1.

Definition 5.1 ([Dar15, Def. 2.6][Dar18]). A GKM graph is a triple (I', «, o) comprising
¢ an unoriented n-regular graph I,
e an function 0: ¥ (I') — {£1} called an orientation, and
e an axial function : &(T) — Hom(T*, S') for some k < n
such that
e for eache: p — g we have a(¢) = ——=ua(e),”

o for each p € ¥ ('), the elements of X, := {a(e): e begins at p} are pairwise linearly inde-
pendent in Hom(Tk, Sy ~ 7k, and

e for each e: p — q in &(T), the images in Hom(T*, S) /(a(e)) of X, and X, are equal.
An oriented torus graph is a GKM graph such that k = n and each X,, is a basis of Hom(T, S*).

GKM graphs fit into a family of combinatorial abstractions of actions along with abstract
isotropy data.

Construction 5.2. Given a GKM manifold (respectively, locally standard torus action on a stably
complex manifold) M, one extracts the corresponding GKM graph I'(M) = (I'y, ap, om) (re-
spectively, oriented torus graph) as follows. First, set 7 (T'y1) = M. For each codimension-one
subtorus H < T realized as an isotropy type, M!! is a disjoint union of 2-spheres S,, each of
which contains two elements of M! and inherits a H-equivariant stable complex structure. We
assign a pair of oriented edges e: p < g :€ for each such 2-sphere S,. The isotropy representation
T — T/H —T,S, is an irreducible summand of the isotropy representation of T on T, M, and can
be viewed as an element ay(e) € Hom(T, S!), prescribing our axial function.> We set o (p) = 1 if
the orientation on T, M defined by M agrees with the orientationon @ C,,,() and op(p) = —1
otherwise. e p=a

Construction 5.3. Given a GKM graph (T, &, 0), note that the local data A(T) = (X, o(p))yer ()
constitute GKM abstract isotropy data satisfying (2.5). The GKM condition on the abstract isotropy
data corresponds to the X, being sets, the clause X, = X, (mod{a(e))) is exactly the congruence
condition, and that o(g)a(¢) = —o(p)a(e) guarantees (2.5).

Notation 5.4. From now on we will identify a nonzero weight a € | :== Hom(T, S!)\{1} with its
associated one-dimensional representation C, and a multiset X of nonzero weights with the rep-
resentation @,y C,. Write R T for the semigroup of representations with no trivial summands,
under direct sum. We make the trivial observation that if we write the direct sum operation on
representations multiplicatively, then we can write elements of R, T as monomials on elements

! Note that this is more general than the original definition [GKMg8, GZo1], which requres that a(¢) = —a(e).
2 There is a priori an arbitrary sign involved in the identifications S' >~ T/H =~ AutT,S,, but there is a natural
choice derived from the inherited stable complex structure on S,.
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of J, identifying X, and || aex, & Identifying a list with a formal sum of its members, we forget
the labelling and view abstract isotropy data (X}, 0}y)pep as elements . P(H%Xp a,0p) of the free

monoid N+ (R, T x {£1}).

Construction 5.5. Recall that one construction of Z from the natural numbers N is a Grothendieck
group construction: integers are equivalence classes of pairs (a,b) of naturals under the relation
that (a,b) ~ (c,d) when a +d = c + b. Equivalently, start with the free commutative monoid
N {£1} on the letters {1} and {—1}. Then quotienting by the equivalence relation is the map
a{l} + b{—1} — a —b: N {£1} — Z. Two elements of N - {+1} have the same image under
the map if and only if it is possible to obtain one side from the other by adding a nonnegative
multiple of {1} + {—1}.

Repeating this construction in parallel for each element V € R, T gives a map II of additive
monoids from the monoid N - (R T x {£1}) of abstract isotropy data to the free abelian group
Z-R4T = Z[]] on R4 ], given on basis elements by (V,0) — ocV.3

Now we have a chain of maps

//\

GKM manifolds r GKM graphs — 2 - abstract isotropy data

Zl]], (5.1

f

¢

whereas Problem 2.10 is to find a section of A oT. It is known [HO72] that the kernel of ¢ is given
by equivariant bordism, so that ¢ induces an injection from equivariant bordism classes of GKM
manifolds to Z[]]. Moreover, Alastair Darby showed im ¢ is all of im f.

Theorem 5.6 (Darby [Dar15, Cor. 2.27, 4.5][Dar18]). For each GKM graph (I, a, ) there exists a stably
complex GKM manifold M such that (M) = f(T) in Z[]]. If (T, a,0) is an oriented torus graph, then
M is locally standard.

From the factorization (5.1) and Theorem 5.6, it is then enough to find a section of the pro-
cess labeled (X, o) taking a GKM graph to GKM abstract isotropy data satisfying (2.5) and then
find GKM manifolds whose abstract isotropy data corresponds to ker f. This is provided by the
following lemma and example.

Lemma 5.7. Let GKM abstract isotropy data (X,,0),ep satisfying (2.5) be given. Then there exists a
GKM graph (T, a, o) whose associated abstract isotropy data is (Xp, 0p) pep-

Proof. The proof of Lemma 4.2 applies, changing only the number of elements of X, and hence
the valence of the resulting graph. O

3 If we view abstract isotropy data as an element of the domain as in Notation 5.4, this map is given by

(Xp, 0p) pep — Z Op H o

peP  aeX,
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Example 5.8. Consider the action of T" on S*" obtained by suspending the standard action on the
unit sphere 52"~1 ¢ C". If we write tj: T" — S for the projections, we see the associated GKM
graph has two vertices p,q joined by n edges ej: p — g such that a(e;) = a(g;) = t;. We have
o(p) =1=—0c(q),andso f(Tm) =[[t; -]t =0.

More generally, given a GKM graph (I, a,0) with exactly two vertices p,q, and n oriented
edges, as each edge e: p — g must satisfy o(q)a(é) = —c(p)a(e) by the first condition, from the
third condition we see we must have a(e) = a(é) for all e and hence o(q) = —o(p). We then get

f(@) =o(p)[Tale) +o(q) [Tale) = 0.

This graph is realized as the GKM graph of the unit sphere S?" in the T*-representation R @
@, Cy(e), where Tk acts trivially on the R factor.

Taken together, these facts resolve Problem 2.10.

Theorem A. Given GKM abstract isotropy data (X,,0p)pep satisfying (2.5), there exists a compact,
oriented, stably complex GKM T-manifold M whose abstract isotropy data is (X, 0p) pep-

Proof. By Lemma 5.7, there is a GKM graph I" such that A(I") = (X}, 0,)pep. By Theorem 5.6,
there is a GKM manifold M’ such that ¢(M’) = f(I"), or rearranging, (A oI')(M’) and (X,, ) pep
have the same Il-image. Per Construction 5.5, this means the two agree up to addition of a
nonnegative multiple of (V,1) + (V, —1) to one side or the other for every V € R, T.

For each V such that the coefficient of V in I1(X}, 0}) sep is greater, construct a disjoint union
My of 2n-spheres as in Example 5.8, and replace M’ with M'11] [, My. For each V such that the
coefficient of V in ¢(M') is greater, we do away with pairs of fixed points p,q with respective
isotropy data (V,1) and (V,—1) via equivariant surgery. To see one can do this smoothly, put
an equivariant Hermitian metric on M’ so that the exponential equivariantly identifies neighbor-
hoods U, and U, of the fixed points in M’ with e-balls in their tangent spaces T,M and T, M.
Puncture the e-balls at their origins, identifying them each with the T-space S?**~1(V) x (0, ¢),
where the first factor denotes the unit sphere in the unitary representation V and T acts trivially
on the radial coordinate, and glue the two punctured balls via the orientation-reversing equiv-
ariant diffeomorphism (v,r) ~ (v,e —r). Doing this an appropriate number of times for each
discrepant V finally yields a manifold M whose isotropy data is (Xp, 0p) pep- O

A. The readlization challenge in general

In this appendix we present the localization identities in full generality.

A.1. Strata

Given a stably complex T-manifold M, its orbit-type strata are defined to be the connected
components of the sets of points with the same stabilizer H < T. Given a complex representation
p: H— AutV, of a closed subgroup H of the torus T with trivial invariant subspace (V,)", we
define the corresponding isotropy stratum M, to be the set of points p in M whose stabilizer is
equal to H and such that the isotropy representation of H on T,M/(T,M)" is isomorphic to p.
This p is also called the isotropy label of the isotropy stratum. If a point p is in the closure of M,,
then the stabilizer K of p contains H. If p has isotropy label A: K — Aut V), then under A|y, the
space V) decomposes into V, and (dim K — dim H) trivial summands.
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Given a fixed point p € M7, a closed subgroup H of T, and a representation p: H — AutV,
with trivial invariant subspace (V,)" we write p € P, if there is a T-invariant subspace W € T,M
such that H = ker(T — AutW) and T,M/W =V, as a T-representation. It follows that we have
a decomposition of T-representations

TpM ~ (—B Cah (&) (—D Cﬁi'

where ),: T — T/H — S! descend to span Hom(T/H, S') and B; € Hom(T, S!). This decomposi-
tion descends to a decomposition
Vp = @ Cﬁ[’ H-

It is possible the restrictions B;|g will be equal for multiple i (and the f; may already not be
distinct). Write {B1, ..., Bs} for the set of such restrictions and for each j € {1,...,s} let I; be the
subset of {1,...,dim V,} such that B;|y = Bj. If N = M, contains p € M” in its closure, then the
decomposition of V, as an H-representation determines an H-equivariant decomposition

s
I/MN = (—D 1/5/_
j=1

of the normal bundle as a sum of isotypic subbundles vz such that for each g € N,

(VBj)q = @(CB]

iel;

A.2. Locadlization identities

This particularly applies to characteristic classes c¢(E) € H*(M) of a T-equivariant bundle E — M,
for then there is always an equivariant extension ¢’ (E) € H%(M), given as the value of ¢ on the
non-equivariant bundle ET ® E — ET ®7 M; pullback along the inclusion E — ET ®r E takes
cT(E) to ¢(E). The same then obviously follows for monomials in the characteristic classes of
bundles. We will particularly be interested in monomials in the Chern classes of direct factors of
TN and vy N for N components of an isotypic submanifold M as in Definition 2.5 in the case
MT is discrete.
The equivariant Euler class is easy to describe completely. Recall that the composition

& Cy > (ET®Cy — ET @) — c1(ET®C)

is an additive group isomorphism Hom(T,S') — H?(BT) which we notate as if it were the
identity. An arbitrary oriented T-representation V is isomorphic as an oriented representation
to a direct sum @(szj, where the a; € Hom(T,Sl) are each determined up to a sign and the
expression is unique up to reordering and expressing two weights by their opposites. Particularly,
the product [ [«; € H*(BT) is well-defined. We thus have

eT(V) = e(ET®V) =0 e((—D(ET(?C“/)) = UHe(ETQTB(C“].) = aﬂcl(ET@C%) o] [

where 0 = 1 or —1 depending whether the given orientations of V and (P C,; agree or not. For
the Chern classes, we will start with the total Chern class, getting

(V) = c(ET®V) = c((—B(ET@TOCaj)) = HC(ET@C%) =] +c1(ETC>T<)(Ca)) = ;Nag(al,...,an).
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and reading off ¢} (V) = oy(ay, ..., a).

For each p in the component N < M,, assume we have «;(p), isotypic components VEi(p)r and
indexing as specified as in Appendix A.1. Then
: _ [ el (TN T T e] (v5)p ™
0= J cH(TN)" ¢ (vg)"" = ! :
NE[ ‘ 1111;[ t ﬁ]) pel\;MT e (n{p})
he , :
oy [Teoe(@n(p)" Tz e oe(Bilp) i e )™
peNAMT op [1i(p)

so long as the polynomial on the left-hand side has total degree less than dim N.

A.3. Abstract isotropy data in general

Given abstract isotropy data (Xj,0p)pep and a closed subgroup H of T, and representation
p: H — AutV, with trivial invariant subspace (V,) we write p € P, if there exists a de-
composition X, = {a;} 11 {B;} such that a: T — T/H — S' descend to span Hom(T/H, S') and
@ Cg,|lg = V,. As p € P, varies, write these as a;,(p) and B;(p). Further, write {f1,..., Bs} for the
set of restrictions of the B;(p) to H and for each j € {1,...,s} let I; be the subset of {1,...,dim V,}

such that B;(p)|u = B;(p)-
Then the general ABBV conditions are the following:

2 HZ 0¢ (“h(p))hz H]S'=1 Hf oy (‘BZ(p) ‘ie I].)mj,(
peP, op [ Tai(p)

For all p, =0 (A.1)
for every product of symmetric polynomials such that the total degree in the aj, and B; of the
numerator is less than n — k.

Finally, the precise statement of the realization conjecture is as follows:

Problem A.1. Given abstract isotropy data satisfying (A.1), does there exist a compact, oriented,
stably complex T-manifold M whose isotropy data is (X}, ) pep?
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